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A deeper understanding of how environmental factors influence genetic risks is crucial for exploring their combined effects on
health outcomes. This can be effectively achieved by incorporating genotype-environment (GxE) interactions in polygenic risk score
(PRS) models. We applied our recently developed GxEprs model to a wide range of obesity-related complex traits and diseases,

leveraging data from the UK Biobank, to capture significant GXE signals. This work represents the first application of the “GxEprs”

4

method, designed to minimize issues with spurious GXE signals and model misspecification. We identified significant GXE signals
especially in quantitative phenotypes such as body mass index (BMI), waist-to-hip ratio (WHR), body fat percentage (BF) and waist
circumference (WC) and our results indicated a significant enhancement in prediction accuracy in most traits, highlighting the
importance of the GXE component. This study demonstrated the potential of incorporating GxE interactions in PRS models, offering
a broad understanding of genetic risks and laying foundation in applying these insights in personalized medicine.
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INTRODUCTION

Complex traits and diseases, such as body mass index (BMI), waist to
hip ratio (WHR), diabetes (DIAB), cardiovascular disorders, and various
forms of cancer, are influenced by a complex interplay of genetic and
environmental factors [1-6]. By leveraging genomic data, researchers
and clinicians can pinpoint genetic variations that contribute
significantly to the risk of developing various diseases. This does
not only enhance our understanding of the biological mechanisms
behind these conditions but also guides the development of
targeted therapies and preventive strategies, ultimately improving
health outcomes. Better understanding obesity-related traits and
diseases is critical due to their widespread impact on global health
and their connection to a variety of severe health complications,
including DIAB, heart diseases, and certain cancers[7].

Identifying gene-environment (GxE) interactions in genomic
prediction is crucial as environmental factors such as diet and
physical activity (PA) can significantly modulate an individual's
genetic risk of developing obesity-related conditions[8]. Previous
studies [9-11] have reported that the genetic effects of obesity-
related traits such as BMI and/or WHR were modulated by alcohol
intake and/or PA. Another GxE study reported that genetic effects
of hypertension (HYP), an obesity-related disease, were modifying
by BMI, WHR and body fat (BF) percentage [12]. Moreover,
smoking (SMK) was found to be a modular environmental variable
for coronary artery disease (CAD) [13-15].

Genome-wide association studies (GWAS) and genomic predic-
tion offer the potential to identify individuals predisposed to

obesity and related comorbidities, facilitating early lifestyle
interventions that can alter the progression of disease [16].
Among the genomic prediction tools available, polygenic risk
scores (PRSs) have emerged as a significant innovation. PRSs
aggregate the effects of numerous genetic variants across the
genome to estimate an individual’s genetic liability to develop a
disease [17]. For instance, studies have successfully used PRS to
predict the risk of breast cancer and CAD, demonstrating that
individuals with higher PRS values were more likely develop these
conditions [18, 19]. Moreover, individuals with higher genetic risks
benefited more significantly from adhering to recommended
lifestyle changes, suggesting that targeted lifestyle interventions
could be particularly effective for those genetically predisposed to
certain cancers, and thereby described the value of integrating
PRSs with environmental factors for personalized cancer preven-
tion strategies [20]. It is clear that, genomic prediction, which
utilizes information from an individual's genetic profile, plays a
crucial role in personalized medicine [21, 22].

However, the effectiveness of PRS can be limited if environmental
factors, which also play a crucial role in disease development, were
not considered. Therefore, Genome Wide Environment Interaction
Studies (GWEIS) offer a valuable approach to uncover how genetic
predispositions interact with environmental factors, potentially
improving the predictive power of PRS models by accounting for
environmental contributions to disease risk [23]. Consequently,
incorporating GxE into PRS models represents an important
advancement in this field [24] as they account for the varying effects
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of environmental exposures on an individual's health outcomes
based on their genetic makeup. For instance, the effect of diet on
DIAB risk could be significantly higher in individuals with certain
genetic predispositions than in those without such genetic traits
[25, 26]. IPRS [27] is a method that incorporates GxE in their PRS
model. However, this method suffers from inflated type 1 error rate
with its modeling approach [28]. Improved integration of GxE
interactions in PRS models could offer more accurate and
personalized risk assessments, correctly accounting for how indivi-
dual genetic profiles modify responses to environmental exposures.
In this study, we aimed to investigate the GxE interactions
within PRS models for complex traits and diseases. Specifically, we
evaluated how specific environmental factors such as healthy diet
(HD), PA, and other lifestyle variables interact with genetic variants
to influence the risk of developing obesity-related traits and
diseases. We employed our recently developed GxEprs method
[28], designed to enhance the detection and interpretation of GxE
interactions within PRS framework. This method is optimized to
account for potential misspecification and reduce the likelihood of
false-positive findings. By leveraging this advanced statistical
method, we aimed to uncover new insights into the dynamic
interplay between genes and the environmental factors.

