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Abstract

This document presents the original approach for estimating parame-
ters of proteolysis process. Data used to fit the model are taken from mass
spectrometric experiments. For parameters estimation the Levenberg-
Marquadt algorithm is used. The motivation for model is a hypothesis
that discrimination between cancer patients and healthy donors can be
based on activity of peptide cleaving enzymes (i.e. peptidases).

1 Introduction

1.1 The process of proteolysis

The biological processes described in this paper belong to proteomics, which
refers to research on the protein’s area. Proteins belong to the set of basic
chemical combinations which condition the life on the Earth. Natural proteins
consist of 20 main amino acids, which create in cells polypeptide chains. These
chains are cut by the enzymes named peptidases which, according to the kind
of cleavages (cutting) that they make, are divided into:

• exopeptidases - which cleave near the ends of the polypeptide chain,

• endopeptidases - which cleave the polypeptide chain in the middle.

Cleavage of the polypeptide chain causes the decomposition of proteins into
peptides and amino acids which is named process of proteolysis. There is a is
a hypothesis that this process may be useful for discrimination between cancer
patients and healthy donors (see [Vil06]).

1.2 Mass spectrometry

We study blood serum data which were analyzed using mass spectrometry. This
is an analytical method which serves for setting the mass-to-charge ratio for
different chemical compounds, in our case - polypeptide chains. On the output of
spectrometer we get the mass-to-charge ratio (m/z) as well as the retention time
for each reading. Retention time is specific for each experiment and describes
the period needed for going through the column separating examined species in
the process of liquid chromatography.

In nature there occur many stable isotopes. The spectrometer returns many
peaks (readings) corresponding to the same chemical compound, which creates
so-called isotopic envelopes.
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Figure 1: Clusters of peptide signals, i.e. isotopic envelopes, visualized by the
Sparky tool [God].

The spectrometer returns the results exceeding the minimal and not exceed-
ing maximal mass limit. Analyzed data are obtained from the LC-MS (liquid
chromatography - mass spectrometry) machine in the Institute of Biochemistry
and Biophysics of the Polish Academy of Sciences. The data sets are acquired
from the blood serum from 10 colorectal cancer patients and 10 healthy donors.
There was additionally added peptidase named trypsine in order to cut long
polipeptide chains into smaller parts that are under maximal mass limit of the
spectrometer.

1.3 MEROPS

In order to gather the knowledge about real cleavages we used the MEROPS
database [Raw08]. It allows for searching needed information through web-page
(c.f. Fig. 2) as well as by downloading the data and running queries on the local
machine. Cleavages are described in the database by eight amino acids - four
on each side on the cutting locus (if the cleavage is near the end of amino acid
chain, then appropriate loci are empty).

1.4 Previous approach - modeling exopeptidases activity

The paper [Klu08] presents the model, where cleavages were made only by ex-
opeptidases (cleaving only one amino acid on each end of the polypeptide chain).
For the use of the model an acyclic graph was built where the set V of vertices
refers to the set of peptides and the set E of edges was characterized by the set
of pairs (amino acid, end of polypeptide chain). Additionaly two vertices were
added: source (associated with the process of creation of peptidases) and sink
(associated with the process of degradation of single amino acids).
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Figure 2: The screenshot presenting the interface that allows the
user to search cleavages made by peptidases (user may specify amino
acids P4, . . . , P1, P1′, . . . , P4′ on both sides from cleavage point) -
http://merops.sanger.ac.uk/cgi-bin/specsearch.pl.

Sumarizing the model has:

• input intensities (a?i)i∈V ,

• output intensities (ai⊥)i∈V ,

• cutting intensities (ar(i,j))i,j∈V ,

where the edge i→ j is denoted by r(i, j).
The parameters were estimated by Metropolis-Hastings algorithm.
Let Xi(t) be a random variable denoting the number of sequences at node

i ∈ V at time t. Therefore a Markov process (X(t), t ≥ 0) is considered in the
space of configurations x = (xi)i∈V , xi ∈ {0, 1, . . .}.

