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Desalination of Hamipterus tianshanensis =0

fossil by electrokinetic method: evaluation
for treatment of clay-rich sandstone

Ying Li'?3, Yimin Yang??, Xiaolin Wang®*" and Wugan Luo®*"

Abstract

The fossils of Hamipterus tianshanensis (Wang et al. in Curr Biol 24:1323-1330, 2014) and their eggs have impor-

tant scientific significance because they can provide unique information about the reproduction, development,

and evolution of pterosaurs. The fossils and the rock surrounding them have, however, been weathered, which
including powdering and flaking, since they were relocated from Xinjiang to Beijing. The high content of soluble salts
is a significant factor in fossil deterioration because the dissolution-recrystallization process can generate tremendous
pressure and lead to decreased mechanical strength. This study evaluated the electrokinetic desalination perfor-
mance for the fossils, and two types of poultices employed including paper pulp from Bioline® and CKS121 (cellulose:
kaolin: sand=1:2:1, w/w). Mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), ion chromatog-
raphy (IC), and other methods were applied to evaluate the desalination effect. The surface salt content reduction

by applied direct current (DC) was about 70%, and the inner salt content reduction was about 80%. The experimental
results suggest that the electrokinetic method is a promising way to desalinate fossils. Nonetheless, cracks appeared
in the surrounding rock crack after electrokinetic desalination, which can be explained by the montmorillonite
swelling-induced stresses. Pre-consolidation, especially for electro-chemical method may solve the cracking problem
for the clay-rich sandstone desalination.

Keywords Salt weathering, Desalination, Electrochemistry, Fossil matrix, Poultice, Pore size distribution

Introduction

Fossils are nonrenewable natural heritages and provide

clues about changes in the world’s species. By studying

fossils, scientists can learn more about the earth’s past,
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strategy, ontogeny, and behavior of pterosaurs [1]. For
example, by studying H. tianshanensis 3D embryos,
Wang et al. found that newborns could probably move
around but not fly, which means that they needed their
parents’ care [2]. This finding is different from the pre-
vious hypothesis that pterosaurs were highly preco-
cial [3]. Furthermore, both male and female pterosaur
skulls have crests, and the differences between male
and female specimens are mainly in crest size, shape,
and robustness [1]. This finding strongly refutes the
view that the presence or absence of a cranial crest was
a sexually dimorphic characteristic extensive in almost
pterosaurs [4]. In addition, the H. tianshanensis eggs
are mainly composed of calcium phosphate, which rec-
tifies the formal view that calcite is the main compo-
nent [5].

These significant findings depend on fossil remains,
but the fossils have begun weathering since they were
transported to Beijing. This weathering includes crack-
ing, powdering, spalling, and disintegration, which seri-
ously endanger the fossil’s safety. Li et al. used X-ray
fluorescence (XRF), X-ray diffraction (XRD), and other
methods to explore the mechanisms of fossil weather-
ing. The results indicated that one of the crucial reasons
for fossil corrosion was the high soluble salt content in
the fossils and surrounding rock [6, 7]. The high con-
tent of soluble salts such as NaCl, CaCl,, NaNO,,
Ca(NO,), will generate crystallization pressure and
affect the preservation of H. tianshanensis fossils and
severely threatens the safety of this cultural heritage [6,
8]. When the humidity changes, soluble salts generate
massive crystal pressure thus creating high stress and
significantly damaging the fossil structure. This disso-
lution—recrystallization process and resulting pressure
was the primary fossil deterioration mechanism [9, 10].
Some researchers have used siloxane-based polymers
to increase the mechanical strength and water resist-
ance of fossils based on the poor fossil condition. After
a series of examinations, hybrid sol TEOS-TPME-s
showed the best performance in protecting Hami fos-
sils [11]. Although consolidation can enhance fossil
cohesion, this treatment may increase fossil susceptibil-
ity to salt damage, because consolidation may increase
the crystallization pressure while filling the porous
stone structure and reducing pore radii [12, 13]. There-
fore, it is crucial to find a suitable way to reduce soluble
salt damage before consolidation.

There are many attempts to mitigate salt damage. One
way is using crystallization modifiers, which principle is
reducing the pressure of crystallization and/or promot-
ing salt crystallization on the surface (efflorescence) rather
than in the pores of materials [14]. However, several reports
have shown that the combined use of crystallization
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modifiers, such as ferrocyanides combined with cellulose
poultices could make desalination methods more effective
[15]. Nevertheless, using ferrocyanides has a high risk as
this can decolor the sample due to UV light [15-17]. More-
over, modifiers are effective only for a specific type of salt
[18].