METHODS

Genotype data and quality control process in the UK biobank
We utilized genotype data from the UK Biobank, a cohort comprising over
500,000 individuals from the UK [29], genotyped using the UK Biobank
Axiom Array and imputed with the Haplotype Reference Consortium and
UK10K + 1000 Genomes reference panels [30]. We applied the same
quality control procedures as detailed in our previous study[28], focusing
on the White British population to minimize genetic heterogeneity. After
quality control, 1,118,829 SNPs and 288,792 individuals were retained for
analysis, using HapMap3 SNPs for robust genetic prediction [28].

Sample sizes

We randomly split the total number of individuals into 2 datasets in the
ratio of 8:2, namely discovery and target datasets. The discovery dataset
(231,034 individuals) was used to perform GWEIS and obtain the estimated
SNP effects. The target dataset (57,758 individuals) was used for
construction of PRSs using the estimated SNP effects projected by the
discovery dataset, and for real data analysis utilizing genomic prediction
models as explained in subsequent sections.

Phenotypes
The selected phenotypes include four commonly known obesity-related
complex traits such as body mass index (BMI), waist-to-hip ratio (WHR),
body fat percentage (BF) and waist circumference (WC), all of which were
analysed as quantitative traits. In addition, we considered nine other
conditions as binary traits. These included cardio-vascular diseases such as
hypertension (HYP), stroke (STRO) and coronary artery disease (CAD),
metabolic diseases such as diabetes (DIAB) and thyroid disorders (THY),
mental disorders such as depression (DEPR), cancers such as obesity-
related-hormone-sensitive cancer (OHCAN), eye disorders such as cataract
(CATA), and gastrointestinal disorders such as hernia (HERN). Notably, we
considered incident cases in this study, to make sure that the
environmental exposure has occurred before the diagnosis. Consequently,
the total sample size was reduced by omitting participants diagnosed with
a particular disease before the baseline period as defined in the UK
Biobank (see Table S4 for details).

These traits were considered due to their significant relevance to, or
strong association with, obesity [31-44], aiming to provide novel insights
to obesity-related health challenges.

Environmental variables and fixed effects

To account for non-genetic environmental effects, we included fixed
effects such as sex, age at recruitment, Townsend deprivation index (TDI),
and education in years[45] in our analysis. Additionally, to control for
potential confounding due to population stratification, we also adjusted
for the first 10 genetic principal components derived from the genome-
wide data [46]. In the discovery dataset, the phenotype (outcome) was
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adjusted during the GWEIS stage. In the target dataset, these confounders
were included in the respective target models to capture their effects on
the outcome.

In the GxE analysis, we considered several environmental variables. For
quantitative outcomes (BMI, WHR, BF or WC), we examined five lifestyle
factors: healthy diet (HD), neuroticism score (NS), physical activity (PA),
pure alcohol consumption (PALC) [47] and pack-years of smoking (SMK) as
the E variable in GxE. For binary outcomes (HYP, STRO, CAD, DIAB, THY,
DEPR, OHCAN, CATA or HERN), we examined nine environmental variables
including the four quantitative outcomes (BMI, WHR, BF and WC) and the
five lifestyle factors (HD, NS, PA, PALC and SMK) as the E variable in GxE.
Each outcome was analyzed with its corresponding environmental
variables. It was important to note that these environmental variables
were standardized independently in the discovery and target datasets
before being used in the downstream analysis.

For a comprehensive overview of the variables used in our study,
including detailed information on the adjusted phenotypes and environ-
mental variables, see Tables S1- S5.

Model Equations

Our study utilizes advanced modeling approaches as developed by

Jayasinghe et al. [28]. We denote those models proposed for quantitative

traits and binary traits as GxEprs_QT (equivalent to Model 4 in ref. [28]) and

GxEprs_BT (equivalent to Model 5 in ref. [28]) respectively, as shown below.
For quantitative traits, the GxEprs_QT model (linear) is specified as:

