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Circular RNAs are an unusual class of single-stranded RNAs whose ends are covalently linked via back-splicing. Due to their
versatility, the need to express circular RNAs in vivo and in vitro has increased. Efforts have been made to efficiently and precisely
synthesize circular RNAs. However, a review on the optimization of the processes of circular RNA design, synthesis, and delivery is
lacking. Our review highlights the multifaceted aspects considered when producing optimal circular RNAs and summarizes the
available options for each step of exogenous circular RNA design and synthesis, including circularization strategies. Additionally,
this review describes several potential applications of circular RNAs.
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INTRODUCTION the genes expressed in mammalian cells and tissues can produce

Circular RNAs (circRNAs) are RNA molecules whose 5-ends are circRNAs, further establishing the widespread presence of
covalently linked to their 3’-ends, a structure achieved through circRNAs®. The biological and clinical importance and potential
back-splicing'™. Back-splicing is a process in which a downstream of circRNAs have been increasingly highlighted in many fields.
3/-splice donor is joined to a 5’-splice acceptor that is positioned Numerous studies have reported the expression of thousands of
upstream of the donor. Due to their unique structure, circRNAs circRNAs under normal and abnormal conditions'®. CircRNAs are
were discovered with low expression levels in normal and associated with stress-related’’ and immune-related responses'?
neoplastic mammalian cells more than three decades ago' but and have been implicated in many human illnesses, including
were initially thought to be a byproduct of erroneous splicing. cancer and neurodegenerative diseases'*'.

However, later studies revealed that circRNAs are widely CircRNAs act as efficient platforms for the expression of
expressed not only in mammalian species® but also in a diverse functional molecules''®. Especially during the coronavirus
range of other organisms, including other vertebrates®, worms>, disease 2019 pandemic, circRNAs that undergo internal ribosome
flies’, plants®, fungi and protists®, and lower eukaryotes®. High-  entry site (IRES)-mediated translation were highlighted as
throughput transcriptome sequencing has revealed that >10% of potential mRNA vaccine candidates. Although circRNA-encoded
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Table 1. Strategies for circRNA synthesis.

Type Backbone

Natural introns circSMARCA5
circPOLR2A

HIPK3, ZKSCAN1, EPHB4
laccase2, ZKSCAN1

TADA2A-E6 introns
circPVT1/circZKSCAN1
Engineered HIPK3 and ZKSCAN1

Inverted CMV promoter + IR + ciRS-7 exons

EPEEE CamKl introns + Cherry
PEGFP-C1, CMV promoter + splitGFP + IRES
EGFP intron + ICS

ECRR PEGFP-C1, CMV promoter + splitGFP + IRES

PIE Anabaena pre-tRNA + spacers + homology arms
Tetrahymena group | intron
Tetrahymena group | intron
Clostridium tetani group Il introns
Engineered T4 td
Permuted T4 td

Ribozyme Pol3 promoter + ribozyme + ligation sequence

No information was available for the empty cells.

Cell line Max. efficiency® In vivo/ Reference
vitro

HEK293T 94% In vivo 27
H9 hESC, Hela 47% In vivo 24
Hela In vivo 25
DL1, SL2, Hela In vivo 26
MDA-MB-231, MCF7  50% In vivo 28
MCF7 In vivo 2
HEK293, U87, Huh7 In vivo 35
HEK293 In vivo 29
S2 73% In vivo 3
HEK293 In vivo 30
Hela, HEK293 50% In vivo 32
HEK293, UT-Hela, In vivo 33
H1299

HEK293 Both 20
- Comparable to PIE  In vitro 46
HEK293T 80% Both 47
HEK293T 70% In vitro 43
= In vitro 42
HEK293T 90% Both 44
Hela, HEK293, 100% Both 36
HepG2

ECRR engineering of circRNA regulator, PIE permuted intron-exon, IR inversed repeats, EGFP enhanced green fluorescent protein.
®Information was retrieved from the original paper or was provided by the authors.

peptides need to be carefully validated'”'8, it is possible to design
and synthesize circRNAs that exhibit robust and stable protein
synthesis ability'®'972!, Wesselhoeft et al. reported that circRNAs
produced 9- and 1.5-fold more proteins than unmodified and
modified nucleoside linear RNAs, respectively, with 1.7- to 2.4-fold
longer half-lives than linear RNAs in human cells?®. That same
group later demonstrated that nanoparticle delivery and in vivo
translation of synthetic circRNAs were feasible®'. A recent study
showed that circRNA vaccines could protect mice*? and maca-
ques'® against different variants of SARS-CoV-2, with improved
efficacy and similar immunogenicity relative to linear RNA
vaccines. These promising applications have been noted by
industry, with Merck & Co. being one of the important investors.
Merck agreed to spend up to $3.75 billion on Orna Therapeutics,
Inc., a new startup aiming to develop medicines from synthetic
circRNAs?®. Laronde, another group with a similar goal, had raised
$440 million by 2021.