Another control salt decay is reducing the salts content
in the affected material. The most widely used method is
applying poultices, which is easy to do but the poultice can
residue on the heritage surface. Taking clays and cellulose
compounds, which were the most frequently used mate-
rial in conservation for soluble salt extraction for example,
these material are easy to remove after the desalination
process but are less effective than clay [19]. Meanwhile, clay
has better adhesion and higher efficiency than cellulose
but is harder to remove, and the residues are always left on
the surface of the relics after desalination. Applying Japa-
nese paper as a separator can significantly prevent stain-
ing of the substrate, nevertheless, this will still leave very
little residues [20] and induce the reduction of extracted
salts efficiency [21]. Except for the poultice composition,
many variables can affect the treatment outcome, including
moisture, temperature, relative humidity, and ventilation
conditions, so that the desalination results can be highly
variable [22]. Many studies have focused on how poultice
composition influences desalination and how to improve
desalination effectiveness. Experimental results found that
when the poultice had smaller pores than the substrate, the
poultice extracted salts efficiently [22], but this does not
mean that the smaller pores of the poultice, the better the
poultice will be, because the poultice acts as a water reser-
voir during the wetting phase and should have larger pores
than the substrate [23]. Considering both substrate wetting
and salt extraction, conservators have found that achieving
the most efficient and suitable poultice requires fine-tun-
ing the pore size distribution of the poultice relative to the
properties of the substrate during the traditional poultice
way [24].

Because the poultice method has many disadvantages,
such as limited desalination depth, too many influencing
factors, and strict porosity requirements between poul-
tice materials and the desalinized-requiring cultural rel-
ics [19], some researchers have focused on electrokinetic
techniques to remove soluble salts. The principle of elec-
trokinetic techniques is that the ions migrate towards the
electrode of opposite polarity through a porous material
when an electric DC field is applied. Consequently, the
ionic content in the material is decreased and the ionic
content in the vicinity of the electrodes is increased [25].
The Egs. (1)—(3) are primary electrode reactions transform-
ing the current from carried by electrons in the electrodes
to ions in the pore solution.
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At the anode : 2H,0 — 4H™ + Oy (g) +4e” (1)
4CI7 — 2Clx(g) + 4e” (2)

At the cathode : 4HyO + 4e~ — 40H™ + Ha(g)

3)

This method greatly improves the desalination effi-

ciency but it also has a big problem: the extreme pH

value. From step (1) to step (3), the pH increases at the

cathode and decreases at the anode. Neutralizing the pH

changes to prevent drastic changes is an important part

of electrokinetic desalination. Adding calcium carbonate

to the poultice is a widely used method to prevent severe

pH changes and to guarantee the safety of the desalina-
tion samples [26]. The reactions are as follows:

CaCO3 + H — Ca®t + HCO3 (4)

HCO; +H" — COs(g) + HyO (5)

Apart from adding CaCOs,, using a buffer solution is
also an excellent way to stabilize pH values at around 7.
A previous study chose a solution of 0.2 M sodium citrate
and 0.2 M citric acid buffered to pH 6 as electrolytes, and
the needed buffering solution concentration is dependent
on applied current and duration following the Egs. (1)—
(3) [26-28]. Buffer systems formed by a localized buffer
electrolyte sponge and CaCO, added to the poultices
have shown their effectiveness [29]. The electrokinetic
technique proved effective on desalination in laboratory
studies and was applied to artifacts for removing the sol-
uble salts in situ [28, 30, 31]. This method has developed
in an increased interest among researchers because it has
shown promising results and is recognized as an efficient
way of removing salts [32].

Overall, previous studies have shown that there are
many ways against salt damage for stone relics. Never-
theless, little research has been focused on the desalina-
tion of fossils and their surrounding rocks. In view of the
high scientific value and the severe weathered station, it
is essential to have some treatment for salt weathering.
Since using crystallization modifiers has many limita-
tions, we preferred to reduce the ionic content. Consid-
ering the large size of the Hami pterosaur (a 3.28 m?
sandstone block), immersion baths are not a good choice
because this method only valid for small samples. Here,
we applied a combination of techniques such as Mercury
Intrusion Porosimetry (MIP), Scanning Electron Micros-
copy and Energy Dispersive Spectroscopy (SEM-EDS),
Ion Chromatography (IC) and Reflectance Spectropho-
tometer to perform desalination tests on small blocks
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collected from the larger specimen. Thus, this work
focuses on assessing the effectiveness and risks of differ-
ent electrokinetic desalination interventions.

Materials and methods

Rocks used

In this work, the sample is from H. tianshanensis fos-
sils, which were collected from the Institute of Verte-
brate Paleontology and Paleoanthropology (IVPP). The
rock was collected from the fossil under preparation. The
pterosaur fossils were originally collected at the Turpan-
Hami Basin, Xinjiang Uygur Autonomous Region, north-
western China, and almost specimens were found in the
tempestite interlayers. The fossil-surrounding rocks are a
sandstone mixture of grayish-white sandstone and brown
mudstone breccia (Fig. 1A). The pterosaur fossil and its
surrounding rocks have begun weathering since they
were transported to Beijing. The surrounding rocks are
disintegration and pulverization, causing pterosaur bones
and eggs to fall off due to lack of support from surround-
ing rock (Fig. 1B).

