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Abstract 

The Mogao Grottoes in Dunhuang, a treasure of China’s and the world’s cultural heritage, contains rich historical 
and cultural deposits and has left precious relics of the history of human art. Over centuries, the Mogao Caves have 
been affected by natural and human factors, resulting in irreversible fading and discoloration of many murals. In 
recent years, deep learning technology has shown great potential in the field of virtual mural color restoration. There-
fore, this paper proposes a mural image color restoration method based on a reversible neural network. The method 
first employs an automatic reference selection module based on structural and texture similarity to choose suitable 
reference mural images for the faded murals. Then, it utilizes a reversible residual network to extract deep features 
of the mural images without information loss. Next, a channel refinement module is used to eliminate redundant 
information in the network channels. Finally, an unbiased color transfer module restores the color of the faded mural 
images. Compared to other image color restoration methods, the proposed method achieves superior color restora-
tion effects while effectively preserving the original structure and texture details of the mural images. Compared 
to baseline methods, the Structural Similarity Index (SSIM), Feature Similarity Index (FSIM), and Perception-based 
Image Quality Evaluator (PIQE) values are improved by 7.97%, 3.46%, and 13.98%, respectively. The color restoration 
of the Dunhuang Mural holds significant historical, artistic, cultural, and economic values, and plays a positive role 
in the preservation and inheritance of Chinese culture, as well as in the promotion of cultural exchange and mutual 
understanding.
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Introduction
Dunhuang murals are famous for their excellent artis-
tic skills, exquisite paintings and rich themes. In early 
mural image color restoration efforts, restorers adhered 
to the principle of cultural relics preservation. They con-
ducted spectral and chemical analyses of mural pigments 

and employed specific physical and chemical methods 
and materials to restore the murals’ colors. This method 
necessitated restorers to possess extensive restoration 
experience and strong professional skills. However, any 
errors made during the restoration process could result 
in immeasurable damage to the murals, significantly 
increasing the complexity and difficulty of the restoration 
process.

Computer digital image processing methods often do 
not require direct contact with the mural surface, thus 
avoiding possible further damage to the mural. This non-
invasive feature is crucial for preserving the original state 
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of ancient murals. Therefore, actively utilizing digital 
image processing and artificial intelligence technology to 
research the protection, restoration and display of grotto 
murals is essential for safeguarding cultural heritage and 
promoting cultural dissemination. Pan et  al. [1] utilized 
digital image processing techniques to simulate the color 
evolution of murals over thousands of years, laying the 
foundation for restoring the colors of mural images. Li 
et al. [2] obtained the color structure of murals through 
color clustering, determined the original pigments used 
for each color layer based on pigment domain knowledge, 
and restored each color layer according to the fading pat-
terns of the pigments under different environmental con-
ditions. The restored color layers were then merged into 
a single image to achieve color restoration of the murals. 
Wang et al. [3] cropped mural images and used a Cycle 
Generative Adversarial Network to learn the transforma-
tion between faded and restored mural textures. They 
extracted texture information from images of different 
resolutions and combined it to obtain high-resolution 
color-restored mural images. Xu et  al. [4] enhanced the 
feature extraction and color restoration capabilities of 
their network for mural images by introducing the Effi-
cient Channel Attention Network module and Deform-
able Convolution into the Cycle Generative Adversarial 
Network. Ren et al. [5] proposed a generative adversarial 
network comprising a parallel dual-convolution feature 
extraction deep generator and a ternary heterogeneous 
joint discriminator to restore mural images. Although 
certain achievements have been made in the digital 
color restoration of faded Dunhuang murals, the field of 
deep learning-based mural color restoration is still in its 
infancy, and the quality and accuracy of restored images 
need further improvement.