Y = d1 Xadd + BE + d3Xgxe © E + dsXgxe + € (GxEprsQT)
where y represents the phenotype, Xaqa and ﬁgxe are the PRSs based on
the main additive and interaction effects estimated in the discovery GWEIS,
E is the environmental variable, and Xgxe ©® E represents the GxE
interaction term, which combines Xgye with the environmental variable
E, a1, a a3 and a, are the e§timated regression coefficients for Xaq4, E,
Xgxe © E (interaction) and Xgye respectively, and & is the residual.
GxEprs_QT* (equivalent to Model 4* in ref. [28]) is a variant of GxEprs_QT,
in which only the GxE interaction component (Xgxe © E) is permuted, while
the correlation structure between the outcome variable and other model
components remains unchanged. Additionally, we refer to the GxEprs_QT
model without the interaction component as GxEprs_QT_reduced.
For binary traits, the GxEprs_BT model (logistic) is specified as:

|09it(P(V =1 ‘Xadd1 ngev E)) = d1 Xadd + dZE + d3xgxe OE+ d4xgxe + dSEZ
(GXEprsBT)

where variables are defined as in GxEprs_QT, and ds is the estimated
regression coefficient for quadratic effects of E. Note that the GxEprs_BT
model is specified within a logistic regression framework to model binary
outcomes. In this formulation, a quadratic term for the environmental
variable was included to account for potential model misspecification. In
contrast, the GxEprs_QT model, used for continuous traits, did not include
a quadratic term, as the linear formulation was sufficient and preferred for
maintaining model parsimony [28]. GxEprs_BT* (equivalent to Model 5*
in ref. [28]) is a variant of GxEprs_BT, in which only the GxE interaction
component (Xgxe ©® E) is permuted, while the correlation structure
between the outcome variable and other model components remains
unchanged. Additionally, we refer to the GxEprs_BT model without the
interaction component as GxEprs_BT_reduced.

Phase I: separate environmental variable analysis

In the first phase, we analyzed each quantitative and binary trait
separately, with their respective environmental variables, using the
aforementioned GxE PRS models and these analyses were performed
using the R package “GxEprs”. From this, we aimed to identify the
significant GxE interactions to capture significant GxE signals. Then we
evaluated the model performance by computing the difference between
coefficient of determination (R?) of the nested models GxEprs_QT and
GxEprs_QT_reduced for quantitative traits, and the difference between
area under the receiver operating characteristic (ROC) curve (AUC) values
of the nested models GxEprs_BT and GxEprs_BT_reduced for binary traits,
using the R packages “r2redux” [48] and “R2ROC" [49] respectively.

Phase ll: composite environmental variable analysis
In the second phase, we aimed to enhance statistical power of the study by
reducing dimensionality and summarizing multiple correlated environmental
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Fig. 1

Estimates and significance of GXE components for quantitative phenotypes across environmental variables when fitting GxE PRS

models. The heatmap represents the estimated regression coefficient of the GxE term for each model. From the total of 288,792 individuals,
80% (~231,034 individuals) formed the discovery sample, while the remaining 20% (~57,758 individuals) comprised the target sample. Dark
red to dark blue reflects the transition from negative to positive associations, indicating the magnitude of the regression coefficient. The size
of each square in the heatmap was proportional to the corresponding p value. Significance levels were indicated by asterisks, representing the
significance after Bonferroni correction (significance level = 0.05/101~0.0005), considering a total of 101 analyses conducted. The number of
permutations performed in GxEprs_QT* was determined based on the p value obtained in GxEprs_QT to ensure an adequate number of
permutations (with a minimum of 1000). The horizontal axis represents the environmental variables involved in the GXE component, while the
vertical axis represents the phenotypes. We have included all the confounders as fixed components in the discovery and target models

variables into a single composite measure, using two approaches. In the first
technique, we combined the standardized environmental variables by simple
summation assuming uniform weights, but distinct directions that aids to follow
healthy lifestyle and constructed a single vector (denoted by ‘sum_dir’
throughout the text). Here we considered HD and PA as positively contributed
and the rest of the environmental variables as negatively contributed to a
healthy lifestyle, in order to make the aggregation more meaningful. In the
second technique, we combined the environmental variables as a weighted
summation. We used the first principal component of the environmental
variables as the composite E variable, where the weights of each standardised
environmental variable were determined by the loadings of the first principal
component, obtained using the “princomp” function in R. This constructed a
single vector to fit with each phenotype (denoted by ‘PC1’ throughout the text).
These two techniques were employed for all the respective environmental
variables, analyzed with quantitative and binary phenotypes separately. Similar
to the first phase, we aimed to capture significant GxE signals, when a
composite environmental variable was considered, and finally evaluated the
model performances using the respective R packages as described previously.