1.4.1 Theorem (Equilibrium distribution)

The process (X(t)) has the equilibrium (stationary) distribution π:

π(x) =
∏
i∈V

eλi
λxi
i

xi!
, (1)

where the configuration of intensities (λ)i∈V is the unique solution to the fol-
lowing system of “balance“ equations:∑

k∈V

λkar(k,i) + a?i =
∑
j∈V

λi
(
ar(i,j) + ai⊥

)
(2)

for every i ∈ V.
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Figure 3: The scheme of the graph used in the previous approach.

1.5 Current approach

In the current model we apply more general approach for the cleavage process.
Namely all possible cleavage loci (made by exo- or endopepeptidases) are con-
sidered. The data about loci was based on the information from the MEROPS
database 1.3. Now the constructed cleavage graph consists of two kinds of ver-
tices:

• those which refer to amino acid sequences (polypeptide chains),

• those refering to cleaving events characterized by the tuple (peptidase,
substrate, product no. 1, product no. 2).

The simple scheme of the cleavage graph is presented on Fig. 4 with added
extra vertices for creation and degradation processes.

We process data from LC-MS/MS experiments (c.f. Subsection 2.1) and we
build the cleavage graph filled with observed amounts of peptide sequences (c.f.
Subsection 2.2). Later on, assuming stationary state, we estimate parameters for
cleavage events (c.f. Subsection 2.2). We solve non-linear least squares problem
by the use of Levenberg-Marquadt algorithm [Mad04] and receive estimated
peptidase intensities (c.f. Subsection 2.3). In Subsection 3 we evaluate our
model.
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Figure 4: The scheme of the cleavage graph from the current approach.

2 Materials and methods

2.1 Data and preprocessing

Data characteristic

Mass spectrometer returns 20 data set (10 for patients and 10 for healthy donors)
with e.g. mass-to-charge ratio, retention time, charge and amount for species
detected in blood serum.

Local version of MEROPS database

In order to retrieve information about the cleavages we used downloaded database
MEROPS - release 8.5 (see Introduction). The data about the cleavage process
are stored in the table Substrate search which consists of, e.g., the following
columns:

• P4, P3, P2, P1 - amino acids on the four successive loci from the left side
of the cleavage point;

• P1’, P2’, P3’, P4’ - amino acids on the four successive loci from the right
side of the cleavage point;

• organism - organism of substrates (the model is built for Homo sapiens);

• Protease - peptidase which makes the cleavage.
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Specificity matrix

We constructed the specificity matrix for each peptidase by the use of the ta-
ble Substrate search. Its construction was based on the approach presented
in [Sch90].

Let us define
I = {alanine, cysteine, ...} ∪ {−}

J = {P4, . . . , P1, P1′, . . . , P4′}

The set I consists of natural amino acids and the empty position (−) which
refers to the lack of amino acid (this situation is characteristic on ends of
polypeptide chains). The set J contains loci (4 from both sides) around the
cleavage point.

Let Q be the set of peptidases and Mc = (mc)ij , where (i, j) ∈ I × J, c ∈ Q.
Therefore Mc is the matrix with columns corresponding to loci around the
cleavage point and rows corresponding to amino acids. The value mc[i][j] is
the amount of amino acid i on position j summed for all cleavages made by
peptidase c.

Let us then consider matrix Fc such that:

fc[i][j] =
mc[i][j]∑
k∈I mc[k][j]

(3)

Hence fc[i][j] is the frequency of amino acid i on position j in cleavages made
by peptidase c.

Let us finally construct matrix Sc = (sc)ij , where (i, j) ∈ I × J, c ∈ Q such
that

sc[i][j] = fc[i][j](log2(20) +
∑
k∈I

fc[k][j] log2 fc[k][j])

We call the matrix Sc the specificity matrix for peptidase c.

Pattern matrix

Let us construct the table T of descending positive real values indexed from 0
to l − 1. The values of T are used to separate different classes of amino acid
specificity at considered locus.