In this work, we propose a color restoration frame-
work based on a reversible neural network, utilizing color 
transfer techniques to restore the color of faded mural 
images. Specifically, we select suitable reference mural 
images for the faded murals based on structural and tex-
ture similarity. We introduce a reversible residual net-
work to extract deep feature information from the mural 
images, and then employ an unbiased color transfer 
module to transfer the color features from the reference 
images to the faded murals, thus restoring their colors. 
Experimental analysis demonstrates that our method 
can generate high-quality, reasonably color-restored 
mural images, while effectively preserving the clear con-
tent structure and detailed information of the restored 
images.

The subsequent sections of this paper are organized 
as follows: Section "Related work" reviews related work 
on color transfer and reversible networks. Section "The 
method" details the method proposed in this paper. 

Section "Experiment" presents the experimental results 
and discussions. Finally, Section "Conclusions" con-
cludes the paper.

Related work
Color transfer
Color transfer aims to apply the color characteristics of 
a reference image to a target image, thus giving the tar-
get image the color appearance of the reference image. 
Gatys et al. [6, 7] first proposed using the Gram matrix 
to store the correlations of feature maps and treat it as 
the texture representation of an image. They utilized 
an iterative optimization method to gradually trans-
fer textures, colors, and other style elements from the 
style image to the content image. Luan et  al. [8] con-
strained style transfer to affine transformations in the 
local color space and used a regularization term cal-
culated on the Matting Laplacian matrix to optimize 
the generated image to suppress distortions. However, 
these methods tend to disrupt the content structure 
of the original image while transferring color features. 
Li et  al. [9] replaced the upsampling operations in the 
decoder with unpooling to reduce spatial information 
loss and suppress structural artifacts. Although this 
method is effective, it still fails to address the infor-
mation loss caused by max pooling in the encoder. He 
et  al. [10] performed color transfer by matching high-
confidence image block features through nearest neigh-
bor search and combining linear transformation, but 
this method struggles to accurately distinguish regions 
with similar local textures and low semantic informa-
tion. Chiu et al. [11] proposed a PCA-based knowledge 
distillation model, achieving a balance between con-
tent preservation and stylization intensity while real-
izing realistic style transfer, though this method may 
produce local artifacts when handling high-frequency 
details of images. Wu et al. [12] combined a neighbor-
hood adjustment mechanism with contrastive learning 
to maintain consistency between the generated image 
and the source image content. Cheng et  al. [13] used 
enhanced image representations based on edge struc-
tures and depth maps to control style transfer while 
preserving the original structure and content details of 
stylized images. This method introduced a lightweight 
architecture, the Fire module, to reduce computational 
costs, but it struggled to extract complete image fea-
tures. Ma et al. [14] addressed content leakage in styl-
ized images from the perspective of image restoration 
by iteratively learning bi-directional multi-recovery 
between content and reference images, though this 
method still lost detail information due to multiple 
mutual conversions between image pairs.
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Reversible network
Neural flow is a deep generative model that learns 
high-dimensional observations through a series of 
invertible transformations. These transformations pre-
serve all information about the data and can accurately 
restore the data when needed. Dinh et al. [15] first pro-
posed a neural flow framework called NICE, which 
models complex high-dimensional data distributions 
through highly nonlinear bijective transformations. In 
a subsequent study, Dinh et  al. [16] introduced Real-
valued Non-Volume Preserving transformations to 
further address the challenges of learning highly non-
linear models in continuous high-dimensional spaces. 
Kingma et  al. [17] proposed a simple generative flow 
model based on reversible 1 × 1 convolutional net-
works, but this model requires storing a large number 
of parameters and intermediate states during train-
ing, resulting in high training costs. To address this 
issue, Gomez et  al. [18] first proposed the reversible 
residual network to mitigate memory consumption in 
deep neural network training, although this model still 
contained irreversible components like max pooling 
and downsampling. Kitaev et  al. [19] further applied 
reversible residual blocks to large Transformer models 
to improve their efficiency on long sequences. Jacob-
sen et  al. [20] built on Gomez’s work by introducing 
reversible downsampling operations to construct fully 
reversible networks. Behrmann et al. [21] treated resid-
ual networks as the Euler discretization of ordinary 
differential equations (ODEs) and demonstrated that 
simply changing the normalization scheme of stand-
ard residual networks can construct reversible residual 
networks. Ma et  al. [22] achieved reversible mappings 
between input and output variables by imposing local 
connectivity constraints in small "mask" kernels, stack-
ing multiple layers of convolutional flows, and using 
rotation-ordered masks. An et  al. [23] used reversible 
neural flow models to address content leakage in the 
image color transfer process. However, due to feature 