Phase llI: selected environmental variable analysis

In this phase, we extended the experimental design incorporated in the
first two phases into a multiple environmental variable context. We
utilized the PRSs constructed in the first phase and employed them in
the same target model, given the phenotype. We followed a Step-wise
selection procedure (forward selection algorithm) to select the most
important environmental variable -related variables using the R package
MASS, which uses Akaike Information Criterion (AIC) for the process.
Then we recorded the significance of selected variables through
regression summary outputs. For quantitative traits (BF, BMI, WC and
WHR) we applied a forward selection technique to select across Xgxe O E,
Xadd: Xgxe: and E where HD, NS, PA, PALC and SMK were considered as E.
For binary traits (CAD, CATA, DEPR, DIAB, HERN, HYP, OHCAN, STRO and
THY), we also considered E? in the pool of featured variables. This
allowed us to account for correlation structures between all the
environmental variable -specific model components simultaneously,
which was more informative than incorporating environmental variables
one at a time (phase 1) or composite environmental variable method
(phase II).

In this study, we utilize the GxEprs models to explore significant GxE and
assess their contribution to the variance explained in phenotypic traits
related to obesity. The study is structured into three phases, each designed
to examine different configurations of environmental variables within the
genomic prediction context. Phase | focuses on the effects of individual
environmental variables at a time, Phase Il integrates these variables into a
composite environmental variable, and Phase Il assesses the overall
predictive power of a model that includes a set of optimally selected
environmental variables. This phased approach demonstrates how the
GxEprs models can be applied to enhance understanding and improve the
accuracy of existing genomic predictions by incorporating GxE compo-
nent. Our objective is to provide a methodological framework for
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researchers to apply the GxEprs models according to their specific
research questions and contexts, without recommending one design
phase over another as superior.

RESULTS

Phase I: separate environmental variable analysis

We analyzed all quantitative traits (BF, BMI, WC and WHR) with
corresponding environmental variables (HD, NS, PA, PALC and
SMK) applying models GxEprs_QT and GxEprs_QT* as previously
proposed [28]. Results indicated that for all of the quantitative
traits, genetic effects were modulated by PALC. Similarly for BMI
and BF, genetic effects were modulated by SMK (Fig. 1). The
estimated regression coefficients, along with their corresponding
standard errors, test statistics, and p values for the quantitative
traits with the relevant modifiable environmental variables, were
available in Table S6.

Moreover, R®> values obtained by fitting GxEprs_QT and
GxEprs_QT_reduced models across each quantitative phenotype/
environmental variable pair analyzed, along with the respective p
values for their difference (AR%) are shown in Table S7. The
proportion of variance explained by GxE component (Var(GxE))
ranged between 0.1-0.8 % across each quantitative phenotype/
environmental variable pair. For the majority of quantitative traits,
the GxE component explained a modest but significantly
significant proportion of model variance, and hence, enhanced
the models’ overall predictive ability. Regardless of the environ-
mental variable regressed with the phenotype, both GxEprs_QT
and GxEprs_QT_reduced reported relatively higher R values that
were ~50% when fitted with BF and WHR (Table S7).

We also analyzed all binary traits (CAD, CATA, DEPR, DIAB, HERN,
HYP, OHCAN, STRO and THY) with corresponding environmental
variables (HD, NS, PA, PALC, SMK, BF, BMI, WC and WHR) applying
models GxEprs_BT and GxEprs_BT* as previously proposed [28].
Results shown in Fig. 2 indicated no significant GxE signals when
GxEprs_BT was fitted for binary traits. Only the GxE component for
STRO/WHR was marginally insignificant (p value = 6.62E-04)
which explained the significance captured by GxEprs_BT*. The
estimated regression coefficients, along with their corresponding
standard errors, test statistics, and p values for the binary traits
with the relevant modifiable environmental variables, are pro-
vided in Table S8.

AUC values for models fitted for binary traits, with and without
the GxE component (GxEprs_BT and GxEprs_BT_reduced models),
p values for difference in AUCs (AAUC), and the computed
variance explained by GxE components are shown in Table S9.
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Fig.2 Estimates and significance of GXE components for binary phenotypes across environmental variables when fitting GXE PRS models. The
heatmap represents the estimated regression coefficient of the GxE term for each model. From the total of 288,792 individuals, 80% (~231,034
individuals) formed the discovery sample, while the remaining 20% (~57,758 individuals) comprised the target sample. Dark red to dark blue
reflects the transition from negative to positive associations, indicating the magnitude of the regression coefficient. The size of each square in
the heatmap was proportional to the corresponding p value. Significance levels were indicated by asterisks, representing the significance after
Bonferroni correction (significance level = 0.05/101~0.0005), considering a total of 101 analyses conducted. The number of permutations
performed in GxEprs_BT* was determined based on the p value obtained in GxEprs_BT to ensure an adequate number of permutations (with
a minimum of 1000). The horizontal axis represents the environmental variables involved in the GXE component, while the vertical axis
represents the phenotypes. We have included all the confounders as fixed components in the discovery and target models
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Fig. 3 Estimates and significance of GXE components for quantitative phenotypes/composite environmental variables when fitting GxE PRS
models. The heatmap represents the estimated regression coefficient of the GxE term for each model. From the total of 288,792 individuals,
80% (~231,034 individuals) formed the discovery sample, while the remaining 20% (~57,758 individuals) comprised the target sample. Dark
red to dark blue reflects the transition from negative to positive associations, indicating the magnitude of the regression coefficient. The size
of each square in the heatmap was proportional to the corresponding p value. Significance levels were indicated by asterisks, representing the
significance after Bonferroni correction (significance level = 0.05/26~0.002), considering a total of 26 analyses conducted. The number of
permutations performed in GxEprs_QT* was determined based on the p value obtained in GxEprs_QT to ensure an adequate number of
permutations (with a minimum of 1000). The horizontal axis represents the composite environmental variables involved in the GxE
component, while the vertical axis represents the phenotypes. We have included all the confounders as fixed components in the discovery
and target models. PC1: the composite variable based on weighted summation of each environmental variable. Sum_dir: the composite
variable based on unweighted summation of each environmental variable, accounted for direction in relation to healthy lifestyle