Let us also construct the pattern matrix Pc = (pc)j , where j ∈ J, c ∈
Q, pc[j] ⊂ I. For given peptidase c ∈ C, position j ∈ J and i ∈ I we assume
that i ∈ pc[j] iff the following condition is satisfied:

∃0≤k<l sc[i][j] ≥ T [k] ∧ ∀0≤k′<k ∀i′∈I sc[i′][j] < T [k′]

The following values of table T were used: [0.7, 0.1, 0.01]. Additionally we
considered only peptidases with no less than 10 cleavages for substrates from
human organism (we used constraints suggested in [Raw09]).

For the given peptidase c ∈ Q and the following subsequence of polypeptide
chain

aP4 . . . aP1aP1′ . . . aP4′

such that ∀j∈J aj ∈ I we assume that there is a cleavage between amino acids
aP1 and aP1′ iff

∀j∈J aj ∈ pc[j] (4)
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MS data analysis

The data sets origin from 10 patients and 10 healthy donors. The blood serum
was cleaved by trypsin enzyme before LC-MS processing. For each sequence
that occur in cleaving process we want to find corresponding signal in data
set. Therefore we use program mz2m to obtain a list of mono-isotopic peak
coordinates (m/z, retention time and charge) together with their intensities.

The search is processed for each sequence charged by each of eight charges
(values form 1 to 8) used by MS machine. The mass-to-charge ratio of searched
sequence is computed by the use of the following formula:

r(s) =
m(s) + cmp

c
=
m(s)
c

+mp (5)

where
m(s) =

∑
a∈Q

#(a, s)ma (6)

Variables are described below:

• r(s) - mass-to-charge ratio for sequence s

• #(a, s) - how many times the amino acid a occurs in the sequence s,

• ma - mass of the amino acid a,

• c - charge from set {1, . . . , 8},

• mp - mono-isotopic proton mass that equals 1.0078250321 (1 Dalton),
LC-MS machine charge sequences by adding proton.

The retention time is accesible only for some sequences. We used a linear
regression model [Has01] to predict retention time from amino acid composition
assuming the following:

• the retention time depends on amino acids occurring in the polypeptide
chain,

• only the amounts of amino acids are important, not their order in the
sequence.

Assuming that we already know the retention time, mass-to-charge ratio
and charge for a given sequence, we used nearest-neighbor classifier [Has01] to
find appropriate locations on LC-MS spectrum. We used Euclidean metric with
retention time scaled by factor 10−3. Signals further than 0.05 are discarded.
Intensity is returned as the observed value for appropriate sequences.

The script which makes the described search of relevant masses for given
sequences is based on script written by Bogus law Kluge.

We assume that the nearest neighbor found in the described procedure cor-
responds to sequence and is used for setting the amount of this sequence into
appropriate vertex in the cleavage graph.
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2.2 Cleavage graph

Graph construction

Basing on the data about cleavages the cleavage graph is constructed. This
graph consists of two kinds of vertices:

• SeqNode - vertices referring to amino acid sequences, which contain the
field with an amount of each sequence (sometimes it is equal to 0, which
means that we do not have data about this sequence),

• ClevNode - vertices referring to cleavages, characterized by the set
(peptidase, substrate, product no. 1, product no. 2).

We use also already defined set Q referring to the set of all peptidases that
make considered cleavages.

The cleavage graph construction has the following steps:

1. By the use of the file containing information about cleavages in the sets
(peptidase, substrate, product no. 1, product no. 2) we have built objects
clevN (of class ClevNode), objects lSon, rSon (of class SeqNode) and
pep (of class Peptidase). We have combined the mentioned object using
the scheme presented on the Figure 5.

2. We have topologically sorted objects of class SeqNode and assigned them
on attribute topOrder.

Graph pruning

1. We have cut (recursively) roots, that were not identified in data set (and
we also delete unused object af classes ClevNode i Peptidase).