Considering these trends, determining the optimal methods for
exogenous circRNA synthesis and delivery, as well as for specific
expression in desired tissues, is of utmost importance. In this
review, we describe how each step in the expression of exogenous
circRNAs can be optimized, along with the strengths and
limitations of possible options. Furthermore, we discuss the
potential of circRNAs as effector molecules in therapeutic
applications.

EXOGENOUS CIRCRNA SYNTHESIS

To express exogenous circRNAs, one should first decide whether
to generate circRNAs via in vitro transcription (IVT), circularization,
and delivery of the RNA or to inject a DNA construct and generate
circRNAs via in vivo transcription. There are various protocols for
RNA circularization and in vivo transcription or IVT that lead to
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different choices for the expression of exogenous circRNAs
(Table 1). Here, we describe validated trials for the expression of
synthetic circRNAs in vivo and in vitro.

Generation of circRNAs by in vivo transcription

Earlier studies used naturally occurring introns from highly
expressed circRNAs to ensure robust transcription and circulariza-
tion of circRNAs'®?*2% (Fig. 1a). However, these constructs
produced a mixture of RNA forms, i.e., circRNAs and linear RNAs,
suggesting that the constructs must be optimized to robustly
transcribe the intended linear RNAs and induce their circulariza-
tion via back-splicing in vivo.

As a growing number of cis- and trans-acting factors involved in
back-splicing have been identified, studies aimed at ectopically
expressing circRNAs using these factors have been performed
(Table 2). Researchers have simulated natural introns by inserting
intronic complementary sequences (ICSs) that bring splice sites
together**?°32 (Fig. 1b). Qi et al. described the engineering of
circRNA regulators, which combine circRNA vectors with the RNA-
binding motifs of homodimerizing RNA-binding proteins (RBPs)
and nuclear localization signals®® (Fig. 1b). Introduction of the
RNA-binding domains from PUM1 paired with those from ZBTB18,
HNRNPA1, and PRKAR1TA resulted in expression levels similar to
those of ICSs without affecting linear RNA expression.

Meganck et al. sought to increase the circularization efficiency
of natural introns by partially deleting ZKSCAN1 and HIPK3 introns
with inverted ALU elements'®. In a more recent study, a circPVT1
backbone was used because shorter exonic sequences did not
circularize efficiently with the widely used ZKSCAN1 introns®*. In
2021, the same group generated a series of insertions and
deletions in the upstream and downstream introns of the model
to investigate the effect of the distance between the ALU
elements and the splice junction®®. These experiments revealed
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Types of endogenous and synthetic circRNA backbones. a Endogenous circularization methods that have been used or mimicked.

b A highly efficient circularization method that leaves a scar sequence in the product. ¢ RNAs have been designed to enable the effective
circularization of scarless circRNAs. d The sequence of interest has been permuted; thus, it resembles exonic sequences in the T4 td gene. The
yellow and orange boxes indicate natural introns and ribozymes, respectively. Sequences that bring the splice sites together are shown as
cyan boxes. Genes of interest are represented as green boxes. Promoters and SV40 terminators are shown as gray circles and red hexagons,
respectively. DNA constructs are depicted with black lines, and RNA transcripts are depicted with gray lines. RNA transcription is indicated
with blue arrows. FL flag, NLS nuclear localization signal, PUF PUF binding motif, DIM dimerization domain, FPG split GFP, H homology arm, E1
and E2 exonic sequences, CDS coding sequence, L ligation sequence, GOl gene of interest.

that truncating the upstream and downstream introns to bring the
ALU elements closer to the splice junction enhanced circRNA and
protein expression by up to fivefold. The authors stated that
systems with synthetic introns have multiple advantages com-
pared to the Tornado system®, which utilizes the “Twister”
ribozyme, whose splicing leaves RtcB-compatible reactive RNA
ends, because the synthetic introns can be further improved, and
their short lengths enable researchers to package the system into
recombinant adeno-associated viral (AAV) vectors, allowing long-
term gene expression in a wide range of tissues®”*%, Controlling
the amount of circRNA expressed in cells can be difficult, as
transcription and circularization may be affected by endogenous
factors.