Additionally, we computed Var(GxE) across each binary pheno-
type/ environmental variable pair. GxEprs_BT did not explain a
statistically significant proportion of variance than that of
GxEprs_BT_reduced in many instances (p value < 0.05). Despite
the statistical significance of AUC increment, when we quantified
the Var(GxE), we found a small proportion of additional variability
explained by the GXE component ranging from 0 to 5.1%, across
each binary phenotype/ environmental variable pair. However, the
overall AUC of HYP, CAD, DIAB and CATA, across all environmental
variables were greater than 70%, indicating fair to good
discriminatory power in these clinical applications, as supported
by literature [50, 51], regardless of whether GXE component was in
the model or not. Notably, the lowest AUCs were observed
for OHCAN.

SPRINGER NATURE

Phase lI: composite environmental variable analysis

We analyzed all quantitative traits (BF, BMI, WC and WHR) with
corresponding composite environmental variables (sum_dir: the
composite variable based on unweighted summation of each
environmental variable, accounted for direction in relation to
healthy lifestyle and PC1: the composite variable based on
weighted summation of each environmental variable as defined
in Phase Il of Methods section) constructed by combining the
environmental variables HD, NS, PA, PALC and SMK, applying
models GxEprs_QT and GxEprs_QT*. Figure 3 provides evidence
that genetic effects of all quantitative phenotypes were modu-
lated by weighted composite environmental variable (PC1), while
sum_dir did not indicate any significant signal. Therefore, when
the considered environmental variables were combined using
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Fig. 4 Estimates and significance of GXE components for binary phenotypes/composite environmental variables when fitting GXE PRS models.
The heatmap represents the estimated regression coefficient of the GxE term for each model. From the total of 288,792 individuals, 80%
(~231,034 individuals) formed the discovery sample, while the remaining 20% (~57,758 individuals) comprised the target sample. Dark red to
dark blue reflects the transition from negative to positive associations, indicating the magnitude of the regression coefficient. The size of each
square in the heatmap was proportional to the corresponding p value. Significance levels were indicated by asterisks, representing the
significance after Bonferroni correction (significance level = 0.05/26~0.002), considering a total of 26 analyses conducted. The number of
permutations performed in GxEprs_BT* was determined based on the p value obtained in GxEprs_BT to ensure an adequate number of
permutations (with a minimum of 1000). The horizontal axis represents the composite environmental variables involved in the GxE
component, while the vertical axis represents the phenotypes. We have included all the confounders as fixed components in the discovery
and target models. PC1: the composite variable based on weighted summation of each environmental variable. Sum_dir: the composite

N Y
&
&

variable based on unweighted summation of each environmental variable, accounted for direction in relation to healthy lifestyle

appropriate weights, the composite variable behaves as a
modulating variable of genetic effects for all the quantitative
traits considered. The estimated regression coefficients, along with
their corresponding standard errors, test statistics, and p values for
the quantitative traits with the relevant modifiable composite
environmental variables, are available in Table $10.

When considering the composite environmental variable PC1,
a statistically significant improvement in R*> was noted for all
quantitative traits when comparing models with and without the
GXE interaction term (p value < 0.05), while for many instances
when composite environmental variable was sum_dir, showed
the same, as demonstrated in Table S11. Overall, the Var(GxE)
ranged from 0.1% to 0.9% across quantitative phenotype/
composite environmental variable pairs. These results closely
aligned with those discussed in Phase | (Table S7), across each
quantitative trait. Hence, regardless of the type of composition
of the environmental variable, both GxEprs_QT and GxEprs_Q-
T_reduced reported relatively higher R? values that were ~ 50%
when fitted with BF and WHR. Consequently, the prediction
accuracy for quantitative traits appears consistent, showing no
considerable differences attributable to the design choices
made in either phases | or Il.