Studies on fossil bone and matrix of Hami pterosaurs
were previously presented by Li et al. [6, 7]. The char-
acterization of the matrix of pterosaur fossils and bones
was carried out by X-ray diffraction analysis (XRD), as
shown in Fig. 1D: the sandstone mainly consists of quartz
(43.2 wt%), feldspar (37.4%), carbonated (7.4 wt%), clay
mineral (12%). Hence, the fossil surrounding rocks can
be assumed as clay-rich (i.e., clay > 5 wt%) sandstone [33].
Notable, the clays are mainly montmorillonite (8 wt%),
and its characteristic of water swelling and drying shrink-
age during humidity changes will cause damage in the
connection between particles. Likewise, the clay mineral
leads to grain-by-grain detachment for fossils surround-
ing rocks of Hami pterosaur when the humility cycling
[7]. Apart from the clay mineral, the soluble salts such
as halite, also lead to the granular disintegration of the
fossil-surrounding rocks under the fluctuations between
high a low relative humidity [7].

This study involved one big fossil-surrounding rocks
for the experiment. The rocks were segmented with a
chisel and saw by hand. Wet sawing was not used for seg-
mentation because water to the stone would lead to salts
redistribution. Figure 2 shows the original rocks and their
segmentation. The rock was segmented into 5 segments.
One segment (No. 5) was used as the reference stone to
detect the distribution of the initial salt among different
areas and depths. Two segments were used for electro-
chemical way (with paper pulp/ CKS 121).

Materials
The cellulosic powder used to prepare for the desali-
nation poultice was Arbocel® BC 1000 (fiber length



(2023) 11:232

Li et al. Heritage Science

Page 4 of 15

sandstone

brown mudstone breccias

pterosaur bone fossil

C il
3.3%

pterosaur bone fossil 2.1%
D vnt 1N
sandstone Chl gy, 1%
0,
Dol3 A)\
1%
weathered fossil ~ Cal
6.4% Qtz
43.2%

Fig. 1 Pterosaur fossil bones encased in sandstone matrix, and their mineral composition. A Pterosaur fossil and fossil-surrounding rocks. The fossils
are embedded in sandstone with brown boulder clay. The hollow pterosaur bone fossil is thin and fragile. When the surrounding rock is pulverized
and exfoliated, the fossil begins to crack and exfoliate because of a loss of mechanical support. B the weathered fossil. The specimens were
collected in the field and was put into the sample bag. When the fossil transported indoors, the surrounding rock was powdery and some bones
were broken. C The mineral composition of mudstone breccias (wt%). D The mineral composition of sandstone (wt%). Pie charts (C-D) are based

on the XRD results from Li et al. [7]

700 pum). The silica sand (0.55-1 mm) and kaolin were
purchased from Macklin Chemical Co., Ltd. The paper
pulp for desalination was Bioline® desalinated poul-
tice!, which has been used in conservation projects such

! The poultice is from Zhejiang Desaibao Building Materials Technology
Co., Ltd, China. More details about this poultice can be seen in website:
https://www.dsbioline.com/.

as the Dayan Pagoda conservation project before. This
poultice is viscous fibrous slurry and cream colored. The
citric acid-sodium dihydrogen phosphate (pH 7.0) was
purchased from ROBY Tech. Co., Ltd. The citric acid—
sodium dihydrogen phosphate (pH 6.0) was purchased
from Nanjing Keygen Biotech. Co., Ltd.


https://www.dsbioline.com/
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Fig. 2 Original fossil-surrounding rock and its segments. A Original fossil-surrounding rock (scale bar: 5 cm); B Segment No. 1 (scale bar: 2 cm);
C Segment No. 2 (scale bar: 3 cm); D Segment No. 3 (scale bar: 3 cm); E Segment No. 4 (scale bar: 3 cm); F Segment No. 5 (scale bar: 3 cm)

Table 1 Material parameters of the applied poultice mixtures in electrochemical method

Poultice type Cathode

Anode

Composition

Water content (weight water/

Composition Water content (weight

(w/w) weight dry poultice) (w/w) water/weight dry
poultice)
CKS121 Cellulose: kaolin: 0.8 Cellulose: kaolin: sand: 0.8
sand=1:2:1 CaCO;=1:2111
Bioline® desalinated Paper pulp / Paper pulp: CaCO;=4:1 /

poultice

Desalination experiments setup

Two kinds of poultices were employed, about 10 mm
thick, as the reservoirs for the ions extracted from the
rocks. One was the Bioline® desalinated poultice, a
Chinese paper pulp which has been used in the Dayan
Pagoda conservation project previously. The other was
CKS121, which has been used in many laboratory stud-
ies [34]. The specific composition was a mixture made of
cellulose: kaolin: sand=1:2:1 (w/w). The water content
was 0.8 (weight of water/weight of dry poultice material).