redundancy, the images generated by this method may 
exhibit color artifacts.

The method
In this work, we adopt a reversible framework differ-
ent from the traditional encoder-decoder architecture 
for mural image color restoration. Given a faded mural 
image, we first calculate the structural and texture simi-
larity scores between the faded image and all reference 
images. We then select the reference mural image with 
the highest similarity as the final reference. After increas-
ing the channel dimension of the input image pair using 
zero-padding, the image pair undergoes lossless deep 
feature extraction through the forward inference of the 
Reversible Residual Network (RRN). Next, a Channel 
Refinement (CR) module is used to eliminate redundant 
information in the mural image features. Subsequently, 
an Unbiased Color Transfer (UCT) module transforms 
the faded features into color-restored features that match 
the statistical data of the reference features. Finally, the 
color-restored features are reconstructed into color-
restored mural images through the reverse inference of 
the Reversible Residual Network (RRN). The architecture 
of the method in this paper is shown in Fig. 1.

Reference image automatic selection module
Existing reference-based methods for color restoration 
of mural images typically rely on human subjective judg-
ment and visual perception to manually select reference 
images. This manual selection approach is prone to sub-
jectivity and inconsistency, leading to inaccurate color 
restoration results. Inspired by deep perceptual simi-
larity models [24], we propose an automated reference 
image selection module based on structural and textural 
similarity to achieve automated color reference selection. 
Due to the relative stability and consistency of painting 
styles and color habits within the same historical period 
of Dunhuang murals, murals from the same period often 
exhibit similar structural and color features. Therefore, 

Fig. 1  Description of the overall architecture of the proposed network
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we use structural and textural similarity as criteria for 
selecting reference images.

Specifically, we employ pre-trained VGG19 network 
[25] serves as the backbone for extracting image depth 
features. The representation of the faded mural image 
includes the original input image x and the output feature 
maps from five convolutional layers (conv1_2, conv2_2, 
conv3_3, conv4_3, and conv5_3):

where m = 5 denotes the number of convolutional layers, 
ni is the number of feature maps in the i-th convolutional 
layer, and x̃(0) = x . The same representation is used for 
the reference mural image y:

The texture and structure similarity scores are com-
puted simultaneously between the image representations 
of the faded and reference mural images at the same level. 
These scores are then weighted and summed to obtain a 
composite score, which determines the most similar ref-
erence image in the reference mural image dataset to the 
faded mural image that requires color restoration. The 
texture similarity score and the structure similarity score 
are calculated using the following equations, respectively:

where µ(i)
x̃j
,µ

(i)
ỹj
, (σ

(i)
x̃j
)2, (σ
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ỹj
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means, variances, and covariance of x̃(i)j  and ỹ(i)j  , respec-
tively. c1 and c2 are two small positive constants. The final 
composite score is obtained by using a weighted sum to 
combine the texture similarity scores and structure simi-
larity scores of the different convolutional layers.

where {αij, βij} are positive learnable weights, satisfying 
∑m

i=0

∑ni
j=1 (αij + βij) = 1 . Figure 2 shows the model for 

calculating the structural texture similarity score.