In vitro RNA circularization

Another common method for inducing RNA circularization
involves the use of a permuted intron—-exon system (PIE), which
comprises exonic sequences flanked by group | self-splicing
introns>°. This method enables the expression of desired circRNAs
both in vitro and in vivo. Anabaena pre-tRNA introns and T4
bacteriophage td gene introns are widely used with some
modifications®° (Fig. 1¢). Litke et al. devised the Tornado system,
which utilizes ubiquitously expressed, tRNA precursor-ligating,
RtcB-compatible 5 and 3’ ends and “Twister” ribozymes>%*°
(Fig. 1¢). Further studies have shown that the Tornado system can
robustly express stable circRNAs in vivo and that these circRNAs
play designated biological roles*’. However, the caveat of the
Tornado system is that ribozyme-based circularization leaves an
unintended exonic sequence, called a “scar”, in the resulting
circRNAs. Generating circRNAs based on group | introns inevitably
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leaves 80-180 nt long sequences derived from the two adjacent
exons (commonly referred to as E1 and E2) in the products. These
scars introduce undesired sequences into the final product, and
these sequences elicit immune responses or have unexpected
effects on the experimental results.

Strategies for generating “scarless” circRNAs

To overcome the scar issue, Rausch et al. screened for possible
exon—intron pairs necessary for the self-splicing of T4 td introns
and suggested permuting desired exonic sequences to ensure
that the 5- and 3’-termini resemble the E2 and E1 exonic
sequences of the T4 td gene®? (Fig. 1d). The authors demon-
strated that their constructs could easily produce circRNAs
without T4 exon sequences in vitro. Unlike transfection of the
Tornado system, transfection of the modified scarless system
did not induce an immune response®'*3, Efforts to identify
methods for synthesizing scarless circRNAs are ongoing and
represent an active field of research. Zuo et al. devised a novel
strategy, termed Clean-PIE, that could be applied in vivo and
in vitro using permuted T4 td introns**. The authors concealed
the E1 and E2 sequences necessary for the splicing reaction
in the ORF of their construct and optimized the variable parts of
the E1 and E2 sequences. In another study by Wang et al., group
Il introns were used to produce scarless circRNAs in vitro®. In
this study, the exon-binding site in the D1 domain of group Il
introns was modified; therefore, it could bind to the circular
exon for self-splicing. This backbone is not universally applic-
able because the sequence of circular exons differs among
genes; thus, the D1 sequence should be modified differently for
different genes.

SPRINGER NATURE
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Table 2. RNA-binding proteins known to affect exon circularization.

Factors
ADAR1

AQR

B52 (SRSFé6)
CASC3
CDC40
Cdc5
DDX5
DHX9

EFTUD2
ESRP1

Fus

GEMIN5
HNRNPA1
HNRNPA3
HNRNPH2
HNRNPK
HNRNPL
HNRNPL

HNRNPM
KHSRP

LSM5

MBL

NCBP2
NF90/NF110
NOVA2

PCBP1
PCBP2
PHAX
Phf5a
PPIE
PPP1R8
Prp3
Prp6
Prp8
QKI

RBM20
RBM26
RBM33
RBM38
RBM4B
SCAF1

SF1

SF2 (SRSF1)

SF3a1
SF3a2
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Effect

e + o+ 1+

+

+ o+ o+

Reporter
Total RNA-seq

circmCherry

circLaccase2, circPlexA

circmCherry
circPlexA
circPlexA
circmCherry
Total RNA-seq

circPlexA
circBIRC6

Total RNA-seq

circmCherry
circmCherry
circmCherry
circmCherry
circmCherry
circmCherry
Total RNA-seq