In addition, the poultice at anode added CaCOj; to buffer
the acid produced by electrolyzed water. Specific experi-
mental conditions are shown in Tables 1 and 2.

Sponges, about 2 mm thick, were soaked with the elec-
trolyte to avoid extreme pH, and then the sponges were
put between the graphite electrode and the poultices. At
the anode, hydrogen ions are produced during electroly-
sis, so a buffer solution of 0.2 M citric acid/sodium citrate
with pH=7 was applied. For the cathode, OH™ ions are
produced, so a buffer solution of 0.2 M citric acid/sodium
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Table 2 Experimental conditions for the  desalination

experiments

Poultice used Stone number Initial Duration Remarks

(size)? current (days)
(mA)°

paper pulp No.1(5/6/6)* 10 15 Poultice
replaced every
3 days

CKS 121 No. 4 (6/7/7) 10 15 Poultice
replaced every
3 days

2 Numbers within the parentheses mean the samples size. For example, No. 1
(5/6/6) means that this stone segment (No. 1) is about 5 cm long, 6 cm thick and
6 cm high

The DC power supply was set to supply a constant current of 10 mA. Thus,
the initial current was 10 mA. Since the increasing resistance during the
experiments, the current could no longer maintain at 10 mA and began to
decrease at a constant voltage of 20V
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citrate with pH=6 was applied. The electrode mate-
rial used in this experiment was graphite (2-mm thick)
because of its efficiency and economy. PVC film wrapped
the whole system to avoid evaporation. The elements
used in the assembly are shown in Fig. 3A.

The direct current (DC) paper pulp and CKS121 desali-
nation experiments were connected in series. The DC
power supply was set to supply a current of 10 mA and
when this condition could not be sustained the system
was run at constant voltage (20 V). When we switched on
the power supply, the current was 10 mA, and the applied
potential voltage was less than 20 V. Because of the
increasing resistance during the experiments, the volt-
age was increased gradually up to the 20 V (the setting

a. fossil-surrounding rocks

b. poultice(paper pulp/ CKS121)
c. sponges with eletrolyte

d. graphite

e. PVC

Fig. 3 Desalination experiment setup. A Schematic draw of specimen assembly and composition of various elements for electrokinetic
desalination. Moreover, the fossil-surrounding rocks used in the actual desalination experiments were kind of irregularly (not cubic). B The real
picture of electrokinetic desalination experiment. C The enlargement for the electrokinetic desalination using paper pulp
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Fig. 4 The location of powder sample for IC

value) and the current was maintained at 10 mA during
this time. When the maximum of 20 V was reached, the
current could no longer keep at the same level at 10 mA
and the current began to decrease at a constant volt-
age of 20 V. Every 72 h, the poultices and sponges were
replaced. This process also lasted 15 days. The laboratory
experiment setup for the electrokinetic desalination is
shown in Fig. 3.

Analytical methods

Microstructural characteristics of poultices and substrates

In order to have a better understanding of the charac-
teristics of poultices and substrates, mercury intrusion
porosimetry (MIP) and SEM were used to detect the pore
size distribution. Moreover, SEM-EDS was used to detect
the chemical composition of salts in the fossil matrix.

(1) Mercury intrusion porosimetry

MIP was used to determine the pore size distribution of
the surrounding rocks (substrate) and poultices (CKS121
and Bioline®). Testing samples were put in a crucible in a
muffle furnace under 105 °C for 12 h to obtain dry sam-
ples for the MIP test. The test was conducted using an
AutoPore IV 9500 (Micromeritics Instrument Corpora-
tion). The mercury contact angle was 130°.

(2) SEM-EDS analysis

The poultices and fossil-surrounding rocks were dried
in the muffle furnace and coated with gold before SEM-
EDS analysis. The microstructure and chemical compo-
sition of samples were examined on a SEM-EDS (Zeiss

EV.O. 25 SEM couple with Oxford INCA energy-dis-
persive X-ray spectroscope Carl-Zeiss, Germany) with
20 kV voltage.

Treatment evaluation

After desalination experiments, the rocks were naturally
dried. IC was used to obtain the ion contents for evaluat-
ing the efficiency of different desalination methods. And
the global color change was measured to evaluate the risk
of the intervention.