The reversible residual network
Mural images are characterized by rich texture details 
and vibrant artistic content. Preserving semantic 
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consistency between the generated and source images 
during color restoration is essential. However, traditional 
encoders often struggle to extract and maintain image 
representations without losing content information. To 
address this challenge, we propose a reversible residual 
network composed of multiple reversible residual blocks 
for extracting mural image representations. The forward 
and backward propagation of this network ensures a one-
to-one mapping from input to output. This design ena-
bles the network to accurately reconstruct input images, 
effectively avoiding information loss during feature 
extraction.

In our design, each reversible residual block takes 
inputs x1 and x2 and produces outputs y1 and y2. F and 
G are the residual functions, and the formula can be 
expressed as:

The split function divides the input tensor x into two 
equal-sized parts x1 and x2 along the channel dimension. 
Inspired by Jacobsen et al. [20], we use channel shuffling 
to reorder the channels, perturbing the channel dimen-
sion of the feature map to ensure network reversibility. 
Reverse inference can then be achieved by subtracting 
the activation values of the next layer:

The residual functions F and G consist of three con-
secutive convolutional layers with kernel sizes of 1 × 1, 
3 × 3, and 1 × 1, respectively. A ReLU activation layer 
is added after the first and second convolutional layers 
to introduce a nonlinear transformation. In this paper, 
we omit the normalization layer due to its complexity, 
which could hinder learning mural image representa-
tions. Instead, we focus on extracting richer and more 
complex feature representations of mural images through 
cascading multiple reversible residual blocks. Addition-
ally, squeeze layers are inserted between the cascaded 
reversible residual blocks. These layers the reduce spatial 
dimensions of feature maps to decrease spatial informa-
tion while increasing channel dimensions to enhance 
feature representation capacity. The combination of 
reversible residual blocks and squeeze layers allows the 
network to better capture large-scale color and structural 
information in mural images, while improving computa-
tional efficiency and model speed.

(6)x1, x2 = split(x)

(7)y1 = x1 + F(x2)

(8)y2 = x2 + G(y1)

(9)x2 = y2 − G(y1)

(10)x1 = y1 − F(x2)
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Channel refinement module
The shallow features of mural images contain color, tex-
ture, and edge information, while the deep features con-
tain rich semantic information. These features are crucial 
for subsequent color transfer and image reconstruction 
processes. However, the inclusion of the squeeze layers 
leads to an exponential increase in channel numbers, 
causing the reversible network to accumulate numerous 
redundant features during forward inference. The redun-
dant information will result in apparent artifacts and 
false colors in the generated restoration image. Inspired 
by Chiu et  al. [11], who used a knowledge distillation 
model based on Principal Component Analysis (PCA) 
to extract primary feature information, we construct a 
channel refinement module. This module effectively han-
dles redundant information and maintains the continu-
ity and integrity of information flow through cascaded 
reversible residual blocks, aiding in better preservation 
and restoration of overall structure and details in faded 
mural images.

The channel refinement module first applies a zero-
padding operation to increase the potential dimen-
sionality of the input faded and reference mural image 
features. Subsequently, it integrates global information 
within the image using two cascaded reversible residual 
blocks. Finally, it expands channel information into spa-
tial dimensions of different image patches, enabling the 
model to effectively utilize existing channel features to 
express various local and global image characteristics. 
The channel refinement module is illustrated in Fig.  3, 
where RRB denotes reversible residual blocks. Fc and 
Fr represent content and reference image features after 
eliminating redundant information.

Unbiased color transfer module
Mural images exhibit complex color distributions, with 
unique brushstrokes adding intricate texture details that 
enhance their artistic and visual appeal. Therefore, it is 
crucial to comprehensively preserve the fine textures and 
structural details of the images during the color transfer 

Fig. 2  Structural texture similarity calculation model
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process. ArtFlow [23] demonstrated that Whitening and 
Coloring Transform (WCT) [26] can achieve unbiased 
color style transfer by adjusting color statistics. However, 
WCT based on Singular Value Decomposition (SVD) 
tends to lose local detail information and overlook subtle 
color variations, leading to suboptimal color restoration 
results for mural images. To address this issue, we employ 
a Cholesky decomposition-based WCT [27]. Cholesky 
decomposition breaks down a symmetric positive defi-
nite matrix into the product of a lower triangular matrix 
and its transpose. This method effectively preserves the 
color correlations between pixels when processing the 
color covariance matrix, thereby maintaining the over-
all structure and details of the image and reducing color 
shift problems during the color restoration process.