2. We have cut (recursively) leaves, that were not identified in data set (with
other unused objects)

3. We have deleted roots that are also leaves (connected components that
consist of one vertex).

Model parameters

Each peptidase is characterized by the cleaving intensity. We assume that:

• given peptidase has the same intensity in all cleavages it makes,

• cutting intensity in the cleavage process depends on peptidase intensity
multiplied by the portion of cleavages this peptidase makes in our graph
(♣),

• cleavages process concurrently.

We also assume that the cleavage process takes place in the stationary state,
which may be expressed by the kinetic equation (8) (c.f. [vKa92]).

Let us take i ∈ SeqNode and define In(i) as (maybe empty) set of pairs
(a, b) such that

8

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
40

0.
1 

: P
os

te
d 

28
 A

pr
 2

01
0



Figure 5: The basic scheme of connection between classes.

• a ∈ SeqNode,

• b ∈ ClevNode,

• b represents the cleavage where a is a substrate and i is a product.

Let us also define the following:

• Out(i) ⊆ ClevNode s.t. b ∈ Out(i) iff b represents the cleavage where i is
substrate,

• si is an amount of sequence represented by the vertex i,

• λb is an intensity of cleaving by the peptidase which refers to the cleavage
represented by the vertex b ∈ ClevNode,

• pb states for peptidase associated with b ∈ ClevNode,

• R ⊆ SeqNode s.t. a ∈ R iff In(a) = ∅,

• L ⊆ SeqNode s.t. a ∈ L iff Out(a) = ∅,

• ϕ?a is an intensity of creation the sequence represented by a ∈ R (for
a ∈ SeqNode\R we set ϕ?a = 0),
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• ϕ⊥a is an intensity of degradation the sequence represented by a ∈ L (for
a ∈ SeqNode\L we set ϕ⊥a = 0).

We also define

ϕb =
∑
b′∈ClevNode[p

′
b = pb]

|ClevNode|
λb (7)

where b ∈ ClevNode and [v] is the Iverson bracket for logical condition v.
Equation (7) reqires the assumption (♣).

Then (at the stationary state) for vertex i the following equation holds:

ϕ?i +
∑

(a,b)∈In(i)

saϕb = si(ϕ⊥i +
∑

b∈Out(i)

ϕb) (8)

Left side of the equation above refers to the sum of substances that enter to
the vertex i, while right side - the sum of substances that exit this vertex.

The following equation for si is a simple consequence of presented formula:

si =
ϕ?i +

∑
(a,b)∈In(i) saϕb

ϕ⊥i +
∑
b∈Out(i) ϕb

(9)

2.3 Non-linear least squares problem

In this subsection we use notation already defined in subsection 2.2.
Let us define:

• yi - amount of peptide sequences identified in LC-MS experiment,

• O ⊆ SeqNode s.t. i ∈ O iff yi > 0 (O is a set of vertices of kind SeqNode,
for which the appropriate sequence in identified LC-MS data);

• C = (ϕ?a)a∈R;

• D = (ϕ⊥a )a∈L;

• P = (λp)p∈Q.

Let us define Φ = (φi) recursively for each i ∈ SeqNode where the set
SeqNode is sorted in topological order:

1. if i ∈ R then φi(C,D,P) = ϕ?
iP

b∈Out(i) ϕb
,

2. if i /∈ R then φi(C,D,P) =
P

(a,b)∈In(i) φa(C,D,P)ϕb

ϕ⊥i +
P

b∈Out(i) ϕb
.

The topological order assures that the function Φ is well-defined.
We will use function Φ(x) = (φ1(x), . . . , φm(x)), where m = |O| as so-called

objective function in non-linear least squares problem described furthermore.
Let us take the function ψ : Rn → Rm, where m ≥ n and function ψ is

non-linear. In non-linear least squares problem we want to find:

arg min
x
{Ψ(x)}

where Ψ(x) =
∑m
i=1(ψi(x))2.
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In our case we use objective function Φ and define for each i ∈ O

ψi(x) = φi(x)− yi

where x ∈ (C,D,P) ⊆ Rm. The assumption m ≥ n is fulfilled if |O| ≥ |C| +
|D|+ |P|.