Total RNA-seq
Total RNA-seq

circmCherry
circMbl
circmCherry
Total RNA-seq
Total RNA-seq

circmCherry
circmCherry
circmCherry
circPlexA, circUex
circmCherry
circmCherry
circPlexA
circPlexA
circPlexA

circSMARCAS5 reporter,

total RNA-seq
Titin isoforms
circmCherry
circmCherry
circmCherry
circmCherry
circmCherry
circmCherry

circPlexA, circUex,
circLaccase2

circPlexA, circUex

circPlexA, circUex

Sample

HEK293, mouse P19 EC,

SH-SY5Y
Hela
DL1
Hela
DL1

DL1
Hela
HEK293

DL1
hESC

mESC-derived motor
neurons

Hela
Hela
Hela
Hela
Hela
Hela
LNCaP

LNCaP
K562, HepG2

Hela
S2, HEK293
Hela
Hela

mouse whole cortex,
cortical neurons

Hela
Hela
Hela

DL1

Hela
Hela

DL1

DL1

DL1
mesHMLE

Mice
Hela
Hela
Hela
Hela
Hela
Hela
DL1

DL1
DL1

Mechanism
Destabilizes RNA pairs via RNA editing

Unknown
Unknown
Unknown
Unknown
Unknown
Unknown

Destabilizes RNA pairs by resolving
inverted Alu pairs

Unknown

Directly associates with the flanking
introns

Directly bridges the junctions

Unknown
Unknown
Unknown
Unknown
Unknown
Unknown

Directly associates with the junctions
and upregulates circRNA synthesis

Binds to long introns

Directly associates with flanking
introns

Unknown

Directly bridges the junctions
Unknown

Stabilizes intronic RNA pairs

Binds to YCAY motifs in the flanking
introns

Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Directly bridges the junctions

Directly bridges the junctions
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown

Unknown

Unknown

Reference
59,71

32
26
32
73
73
32

116

73

117

118

32
32
32
32
32
32

72

119

120

118
67
72
72

121

72
72
72
73
32
32
73
73
73

27

122
32
32
32
32
32
32

26,73

73

73
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Table 2. continued

Factors Effect Reporter Sample Mechanism Reference
SF3A2 = circHomer1 Rat hippocampal Unknown 77
neurons
SF3a3 - circPlexA, circUex DL1 Unknown 7B
SF3b1 — circPlexA, circUex DL1 Unknown 7B
SF3B1 = circHomer1 Rat hippocampal Unknown 77
neurons
SF3B14 o circmCherry Hela Unknown 32
SF3b2 — circPlexA, circUex DL1 Unknown 7
SF3b3 = circPlexA, circUex DL1 Unknown =
SF3b4 = circPlexA, circUex DL1 Unknown =
SF3b5 — circPlexA, circUex DL1 Unknown 73
SF3b6 — circPlexA, circUex DL1 Unknown 7
SFPQ + Total RNA-seq HEK293T, HepG2 Binds to flanking introns 123
Slu7 — circPlexA DL1 Unknown 73
SLU7 L circmCherry Hela Unknown 32
snRNP-U1-70K = circPlexA DL1 Unknown &
snRNP-U1-C - circPlexA DL1 Unknown 7
SNRPA + circmCherry Hela Unknown 32
SNRPC + circmCherry Hela Unknown 32
SRp54 (SRSF11) — circLaccase2, circPlexA DL1 Unknown 26
TARDBP aF circmCherry Hela Unknown 32
U1 snRNP — circEFM5, circHMRA1 S. cerevisiae Unknown 76

U4/U5/U6 tri-snRNP —
recruitment

Total RNA-seq

Another group adopted the group | intron of Tetrahymena, a
trans-splicing ribozyme that enables the efficient circularization of
RNAs without scars. Lee et al. concatenated the target sequence
(5-NNNNNU-3") recognized by the Tetrahymena intron at the 3’
end of the gene of interest and the intron itself, allowing end-to-
end self-targeting and splicing to occur*. The results indicated
that this system could induce more robust expression of circRNAs
than the PIE method, although the authors stated that self-
circularization was effective only in vitro. They investigated
whether this system could generate multimeric circRNAs via
intermolecular splicing and concluded that this was unlikely. The
authors recommended that only a single target site be present to
achieve precise splicing. Similarly, Cui et al. devised a construct
with a backbone and flanking antisense sequences to aid in the
self-splicing of Tetrahymena thermophila introns*’. The efficiency
was approximately 80% both in vitro and in vivo. They synthesized
circFOXO03 using this method and found that the product could be
utilized to regulate various cellular phenotypes, such as prolifera-
tion, migration, and apoptosis, in prostate cancer cells.

Generation of circRNAs with chemicals or enzymes
CircRNAs can be generated in vitro from linear precursors via
reactions catalyzed by chemicals or enzymes®. Generally, RNA
synthesis using chemicals results in the production of short
oligomers (~50-70 nt). Therefore, an additional step of ligating
several RNAs is required to synthesize larger molecules. Another
challenge in the chemical circularization of RNA is that the
concentration of the linear precursor should be low to prevent its
oligomerization, which leads to low throughput. This method
requires preorientation of the two reactive ends, which may be
performed using a linear or hairpin helper oligonucleotide or a splint.
Several enzymes can be used for intramolecular ligation; the
most commonly used are T4 DNA ligase and T4 RNA ligases 1 and 2.