All the binary traits (CAD, CATA, DEPR, DIAB, HERN, HYP, OHCAN,
STRO and THY) were analyzed with corresponding environmental
variables (sum_dir and PC1) constructed by combining the
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environmental variables HD, NS, PA, PALC, SMK, BF, BMI, WC,
and WHR applying models GxEprs_BT and GxEprs_BT*. As shown
in Fig. 4 no statistically significant GxE effects were found across
any of the binary traits when considering either composite
environmental variable, PC1 or sum_dir. The estimated regression
coefficients, along with their corresponding standard errors, test
statistics, and p values for the binary traits with the relevant
modifiable composite environmental variables, were available in
Table S12.

In general, there was no statistically significant improvement in
AUC, (p value < 0.05) when considering the GxE component
through GxEprs_BT model, compared to GxEprs_BT_reduced model
(Table S13). However, we found a small proportion of additional
variability explained by the GxE component (Var(GxE)) ranging from
0 to 3.7%, across the binary phenotype/composite environmental
variable pairs. Interestingly, regardless of the GxE PRS model fitted,
AUC greater than 70% for traits such as CAD, CATA, DIAB, HYP, STRO
and THY implying that the models may be applicable in the clinical
setting, as supported by literature [50, 51].

Phase llI: selected environmental variable analysis

In this phase, we extended the models used in Phase | by
incorporating multiple environmental variables selected through
model selection to account for potential correlation structures
between environmental variables (see “Methods”).
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Fig. 5 Estimates and significance of all model components for quantitative phenotypes/all environmental variables when fitting GXE PRS
models. The heatmap represents the estimated regression coefficient of all the 20 model components of which the step-wise selection was
applied to. From the total of 288,792 individuals, 80% (~231,034 individuals) formed the discovery sample, while the remaining 20% (~57,758
individuals) comprised the target sample. Dark red to dark blue reflects the transition from negative to positive associations, indicating the
magnitude of the regression coefficient. The size of each square in the heatmap was proportional to the corresponding p value. Significance
levels were indicated by asterisks. The horizontal axis represents the environmental variables, while the vertical axis represents the model
components corresponding to each of the environmental variable considered. The variables that were removed in the step-wise procedure
were indicated as NA. Each block represents quantitative phenotypes as the response variable. We have included all the confounders as fixed

components in the discovery and target models

The results shown in Fig. 5 mostly align with those from phase |
(see Fig. 1), with regards to our key parameter the GxE
component. Additionally, the results show that genetic effects of
BMI and WC were modulated by PA, a relationship not observed in
Phase I. This maybe due to the correlation structures accounted
for in this phase, which were previously ignored.

Using GxEprs models facilitating multiple environmental vari-
ables simultaneously through model selection, we explored the
overall prediction accuracy (R?) of each outcome, for quantitative
traits (Table 514). Interestingly, R* values showed no improvement
or decline compared to previous phases. WHR and BF demon-
strated relatively higher R*, while BMI had the lowest.

Figure 6 highlights several noteworthy findings for binary traits
compared to previous phases. For instance, the genetic effects of
CAD and CATA were influenced by BMI, and DEPR by SMK.
Additionally, the genetic effects of DIAB were modified by PALC,
HERN by NS and WC, and OHCAN by PA. WHR had a significant
effect on modifying the genetic effects of HYP and showed a
strong, highly significant influence on STRO.

Consistent with our approach for quantitative traits in Phase lll,
we evaluated the overall model prediction accuracy for binary
traits, using AUC values for each final selected model (see
Table S15). HYP, CAD, DIAB, DEPR, and CATA achieved AUC values
above 70%. In general, this observation was well-aligned with
AUCs reported in Phase |, except for DEPR. As observed in Phase |,
OHCAN reported the lowest AUC value.

Similar to the analysis of quantitative traits under Phase lll, we
computed the overall model prediction accuracy for binary traits
in terms of AUC values for each of the finally selected model
(Table S15). HYP, CAD, DIAB, DEPR and CATA reported AUC values
greater than 70%. Similar to Phase |, the lowest AUC value was
observed for OHCAN.

SPRINGER NATURE

Additionally, we would highlight that the inclusion of con-
founding variables to the prediction model played an important
role. For instance, the highest variability across all components
fitted for quantitative traits was explained by the confounder ‘sex’
(Notes S1-S4). Furthermore, we found that the confounder ‘age’
was the most important variable when predicting binary traits,
except for DEPR (Notes S5-S13). However, when predicting the
risk of developing DEPR, NS was found to be the most important,
reporting the highest significance (Note S7).