We applied Levenberg-Marquadt algorithm (LMA) to solve non-linear least
squares problem. We used LMA implementation made by Manolis Lourakis
(c.f. [Lou04]).

To make single step we have used double precision function dlevmar bc dif
with box constraints and approximating Jacobian by finite difference. By the
use of box constraints we have defined lower bound for estimated parameters
(we have used small positive real value to grant positive values of parameters).

The main loop of estimation (implemented in lmmoje.c) is presented below
(real names of implemented data structures and functions may be different):

readGraphStructure()
initiateParams()

for each dataset do
while (j < how_many_estimations) do
set_startingPoints()
while (k < maxEstLimit)
makeSomeSingleSteps()
getInfoFromSomeSingleSteps()

done
getInfoFromThisEstimation()

done
printFinalInfoToFiles()
done

3 Results and discussion

3.1 Model accuracy

We apply LMA for estimating enzymatic activity for 20 data sets i.e. for each
data set we estimated parameters (C,D,P) (c.f. subsection 2.3).

The Table 1 presents values of appropriate parameters for each data set.
The values min, avg, sum state for minimal value, average and sum of amounts
from the set O (observed peptidase signals) after normalization (each parameter
was divided by the maximal value of estimated parameters).

We can see that for each data set the condition m ≥ n from subsection 2.3
is fulfilled.

The convergence of LMA

We run LMA for each data set 11 times - each time from different starting point.
We used maximal number of iterations as a stop criterion. It was set up to 200
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which turned out to be enough to stabilize LMA errors, i.e.:∑
i∈O

(φi(x)− yi)2 (10)

where φi is expected amount of peptide sequences in vertex i (defined in sub-
section 2.3) and yi is observed amount of peptide in this vertex. The Figure
7 compares minimal and maximal LMA error with the median on each control
point (every 5 iteration) for each data set separately.

The Figure 7 compares median values of LMA error for all data sets in the
course of experiment. The Table 2 shows the actual value of final LMA error
(after 200 iteration) of all data sets. We can see that data set no. 12 has the
minimal LMA error. The Figure 8 compares minimal, maximal and median
value of LMA error for data set no. 12 during the experiment.

The LMA procedure converges during first 200 iteration. Figure 6 shows
that also LMA estimates of peptidase intensities become stable.

Figure 6: Estimated peptidase intensities during consecutive LMA iterations
(one starting point, peptidase intensities are before normalization).

The quality of model estimation

In order to evaluate the quality of model parameters’ estimation we made two
computational experiments. In the first experiment we compare the results of
LMA for real data with the LMA performance for randomly permuted data set
(Algorithm 1). Such data set clearly does not reflects the modeled process and
as we expected the LMA error is much higher (c.f. Figure 9).
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Figure 7: Comparison of median value of error for all 20 data sets.

Algorithm 1
repeat 1000 times:

1. choose pair (i, j) ∈ SeqNode× SeqNode at random;

2. swap amounts of sequences assigned to vertices i and j.

Statistical significance of estimation quality

Next experiment shows how the final LMA error depends on input data. For
data set no. 12 generated 1000 randomly permuted data sets (applying Algo-
rithm 1) and for each data set and we calculated LMA error after 200 iterations.
The histogram (Fig. 10) shows the distribution of LMA error (denoted x) as
well as the final LMA error denoted by ε for real data. We can also calculate
p-value for LMA error as

P
x≤ε x

1000 . We used the family of randomly generated
data sets to calculate approximated p-values for all 20 data sets. The calculated
values are presented in Table 2. These p-values are oversetimated because we
apply Algorithm 1 to the cleavage graph for data set no. 12.

The next experiment justifies the adequacy of the proposed model. We have
run the estimation procedure to obtain the model parameters (C,D,P). Then
we have filled the cleavage graph with data according to our model as follows:

• for each i ∈ SeqNode we computed ŷi by the use formula

ŷi =
ϕ?i +

∑
(a,b)∈In(i) yaϕb

ϕ⊥i +
∑
b∈Out(i) ϕb

(11)

(see also subsection 2.2);
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Table 2: Final LMA errors for all 20 data sets. Last column presents approx-
imated p − value (calculated for LMA error distribution from histogram in
Fig. 10).