(1) Soluble salt content

Six powder samples of segment No. 5 were taken
to detect the initial ion content variations over the
object (Fig. 4). Four powder samples were taken by scrap-
ing the surface with a scalpel: powder samples No. p2, p3,
and p4 were from the original external part of the seg-
ment, powder sample No. pl was from the new surface
cut by a saw. Another two powder samples were taken by
drilling: powder samples No. p5 and p6 were collected
across assembly levels of: and 1-2 cm, respectively, start-
ing from the saw-cut new surface.

For each fossil-surrounding rock (before segmenta-
tion), one powder sample was collected by scraping the
surface with a scalpel in order to detect the initial ion
content. After desalination experiments, each desalinated
sample was cut through the middle and then powder
from the interior and surface areas was scraped to study
the difference in the soluble salt content of the desalted
block. In summary, one powder samples for initial salts
content and four powder samples for salts content after
desalination. The surface powder was collected from no
poultice-covered areas.
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Fig. 5 Pore size distribution of substrate and poultices. A Fossil-surrounding rocks (sandstone). B Fossil-surrounding rocks (sandstone with boulder

clay). € CKS121 poultice. D Bioline® desalinated poultice

Soluble salts were identified via the following steps:
0.1 g of powdered sample was added to a 25 ml volumet-
ric flask, and the quantity was fixed with ultrapure water.
The suspension was agitated for 72 h and then filtered
through 0.22-pm mesh filters. In the aqueous extract,
anions (Cl~, SO,>~, and NO;") and cations (Na*, K,
Mg?*, and Ca’") were determined by IC using the HIC-
10 A super IC (Shimadzu Corporation, Japan).

(2)Color change

After desalination, the sample was cut through the
middle to determine whether the color of surface and
interior of the sample have changed. The specimen
reflectance spectra were measured by a reflectance spec-
trophotometer (X-Rite VS450 spectrophotometer, USA).
Measurement conditions were as follows: the optical

geometry 45/0°, 45° gloss, spectral range 400-700 nm;
spectral interval 10 nm, diffused viewing with a 6.0-mm
aperture diameter. The color of each sample was meas-
ured using color measurement software (X-Rite Color
Master, USA).

Results and discussion
Characterization of rocks and poultices
Fossil surrounding rock

(1) Pore size distribution

Since fossil-surrounding rocks are the sandstone mix-
ture of grayish-white sandstones and brown mudstone
breccias (Fig. 1A), the sandstone and the mudstone
breccia were detected by MIP separately. The main
range for the pore size distribution in the sandstone
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Fig. 6 SEM images and element mapping of fossil surrounding rocks. A Secondary electron images of fossil-surrounding rocks, showing

the montmorillonite coating (C-Mnt) attached to the grain surface; B Secondary electron images of the enlargement for detail of the white

box in fig. A showing flat shaped crystals, like curled leaves piled-up, of montmorillonite; C Backscattered electron (BSE) image of crystals

in the fossil-surrounding rocks; D The element mapping of fig C, showing the major presence of Na and Cl in the fossil-surrounding rocks, revealing

that the salt crystals are halite. Bar =400 um

part is narrower (Fig. 5A), but the pores are larger
(1000-10,000 nm), while the range for the sandstone
with boulder clay is broader (Fig. 5B), but the pores are
smaller (10—100 nm).

Figure 6 presents the microstructural characteristics
of the fossil surrounding rocks. Under the SEM it can
be observed angular grains of quartz and feldspar sur-
rounded by clay minerals (Fig. 6A). Clay minerals are
flat in shape, like curled leaves piled up (Fig. 6B), which
is typical of montmorillonite [35]. In addition to the
distribution characteristics of clay minerals, the chemi-
cal composition and distribution of salts in the sand-
stone can also be observed by SEM-EDS. As shown in
Fig. 6D, the element mappings show the correlation
of sodium with chlorine, indicating the cubic crystals
shown in Fig. 6C are halite (NaCl). Furthermore, cubic
crystals are the most common form of halite.

The SEM results indicated that the clay mineral and
salts can be cementation in sandstone, which is consist-
ent with the previous study [7]. The main water-soluble
salts found in fossil-surrounding rocks are halite.

(2) Salts in fossil surrounding rocks before desalination

The reference stone (the segment No. 5) was used to
detect the distribution of the initial salt among different
areas and depths. As shown in Table 3, the initial aver-
age salt content was 13,020+ 1011 pg/g. The low devia-
tion indicates the salt concentrations are similar among
different depths. Nevertheless, considering the fossil sur-
rounding rocks are non-homogeneous natural materi-
als, the ion content cannot be the same in different place
despite the stones are of the same type and were taken
from the same fossil.