Experimental & Molecular Medicine (2024) 56:1281 - 1292

Rat hippocampal
neurons

Long and repeat-rich introns facilitate 77

circRNA formation under spliceosome
depletion

Specifically, T4 RNA ligase produces large amounts of homogenous
and pure circRNAs*.

Although circularization by chemical reactions has many
disadvantages, each method has its strengths and limitations,
and the method should be chosen based on several characteristics
of the circRNA product of interest (i.e, in vivo or in vitro
production, natural or modified nucleotides, and construct size)*®,
The length of the sequence of interest could limit the choice of
synthesis method owing to the difficulties in synthesizing large
molecules using chemical methods and the PIE system®. In fact,
PIE system does not work if there are long (1.1 kb) intervening
regions between the splice sites*®. Additionally, long RNAs tend to
be less efficiently circularized and are more prone to nicking when
magnesium ions are present during and after IVT?°. Chemical- or
enzyme-based methods produce circRNAs only in vitro, whereas
methods based on ribozymes can robustly generate circRNAs both
in vitro and in vivo. Therefore, ribozyme-based methods are
frequently used to express endogenous RNA sequences.

DESIGN OF MESSENGER CIRCRNA VECTORS

Synthesizing “messenger circRNAs” that encode polypeptides
requires the design of circRNA vectors that consider cis-acting
factors to robustly express the desired protein (Fig. 2). The choice
of the IRES, 5~ and 3’-untranslated regions (UTRs), and coding
region can affect the translation efficiency™°.

Vector topology is crucial for IRES-mediated translation, as the
IRES is a structural element that recruits ribosomes. It is important
to ensure that the sequences flanking the IRES do not interfere
with IRES activity by forming complex secondary structures. In this
case, the addition of spacers to separate each secondary structure
can facilitate translation. One study reported that the addition of
spacers to attenuate the structural hindrances caused by IRESs can

SPRINGER NATURE
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Fig.2 Rational design of circRNA sequences. Each factor to be considered is presented for each region of the vector of interest. Spacers were
added to lessen the structural hindrance between the IRES and the gene of interest or the splice junction. Adding motifs for RBPs that
enhance translation is beneficial. Several IRESs with stronger activity than the canonically used IRESs and additional codon optimization can

result in faster and more abundant protein production.

improve translation®. A more recent study concluded that placing
spacers of 50nt in length between the splicing scar of T4 td
introns and the IRES resulted in the most robust translation®°.
Furthermore, Liu et al. showed that RNA duplexes in circRNAs may
activate degradation by PKR®'. Thus, it is important to design the
overall sequence to minimize the formation of RNA duplexes.
The IRES of encephalomyocarditis virus is the most commonly
used IRES owing to its robust and nonspecific expression, which
does not require many IRES trans-acting factors'®2%3>52 However,
an extensive comparison of various IRESs revealed that an IRES
from coxsackievirus B3 (CVB3) was the most efficient across several
cell lines (HEK293, Hela, A549, and Min6)?°. Further investigation
revealed that the IRES of Echovirus 29 had a stronger translation
signal than the IRES of CVB3**%3, A later study investigated a wide
range of viral IRESs to optimize circRNA translation; the authors
concluded that IRESs of human rhinovirus B and enterovirus B
species could drive strong translation and further elucidated that
the translation efficiency of viral IRESs could be further improved by
the insertion of eukaryotic translation initiation factor (elF)

SPRINGER NATURE

G4-associated aptamers®®. Moreover, random sequences were
generated in this study to screen for IRES activity, and several
sequences with strong translation-driving power were identified>°.

UTR sequences are known to regulate multiple aspects of RNA
translation, post-transcriptional regulation, and RNA stability>*.
UTRs harbor many sequences and structural elements that
positively or negatively affect translation. One of the well-
characterized examples is the binding site for poly(A)-binding
proteins (PABPs) in the 5’ UTR, which aids in the binding of elFs®>;
in addition, a highly structured 5-UTR is known to attenuate
translation efficiency®®. Including poly(A)*® or poly(AQ)**
sequences in the construct improved translational strength and
reduced immunogenicity'®. Chen et al. noted that adding PABP
motifs and an aptamer sequence that recruits elF4G increased the
translation of the circular reporter®. A few 3'UTRs of linear mRNAs,
such as that of human {-globin, have been shown to enhance
protein production®’. Most of the 3'UTRs that tend to drive
efficient translation of linear RNAs, except for the 3'UTR of human
a-globin 2, do not seem to do so for circRNAs>°.