DISCUSSION

In this study, we aimed to explore the significance of GxE
interactions in the context of obesity-related complex traits and
diseases. By employing the GxEprs method in a multi-phase
analysis strategy, we investigated the effectiveness of various
modeling approaches to capture significant GxE signals.

In Phase |, we applied the GxEprs model [28] and observed
significant GXE signals for quantitative traits such as BMI, WHR, WC
and BF. This finding aligns with previous studies [9-11, 52] which
reported significant GxE interactions for those traits, supporting
the robustness of our results. However, we found no significant
GXE signals for binary traits. The absence of significant GxE effects
for binary traits such as HYP contrasts with findings from the
GxEsum model [12], which was based on prevalent cases, whereas
our study focused on incident cases. This difference in study
design may explain the contrasting results, as incident cases
ensure that environmental factors precede the onset of conditions
like HYP. However, the smaller sample size of incident cases
compared to prevalent cases may limit statistical power, possibly
masking certain GxE effects. To enhance power, we introduced a
composite variable approach in the subsequent phase, but this
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Fig. 6 Estimates and significance of all model components for binary phenotypes/all environmental variables when fitting GXE PRS models.
The heatmap represents the estimated regression coefficient of all the 45 model components of which the step-wise selection was applied to.
From the total of 288,792 individuals, 80% (~231,034 individuals) formed the discovery sample, while the remaining 20% (~57,758 individuals)
comprised the target sample. Dark red to dark blue reflects the transition from negative to positive associations, indicating the magnitude of
the regression coefficient. The size of each square in the heatmap was proportional to the corresponding p value. Significance levels were
indicated by asterisks. The horizontal axis represents the environmental variables, while the vertical axis represents the model components
corresponding to each of the environmental variable considered. The variables that were removed in the step-wise procedure were indicated
as NA. Each block represents binary phenotypes as the response variable. We have included all the confounders as fixed components in the
discovery and target models

approach still did not yield significant GxE signals for binary traits. It is well-known that GWEIS test statistics can frequently exhibit
In Phase lll, we expanded our analysis by incorporating multiple inflation [53]. Therefore, we assessed GWEIS model specifications
environmental variables in a single model to account for using diagnostic tools such as genomic QQ plots, Manhattan plots
correlations between them, providing a more comprehensive and inflation factors including the genomic inflation factor (A), the
approach than Phase I. Overall, the results from Phase Il were scaled genomic inflation factor (A,400), and the theoretical inflation
consistent with those from Phase |, demonstrating the robustness factor (lapprox), for the outcome/environmental variable pairs that

and reliability of our findings across modeling phases. reported significant GxE interaction in any phase (Phase | - lll). The
Our study identified significant GxE signals at each phase, genomic inflation factor reflects the median observed chi-square
capturing modifiable environmental variables for various obesity- test statistic relative to the expected median under the null, while

related complex traits and diseases using the proposed GxEprs the scaled version adjusts this value to a standard sample size of
models. Notably, in Phase I, we found that the genetic effects of 1000 to facilitate comparisons across studies with differing sample
BF, BMI, WC, and WHR were modified by PALC, while BF and BMI sizes [54]. The theoretical inflation factor (available from the

were also modified by SMK. In Phase lll, when we included “lapprox” function in the R package “stmgp”), proposed by Ueki
multiple environment-related variables selected through a step- et al. [53], assumes no population stratification and unrelated
wise approach in the same model, PALC and SMK were found to individuals, and serves as a useful diagnostic to quantify model

modify BF, BMI, WC, and WHR, while PA modified BMI and WC. misspecification. The majority of GWEIS models appeared appro-
Interestingly, the direction of the E variable coefficient estimates priately specified; however, the DIAB/PALC pair showed slight to
for quantitative traits aligned with expectations—for instance, HD moderate inflation under the null (lapprox = 1.226, see Table 516
and PA were negatively associated with obesity-related traits, for full results). Since model misspecification can impact the
while NS, PALC, and SMK showed positive associations, implying accuracy of SNP effect estimates and, consequently, PRS reliability,
the importance of a healthy lifestyle in reducing obesity. In we emphasize the importance of careful diagnostic evaluation
contrast, for binary traits, significant GxE signals were only found prior to downstream analyses.