The Austrian standard ONORM B 3355-1 is the only
accessible threshold values to evaluate the salt con-
centrations has risk or not [36]. The limits are: (critical
limit-limit for no risk): ClI~ (1000~ 300 mg/kg), NO;~
(1500 ~500 mg/kg), SO,*~ (2500 ~ 1000 mg/kg). All the
measured Cl~ concentrations is above 4000 pg/g and
NO,™ concentrations is above 1500 pg/g, which indicates
that the CI” and NO;™ concentration are high compared
to the threshold values. Moreover, the SO,*~ concentra-
tions were in the range classified no risk. In summary,
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Table 3 The ion content of the segment No. 5 (ug/g)

Number® Na* K+ Ca?* (o NO;~ S0,>~ In total
pl 3003 159 3060 5417 1719 138 13,498
p2 2935 224 2884 5034 1729 212 13,018
p3 3224 229 3057 5826 1938 210 14,483
p4 2544 232 2639 4812 1827 139 12,193
p5 2045 238 3218 4440 1532 141 11,615
p6 2563 374 3657 4803 1807 112 13,316
Average 2719 243 3086 5055 1759 159 13,020
Deviation 422 71 342 495 136 42 1011

@ Powder sample No. p1 from the new surface cut by a saw, powder samples No. p2, p3, and p4 from the original external part of the segment (Fig. 4). Another two
powder samples were taken by drilling: powder samples No. p5 and p6 were collected across assembly levels of 0-1 cm and 1-2 cm, respectively, starting from the

saw-cut new surface (Fig. 4)

these results show that the difference of ion contents
among different parts are not significant despite the ion
contents of fossil is non-homogeneous. Therefore, here
we used the surface ion content approximately reflect ion
content of the whole sample.

Poultice

In view of the sample for MIP and SEM tests need to be
dry, the poultices are both after oven drying. Although
the dry condition cannot completely represent the moist
situation that comes into existence during desalination,
these results can reflect the pore distribution to some
extent. Lubelli and van Hees believed that there is no
significant differences between the pore size of the dry
poultice and the pore size of the poultice when it starts
working by advection in most of the cases (cellulose, kao-
lin and sand based poultices) [24]. Hence, MIP has been
used for measuring the pore size distribution of poultices
in many researchers [24, 37-39].

As shown in Fig. 5, there is a great difference in pore
size distribution between CKS121 and paper pulp. The
main range for pore size in CKS121 is 100-100,000 nm,
and there is a narrow peak at 12,000 nm. CKS121 also has
a small peak at 400 nm because the kaolin partially fills up
the interstitial porosity of the cellulose. For the Bioline®
desalinated poultice, there is a broad size distribution
(10,000-100,000 nm), and the peak is at 11,000 nm.

The pore size distributions can be divided into three
categories referred to Kroner et al. [21]: fine-size pores
(<1 pm), medium-size pores (1-75 pm), and large-size
pores (>75 pum). CKS 121 has some fine pores, a great
number of medium pores, and some coarse pores, while
Bioline® desalinated poultice has a few fine-size pores, a
large amount medium-size pores, and many of large-size
pores.

Apart from MIP, SEM is another method for describing
the pore structures of porous material. For the CKS121,
the large pores are located around the sand grains
(Fig. 7A); the spaces between the cellulose fibers are filled
with kaolin (Fig. 7B), which adheres to the cellulose fib-
ers (Fig. 7C). This leads to a reduction in the number of
large pores (>50,000 nm) and creates more small pores
(400-1000 nm). For the Bioline® desalinated poultice
(Fig. 7D), the fibers of different shapes and lengths are
snarled up. The network of cellulose fibers is unfastened
and disordered. The number of large pores is significantly
greater than in the CKS121, which is consistent with the
MIP results.

Desalination tests

lon contents after electrokinetic desalination

Table 4 shows the fossil’s soluble salt contents before and
after electrokinetic desalination treatment. The reduction
in surface salt content was 71.60% when using CKS121
with the DC applied method. When using paper pulp, the
surface salt reduction was 70.75% with DC. In addition,
the data in Table 4 reveal a noticeable difference value in
the soluble salt content between the surface and interior
area of the fossil-surrounding rocks. The surface area has
a higher salt content. A possible explanation for this is
that the desalinated poultice has a low absorbing ability,
and ions aggregate at the surface.