Experimental & Molecular Medicine (2024) 56:1281 - 1292



Codon triplets are recognized by tRNAs during translation, and
it has long been debated whether codon usage and the
abundance of tRNAs can affect translation efficiency and speed®®.
The kinetics of translation are crucial for proper protein folding
and translation elongation®®%; therefore, optimizing codons for
the same amino acid may promote effective protein production.
This field of study has not been rigorously explored; however, it
was shown that eliminating unfavorable base-pairing interactions
between the adjacent ends of an IRES and a coding sequence can
further facilitate circRNA translation®°.

DELIVERY OF SYNTHESIZED CIRCRNA OR DNA CONSTRUCTS
During IVT-mediated circRNA synthesis, the resulting molecules
must be rigorously purified. Purification by gel extraction or size-
exclusion high-performance liquid chromatography is necessary
because Anabaena introns or rare circular concatenations are
resistant to degradation by RNase R*°. The solid-phase DNA probe
method®', in which a DNA probe is designed to hybridize the
back-splice junction of the desired product®? can also be used to
purify circRNAs from total RNA.

The size of the construct and the required targeting specificity
can influence the choice of delivery vehicle. CircRNAs can be
efﬁcientlgy delivered using lipids?', gold nanoparticles®®, AAV
vectors'®, lentiviral vectors, exosomes®®, and transposons®’.
Recent advances in nanodrug delivery have suggested that
nanoparticles may increase target specificity®®. Although each
method has distinct limitations and strengths, the toxicity of gold
nanoparticles is under debate. Exosomes may be more biocom-
patible than nanoparticles but require complex manufacturing
processes. For the delivery of naked circRNAs, optimization of the
solvent may result in greater cellular uptake, as shown in a study
by Yang et al., in which the use of Ringer’s solution resulted in the
highest reported uptake at tumor sites>>,

INTRACELLULAR REGULATION OF CIRCRNA EXPRESSION
Endogenous circular RNAs exhibit tightly regulated expression, are
stable with a long half-life, and are resistant to RNA decay
mechanisms. The level of circRNAs is affected by numerous factors
in multiple steps; therefore, several factors need to be considered
to achieve stable expression (Fig. 3).

Regulation of back-splicing

Back-splicing efficiency is a combination of numerous factors at
multiple levels, including chromatin states and sequence context
in exons and flanking introns®>®” (Fig. 3a). At the epigenomic
level, several histone modifications, including H3K4mel,
H3K36me3, H3K79me2, and H4K20me1, affect circRNA biogen-
esis®. However, some exons are more preferentially processed by
circRNAs than others, and the more back-splicing that occurs on
an exon, the more exon skipping occurs during forward
splicing®°. However, exon skipping does not guarantee the
inclusion of the exon in a circRNA; therefore, an additional level of
regulation is required for exon circularization®®. There are a few
reported cases of Schizosaccharomyces pombe in which circRNA
biogenesis occurs independently of cis or trans elements>, despite
various cis- or trans-acting factors having been reported to
facilitate or hinder circRNA production. ICSs are among the most
important cis-acting elements, although their importance varies
among species'®. ICSs can be either inverted repeats”* or
nonrepetitive elements®*’°. In human fibroblasts, the vast
majority (88%) of ICSs contain ALU repeats®.

In addition to cis-acting factors, RBPs can promote or disrupt
exon circularization (Table 2). Quaking binds to flanking introns
and forms a homodimer, bringing the splice sites together®’. In
contrast, A-to-l editing protein (ADAR1) can destabilize RNA pairs
necessary for back-splicing via A-to-l editing”'. However, the role
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of RBPs in circRNA biogenesis requires further investigation, as the
effect of RBPs may vary depending on the type of circRNA and cell
line. For example, HNRNPL increases the expression of the
circmCherry reporter in Hela cells®; however, a study of
HNRNPL-knockdown LNCaP cells showed that endogenous
circRNAs were downregulated rather than upregulated’? (Table 2).
Similarly, knockdown of Slu7 resulted in circRNA enrichment in DL1
cells” and depletion of circmCherry in Hela cells®2