in Phase lll, with a few unexpected associations such as PALC The identification of significant GxE interactions in this study may
being negatively associated with DIAB, HERN, and THY. These offer insight that could eventually inform public health strategies.
unexpected findings may be due to potential collider biases, given By exploring how specific environmental exposures may interact
the complex correlation structure of environmental factors and/or with genetic factors to influence disease risk, our general approach
lack of prior knowledge on causal direction in modeling. suggests potential pathways for targeted interventions. GxEprs
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models may assist in more accurate risk computations, than
previously developed methods that preceded GxEprs. However, it
is important to note that the clinical application of genomic
prediction models, including those for diseases like obesity, remains
primarily within the research domain. While GxEprs models could
one day assist in precise risk computations and possibly aid in early
diagnosis by considering both genetic and environmental factors,
these applications are not yet directly transferable to clinical
settings. Personalized health advice and treatment optimization
based on GxE interactions hold promise but require further
validation. For example, our results may inform how environmental
conditions could mitigate the risk for individuals with a high PRS for
obesity, yet practical, evidence-based approaches in clinical
environments are needed to realize these benefits fully. This study
underscores the potential of GxE research to contribute to
personalized medicine, although significant work remains to
translate these findings into clinical practice.

In addition to identifying significant GxE signals, we quantified
the proportion of variance explained by corresponding GxE
components at the population level, and we noticed that the
percentage contribution of GxE were generally quite modest. This
observation aligns with findings from Zhou et al. [11], who
demonstrated using a whole-genome approach that lifestyle
factors can significantly modulate the genetic and nongenetic
variance components of cardiovascular traits. As illustrated in their
study, variance estimates of interactions vary among different
stratified groups based on environmental exposures (Fig. 1 (ref.
[11])). This suggests that the environmental conditions included in
a study could substantially influence the variance attributable to
GxE interactions. If the environmental conditions are more varied
and extreme, they might expose stronger interaction effects that
are not detectable under more moderate or uniform conditions.
Precisely, in extreme environmental conditions, this Var(GxE)
could reach considerably higher values, which could be clearly a
matter of fact in the clinical setting. However, the utilization of our
findings into clinical practice must be approached with caution
due to several limitations. The modest improvements in predictive
accuracy, while statistically significant, may require clinical
validation to confirm their relevance in practical settings.
Consequently, the models that we adopted do not guarantee
causal directions. Finally, the study’s focus on a primarily White
British population may limit the generalizability of the findings to
other ethnic groups. Lifestyle interventions can be more
effectively tailored by integrating GxE information, allowing
healthcare providers to target individuals with modifiable
environmental risks, such as poor diet or physical inactivity, in
conjunction with their genetic susceptibility. At a broader level,
GxE can inform public health policies by identifying population
subgroups at higher risk due to specific genetic-environmental
interactions, leading to more efficient resource allocation in
preventive efforts. Ultimately, GxE interaction enhances the
clinical utility of PRS in managing obesity, allowing for more
personalized, effective prevention, and treatment strategies.

We remark some methodological limitations identified in Phase
Il and potential remedies that future researchers can employ. We
used the same target samples for both model fitting using
stepwise-selection method and model evaluation via the metrics
R? and AUC, which might have led to an overly optimistic
assessment of model performance. To mitigate this issue and align
with best practices in future studies, we note the importance of
using an independent test sample for final model evaluation, as
recommended by Khera et al. [55]. This approach helps ensure
that the results are not just a reflection of the model’s fit to a
particular dataset but are indicative of its generalizability across
different samples. Moreover highlight the necessity of following a
suitable post-selection inference technique such as sample
splitting, simultaneous inference or conditional selective infer-
ence [56], to address the issue of distorted p values, which arises
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when model selection process and significant variable detection
are both conducted on the same target dataset.

In conclusion, our multi-phase analysis highlights the complex
interplay between genetic and environmental factors in influencing
complex traits and diseases. While significant GxE signals were
identified for quantitative traits, the lack of significant findings for
binary traits suggests potential limitations in the current methodol-
ogy in relation to smaller sample sizes. The introduction of composite
variables in Phase Il aimed to enhance power, but challenges
remained in capturing GxE signals for binary traits, if they do exist.
The PC1 composite variable proved to be the most informative,
emphasizing the importance of weighted schemes in future
analyses. Phase Il demonstrated the value of incorporating multiple
environmental variables for a more comprehensive modeling. Future
research should address these limitations by increasing sample sizes,
particularly for binary traits, and exploring more advanced
computational methods and resources. Further investigation into
the discrepancies observed between different phases is essential to
determine whether they were due to genuine effects or methodo-
logical constraints. Overall, our study highlights key gene-
environment interactions, signifying that some genetic effects are
modifiable, offering insights into the dynamics of complex traits and
diseases. These findings pave the way for future studies to refine and
expand upon our approaches, ultimately enhancing the under-
standing of GXE interactions in complex trait analysis.
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