Table 4 provides the summary statistics for salt reduc-
tion, and Fig. 8 shows the characteristics of each ion when
using the electrokinetic desalination method. It shows
that most ions (Na*, Kt, Ca®*, Cl7) of the interior ions
were lower than surface ions. This may be explained by
the low absorbing ability of poultice. In the interior, ions
can quickly move to the surface following the DC field,
but they cannot be immediately absorbed by the poultice
thus causing the accumulation of ions on the surface.
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Fig. 7 Secondary electron images of poultices. A~C CKS121poultice. D Bioline® desalinated poultice

Table 4 Total soluble salt content of samples before and after

S . Initial
desalination treatment. The effectiveness of the removal of the MS
salts in percentage is also shown MI

6000
All soluble salts content (ug/g) Efficiency (%) B H EIS
Initial 13,943 \ 3000 -]
MS 3960 71.60 @
MI 2741 80.34 s 2000 ] - o
PS 4078 70.75 5 Tk
Pl 3028 78.28 S ]
MS rock surface when using CKS121 poultice, Ml rock interior when using :g 1000 4

CKS121 poultice, PS rock surface when using Bioline® desalinated poultice, P/
rock interior when using Bioline® desalinated poultice

oJ A D w

T T T

T
Na*  K*  Mg® Ca®* CI' NOy S0

In addition, the SO,*~ removal efficiency was the low-
est. For both CKS121 and paper pulp, the SO,*~ showed
no obvious difference from the untreated sample. Simi- Fig. 8 The soluble salt content in initial rocks and after desalination
lar results also appeared in other researchers’ works using the DC method. MS rock surface using CKS121 poultice, M/

9_ K rock interior using CKS121 poultice, PS rock surface using Bioline®
[40-42]. The lowest SO, removal efﬁCIenCy could desalinated poultice, P/ rock interior using Bioline® desalinated

be related, theoretically, to sulfate’s low ionic mobil- poultice
ity (1/,50,774.2x107® m*V~!s7!), while compared with
NO? (7.4x107% m?2v~1s7Y), ClI™ (7.9%107% m?2v~1s7Y),
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Table 5 Colorimetric differences (AL*, Aa*, Ab*) and total color
difference (AE*ab)

EMI EMS EPI EPS
AL* 595 14.03 —-1.28 6.91
Aa* —-0.05 —2.26 -0.44 -0.65
Ab* 0.12 —8.31 0.26 -152
AE*ab 595 16.46 1.38 7.10
Risk H H L H

Na*(5.19x107% m?V~'s7!), K (7.62x107® m?V~'s7}),
Ca** (6.17x107® m*V~ls7!), and Mg?* (55x1078
m?V~1s71) [43, 44]. Because SO,>” has the lowest ionic
mobility, only surface SO,*~ ions were adsorbed, and
the inner SO,>~ concentration did not change obviously.
From the study by Ottosen et al., the removal rate of
SO,*” would increase significantly only when the content
of CI” and NO,~ were very low [41]. Another possible
explanation for this is that sulfate and calcium ions in the
fossil-surrounding rocks precipitate gypsum [45], which
reduces the efficiency of SO,> reduction. The interior
SO,* content is a little bit higher than the untreated
sample for paper pulp, partly because the salt distribution
in the untreated sample is inconsistent. When detect-
ing the initial soluble salt content, powders were only
scraped from the surface, so accurate interior salt content
was not detected. The transport mechanism and mutual
influence of mixed salts on electrochemical desalination
need further research.

From the above results and discussion, it can be con-
cluded that using CKS121 is a little bit effective than
paper pulp. This can be explained by the different prop-
erties of poultices. First, the pore size distribution
between the two poultices is different. As shown in Fig. 5,
the rocks have a large number of medium-size pores
(1-75 pum), and the CKS 121 has more fine pores (<1 pm)
than Bioline® desalinated poultice. The large pores of
poultice (compare with stone) ensure suitable wetting of
material to be desalted, while the small pores ensure the
advection from stone to poultice. In other words, a signif-
icant quantity of the poultice pores are smaller than those
of the substrate, the salt extraction can be proceed effi-
ciently [22]. Since CKS121 poultice has more small pores
than paper pulp (Bioline® desalinated poultice), CKS
121 will have a better desalination ability because of the
advection. In addition, Kaolin is added to CKS121 poul-
tice, and this clay mineral has high adsorption because of
the large specific surface area, chemical and mechanical
stability, layered structure, high cation exchange capacity
[46].
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The appearance changed

There was some residual material left on the surface,
which changes the color (Fig. 9). Spectrophotometer
can measure the color change quantificationally and AL
was a parameter to evaluate the color difference change.
According to Table 5, the AL* value of the surface is
positive and exceptionally high, which means that, after
desalination, the rocks are whiter than before treatment.
This is likely related to powder residue, like kaolin, on the
surface. The Ab* value of EMS is negative, which means
that after desalination, the rocks were bluer than before
treatment. In summary, electrokinetic methods have a
high risk of surface color change. This considerable color
change is a negative result of desalination that needs to
be improved. One solution is using Japanese paper in the
future work to wrap the samples in order to avoid poul-
tice residue on the fossil surface.