Back-splicing is performed by the spliccosome machinery and
involves canonical splice sites in most cases (99%); therefore, it
competes with forward splicing, although forward splicing is
>100-fold more efficient’*”. Thus, the inhibition of forward
splicing may be important for promoting back-splicing. Ablation
of some core factors of the spliceosomal complex and treatment
with a splicing inhibitor allows more back-splicing events to
occur’>7®77 Despite the expected competition between forward
and back-splicing, early genome-wide studies have shown that
the levels of circular and linear isoforms are not fully correlated
with each other’?7>%7879, although researchers have made
further efforts to define the efficiency of back-splicing in terms
of the circular-to-linear ratio (CLR). The CLR is the ratio of mapped
sequencing reads that support back-splicing to those that support
forward splicing®®. Although the CLR is known to be <1% for most
human loci, some circRNAs are robustly expressed and sometimes
accumulate to levels that exceed those of their corresponding
linear forms”>%78, However, the precise mechanism underlying
the regulation of back splicing efficiency remains to be elucidated.

Context specificity of circRNA expression
CircRNAs are known to show expression patterns that are strongly
specific for certain biological conditions and independent of those
of linear isoforms, increasing the difficulty of understanding the
control of circRNA expression?’>*8%81 A recent study using 90
human tissue transcriptomes revealed that 36-75% of alternative
back-splicing events are tissue-specific®2. Investigation of tissue-
wide circRNA profiles revealed that different brain compartments,
such as the olfactory bulb, prefrontal cortex, hippocampus, and
cerebellum, have the greatest number of tissue-specific cir-
cRNAs°. By comparison, the heart, liver, and muscle have the
lowest number of tissue-specific circRNAs®>. These characteristics
are not limited to endogenous circRNAs. Advances in the
engineering of synthetic circRNAs have revealed similar tissue-
and cell-type specificities for exogenous circRNAs. Injecting AAV
vectors carrying sequences encoding the circular form of green
fluorescent protein into mice resulted in different transduction
rates across tissues'®, although AAV vectors are known to broadly
express encoded sequences without any tissue preference®,
CircRNA specificity extends beyond the tissue or cell type level
to include cell-to-cell variations and distinct subcellular localiza-
tion patterns (Fig. 3c). Single-cell studies have reinforced the idea
that circRNA profiles vary from cell to cell®>™®. Little is known
about the subcellular localization of circRNAs; however, exonic
circRNAs are localized mostly in the cytoplasm, whereas those
with intronic sequences primarily remain in the nucleus®>%85°,
The nuclear export of some circRNAs appears to be mediated by
their length-dependent association with UAP56 or URH49, which
are RNA helicases that recruit the REF adapter protein to RNAs.
Another study showed that YTHDC1, an m®A reader protein,
mediates the nuclear export of circtNSUN2 via m®A modification;
this was the first report of an association between m°A and
circRNA translocation®’. In a more recent study, circRNA repre-
sentation in the nuclear, cytoplasmic, mitochondrial, ribosomal,
cytosolic, and exosomal fractions of HepG2 cells was system-
atically examined®2. The results indicated that circRNAs in different
compartments had different characteristics regarding length and
G/C content. In neurons, some circRNAs have been shown to
localize to synapses®®’®; however, the elements that dictate this
localization are unknown®*. Several studies have examined
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functional mitochondrial circRNAs and revealed that their
intracellular expression levels are altered under stress condi-
tions®>°, Overall, these results suggested that circRNA expression
is tightly regulated at different subcellular locations. Data from
continued efforts to investigate the subcellular localization of
circRNAs have been integrated into platforms for the visual
presentation of localization information®”.

Regulation of the intracellular levels of circRNAs

One prominent feature that distinguishes circRNAs is their marked
stability. Researchers have found that the half-lives of circRNAs

SPRINGER NATURE

are, on average, two- to fourfold longer than those of linear
mRNAs and sometimes as much as 10-fold longer®®. This
difference results mainly from the absence of 5~ and 3’-terminal
nucleotides that can be attacked by exonucleases, which block the
degradation of circRNAs under normal or stressful conditions.
During viral infection, RNase L is activated via an unknown
mechanism and globally degrades circRNAs associated with PKR
as part of the innate immune response®' (Fig. 3d). Park et al.
identified RNase P and MRP as circRNA-degrading agents that
interact with YTHDF2 and HRSP12, two proteins that recognize
circRNAs with m®A modifications and a GGUUC motif®. Drosophila
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GW182, a key component of P-bodies, and its human homologs
TNRC6A/TNRC6B/TNRC6C participate in circRNA decay through an
AGO2-independent mechanism, and their depletion substantiallg
increases the steady-state levels of cytoplasmic circRNAs'®.
Considering that these mechanisms function sequentially, it is
likely that circRNA isoforms are subjected to decay via different
mechanisms, possibly leading to the enrichment of circRNAs
related to stress responses.