Data set Final error Approx. p-value
12 0.0150286 0.001
2 0.020846 0.007
7 0.023652 0.01
6 0.0342462 0.035
18 0.0383774 0.05
1 0.040668 0.067
3 0.0414344 0.069
19 0.0483224 0.109
16 0.0505154 0.121
5 0.0529894 0.146
8 0.05535 0.159
4 0.0564868 0.168
20 0.0568898 0.17
13 0.0995542 0.499
11 0.1305594 0.646
10 0.16063 0.726
14 0.1711947 0.749
17 0.1735021 0.752
9 0.2304038 0.8
15 0.3304273 0.826

• for each i ∈ SeqNode we have generated independently y?i from normal
distribution with mean ŷi and standard deviation σ (if y?i ≤ 0 then there
is assigned y?i := ŷi);

• we have chosen σ s.t. |
∑
i∈O(y?i − yi)2 −

∑
i∈O(ŷi − yi)2| < 0.001

We run LMA with data generated from the described procedure, e.g. y?i -
see Figure 11.

In order to present the complete analysis of final error we made also anal-
ogous experiment for data set permuted randomly by Algorithm 1. Figure 12
shows the results of this experiment.

The outcomes of peptidase intensities estimation for real data, permuted
data and data generated from the model are presented on boxplots which present
the distribution for multiple outputs of given parameter (names of peptidases
associated with numbers in boxplots are presented in Table 3). Additionally in
Figure 15 we have added the line showing median values from Figure 13.

We can see that the data generated from the model have smaller dispersion
than real data and similar median value which confirms model accuracy. Also
permuted data differ significantly from real data.
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Figure 8: Minimal, maximal and median value of LMA error for data set no. 12.

3.2 Peptidases activity analysis

For each data set we constructed numerical vector of size 13 (peptidases common
for all data sets) filled with estimated values of peptidases intensities. Heat
map 16 shows the Kendall rank correlation [Ken48] between these data sets.
Heat map 17 presents the comparison between ranks of each peptidases between
different data sets.

3.3 Summary

We used original model for prediction of peptidase activity. In comparison
with the previous approach described in [Klu08] our model is more general (in
the sense of possible cleavage loci) and uses information about real cleavage
processes. Our model produces adequate results which are very promising for
accurate cleavage analysis. The estimation process based on LMA is also more
efficent than previously used Metropolis-Hastings algorithm.
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Figure 11: Minimal, maximal and median value of LMA error for data set no. 12
(e.g. data set with minimal final error) with data generated from the model.
We used 11 randomly chosen starting points in each of 200 iterations.

Figure 12: Minimal, maximal and median value of LMA error for data set no. 12
with data generated from the model and randomly permuted data
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Table 3: Peptide names for numbers in boxplots.

No. Peptidase name
1 chymotrypsin A (cattle-type)
2 elastase-2
3 cathepsin L1 (Fasciola sp.)
4 calpain-2
5 falcipain-2
6 cathepsin L
7 glutamyl peptidase I
8 plasmin
9 trypsin 1
10 signal peptidase complex (animal)
11 pseudolysin
12 cathepsin D
13 matrix metallopeptidase-7
14 angiotensin-converting enzyme compound peptid
15 membrane-type matrix metallopeptidase-1
16 HIV-1 retropepsin
17 tryptase alpha
18 peptidase 1 (mite)
19 cathepsin S
20 PgPepO oligopeptidase
21 myeloblastin
22 cathepsin B

Figure 13: Boxplots for peptidases from data set 4 for real data.
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Figure 14: Boxplots for peptidases from data set 4 for permuted data.

Figure 15: Boxplots for peptidases from data set 1 for data generated from the
model with added line linking medians from diagram 13.
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Figure 16: Kendall rank correlation between data sets.

Figure 17: Ranks of peptidases for data sets.
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