Risk assessment with reference to Rodrigues and
Grossi (2007) [47]. Hhigh risk (AE*ab>5), M medium
risk (3<AE*ab<5), and Llow risk (AE*ab<3). EMI rep-
resents rock interior when using CKS121 with DC, EMS
represents rock surface when using CKS121 with DC,
EPI represents rock interior when using paper pulp with
DC, EPS represents rock surface when using paper pulp
with DC

Except for color changes, fossil appearance also
changed due to cracking (Fig. 9), which can be explained
by the montmorillonite swelling-induced stresses. The
SEM results shows that montmorillonite plays a role in
cementation (Fig. 6A), which make the fossil surround-
ing rocks are susceptible to moisture. The swelling of
montmorillonite causes a large volume change with the
moisture content increasing during desalination, and
it also shrinks as it dries out [48]. As water is absorbed,
the mechanical stresses generated by the swelling clay
minerals may lead to the cracks. In view of the fact that
water dissolving the salts is the crucial part in desalina-
tion (only dissolved salt ions can travel from the substrate
back into the poultice), some pretreatments to improve
the water-resistant for fossil surrounding rocks should be
considered. Pre-consolidation can be a promising way to
deal with the intense sand disaggregation material dur-
ing desalination [49, 50]. Apart from applying (brushing
or spraying, etc.) chemical consolidants on the surface
to improve the cohesion between the mineral grains, the
electro-precipitation is a promising way. Theoretically,
electrokinetic way can realize desalination and consolida-
tion in one electrochemical device. The ions for precur-
sors of the inorganic compound transport in stone and
precipitated, while the ions present in the stone are trans-
ported out [51]. Hence, electrokinetic treatment may be
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Fig. 9 The contrast between initial and desalinated rocks used the DC method. A Initial surrounding rocks. B Desalinated rock using paper pulp,

C Initial surrounding rocks. D Desalinated rock using CKS121

an excellent way to protect the Hami pterosaur fossil,
because the electrokinetic desalination has a high salt
removal efficiency in this experiment and electrochemi-
cal synthesis has been used in consolidation for deterio-
rated materials [51-53].

According to previous studies, extreme pH is another
problem limiting the application of electrochemical
desalination. Testo 206 was used to detect the pH of the
poultices after use; the results indicated that the pH for
all of the poultices was within the range of 7-9, which
suggests that adding calcium carbonate and using a
buffer is an excellent way to avoid extreme pH.

In summary, the electrokinetic desalination method
has a high salt removal efficiency. An obvious advan-
tage of this method is saving poultice material. Poultice
with electrodes only placed in opposite two surfaces, and
this is enough to let the electric field distribute into fos-
sil rocks. Hence, poultice need not cover all the surfaces,

whereas poulticing usually does. This can reduce the
amount of poultice using, which is economy and avoid
waste. In addition, the poultice can be placed around the
fragile parts (fossil bones) at in situ desalination. More
importantly, electrokinetic treatment can combine the
desalination and consolidation, which is a promising
way to desalinate for the water-sensitive fragile mate-
rial. Nonetheless, electro-desalination is an under-devel-
opment method and many problems need to be solved.
One biggest problem is that the electrode and poultice
as well as the poultice and rocks cannot maintain a good
contact so that manual interference is necessary during
the electro-desalination. A similar phenomenon was also
reported in the research of Ottosen and Christensen [30],
and it was that the combination of decreased poultice
volume and gas evolution caused the poor contact. Fur-
ther research should be undertaken to solve this problem.
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Conclusion

This work evaluated the electrokinetic desalination per-
formance for the Hami pterosaur fossils and the sur-
rounding rock, and two types of poultices employed
including paper pulp from Bioline® and CKS121. The
electrokinetic method with CKS121 has a little bit high
desalination efficiency than Bioline® poultice. The dif-
ferences can be partly explained by different proper-
ties of poultices, such as the pore size distribution.
Furthermore, the desalination efficiency of the surface is
a bit lower than the interior. In addition, electrokinetic
method has the high removal efficiency of Na* NO;~
and CI”. However, the procedure was not as effective for
removing SO,>~, and the low removal efficiency can be
partly explained the sulfate’s low ionic mobility and the
precipitation of gypsum. Although electrokinetic desali-
nation has a high salt removal efficiency, the high risk of
surface color change needs to be improved. Moreover,
our study also documented the appearance of cracks in
the surrounding rock after electrokinetic desalination.
The cracks can be associated with stresses induced by
swelling of the montmorillonite due to increased mois-
ture during desalination. Further studies should aim to
improve the electrochemical method of clay-rich fossil-
surrounding rocks. Pre-consolidation, especially for the
electro-chemical method may solve the cracking prob-
lem for the clay-rich sandstone desalination. This study
focused on the desalination of fossils and the surround-
ing rock, whereas the findings can be relevant for stone
cultural relics, especially for the clay-bearing sandstone.
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