Under normal conditions, approximately one-third of human
circRNAs are predicted to be highly structured, and their
degradation is globally regulated by UPF1 and G3BP1 via
structure-mediated RNA decay (SRD)'®'. G3BP1 selectively binds
to highly structured circRNAs and is a determining factor in SRD.
SRD targets appear to be preferentially excluded from stress
granules, where UPF1 and G3BP1 localize after stress-inducing
treatment. Taken together, these results indicate that circRNA
decay mechanisms vary between normal and stressful conditions.

Experimental & Molecular Medicine (2024) 56:1281-1292

None of the factors mentioned above exclusively target circRNAs;
thus, it is likely that there are additional unknown pathways
responsible for the regulation of circRNA steady-state levels'%2.

Studies using human cell lines have suggested that circRNAs
can be actively exported'®® (Fig. 3e). Several reports have shown
that circRNAs are enriched in extracellular vesicles'®'%, in the
circulation and urine'®, and in exosomes secreted by various cell
lines'®®'%7  Additionally, circRNAs with a 5-GMWGVWGRAG-3’
motif were found to be selectively packaged into exosomes®.
However, the exact mechanism of circRNA secretion and its effect
on donor and recipient cells remain unknown',

IMMUNOGENICITY OF EXOGENOUS CIRCRNAS

The immunogenicity of engineered circRNAs remains controver-
sial. Chen et al. showed that transfection of circRNAs using a PIE
system containing the T4 td gene intron triggered the expression

SPRINGER NATURE



S. Choi and J. Nam

of several immune genes, whereas transfection of a circRNA
generated with the ZKSCAN1 intron did not**. Subsequently, they
observed that m°A modification could act as a molecular marker
for “self” circRNAs'®. Another study using the Anabaena intron
reported that the resulting circRNA did not elicit an immune
response?®. This was later challenged by a more recent study,
which concluded that circRNAs produced by group | introns are
immunogenic, possibly due to the intron “scars” that remain in the
final product''°. This inconsistency could be a result of differences
in the methods used to test immunogenicity or the type of linear
RNA used for comparison since the above studies all used distinct
methods to evaluate the immunogenicity of a circRNA'".
However, the immunogenicity of vector-carrying circRNAs has
not been discussed in detail. To date, the transduction of circRNAs
via AAV vectors or lentiviruses has shown negligible immune
activation ability.

APPLICATION OF ENGINEERED CIRCRNAS

Recently, several studies have used circRNA technology to
investigate or control cellular processes and immune responses
(Fig. 4) 2'364351199 Circular mRNA vaccines showed efficient
protection against SARS-CoV-2 infection (Fig. 4a)'>?2. Furthermore,
circRNAs aid in reducing the effective vector dose for gene
therapy applications because the expression levels of their protein
products are likely to increase over time'®.

CircRNAs have also been used in DNA editing and RNA
regulation. Two groups used ADAR with a circular guide RNA for
in vivo and in vitro RNA editing (Fig. 4b, 0)'"2113, Several siRNA
mimics''®, RNA dumbbells''®, and aptamers®® have been shown
to perform robustly, with improved stability in the circular form
(Fig. 4d-f).

CONCLUSION

CircRNAs have demonstrated potential as molecules for next-
generation vaccines and therapeutics. Herein, we presented
several options that could be chosen and aspects that could be
considered when developing a platform for circRNAs. A rational
sequence design that guarantees the maximal cellular level of a
circRNA or a desired protein is of pivotal importance. One could
also adopt an adequate delivery method and enhance cellular
uptake by optimizing the solution. CircRNAs can be expressed
differently in different tissues and cell types, and efforts should be
made to minimize the immunogenicity of circRNAs.

Our aim was to show how the process for exogenous circRNA
synthesis can be modified to be more efficient and suitable for
circRNA synthesis. By considering each step of the application of a
circRNA, we believe that one can accomplish the desired results
with maximum potential. Ultimately, these steps will become
standard procedures for the industrial synthesis of circRNAs.
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