Specifically, the content mural image feature Fc is nor-
malized using the Cholesky decomposition to eliminate 
their statistical correlation and obtain a smoother color 
representation. The formula is expressed as:

Here, Fc and Fr represent the features of the content 
and reference image, respectively. Similarly, Cc and Cr 
denote the covariance matrices of Fc and Fr, while Lc 
and Lr represent the lower triangular matrices obtained 
by performing Cholesky decomposition on Cc and Cr, 
respectively.F̂c denotes the whitened feature of the con-
tent image. Subsequently, the whitened content image 
features are colored to align with the color distribution of 
the reference image. The final color-restored feature Fres 
is represented by the following equation:

where μr represents the mean value of the features of 
the reference mural image. Another advantage of the 
Cholesky decomposition method over SVD is its higher 
computational efficiency and numerical stability when 
dealing with faded mural images. Therefore, the unbi-
ased color transfer module used in this paper can achieve 

(11)Cc = Fc · F
T
c , Cr = Fr · F

T
r

(12)Lc = Cholesky(Cc), Lr = Cholesky(Cr)

(13)F̂c = L−1
c · Fc

(14)Fres = Lr · F̂c + µr

image color restoration more robustly and efficiently, 
while preserving the content structure and texture details 
of mural images.

Loss function
Three loss functions are used to train the network in an 
end-to-end manner:

where Ls, Lm and Lcyc denote the style loss, Matting Lapla-
cian loss and cyclic consistency loss, respectively. λm and 
λcyc denote the weight parameters of Matting Laplacian 
loss and cyclic consistency loss, respectively.

The style loss formula is expressed as:

where Ires denotes the restored mural image, Ir denotes 
the reference mural image, φi denotes the features of 
layer i-th of the VGG19 network, and μ and σ denote the 
mean and variance of the feature map, respectively.

The unbiased color transfer method based on Cholesky 
decomposition cannot ensure pixel-level consistency 
in the restoration results, resulting in inconsistent color 
restoration in semantically similar regions of the restored 
mural images. PhotoWCT [9] used the Matting Lapla-
cian matrix to maintain pixel affinity. However, the direct 
application of the Matting Laplacian loss led to a blurring 
of the generated image due to spatial distortion. Thanks 
to the bijective characteristics of the reversible network, 
there is no loss of information in the forward and reverse 
inference processes, thus avoiding the problems above. 
The formula for the Matting Laplacian loss is expressed 
as:

where N denotes the number of mural image pix-
els, Vc[Ires] denotes a vectorized representation of the 

(15)L = Ls + �mLm + �cycLcyc

(16)

Ls =
l

∑

i=1
‖µ(φ(Ires))− µ(φ(Ir))‖

+

l
∑

i=1
‖σ(φ(Ires))− σ(φ(Ir))‖

(17)Lm =
1

N

3
∑

c=1

Vc[Ires]
TMVc[Ires]

Fig. 3  Channel Refinement Module



Page 7 of 17Xu and Geng ﻿Heritage Science          (2024) 12:351 	

restored mural image Ires in channel c, and M represents 
the Matting Laplacian matrix of the faded mural image Ic.

The design of the reversible network allows for for-
ward generation and reverse restoration, which theo-
retically allows for circular reconstruction of the content 
mural image Ĩc by transferring the color information of 
the content mural image Ic to the restored mural image 
Ires. However, due to the finite precision of floating-point 
numbers, the reversible operation may introduce numer-
ical errors in the actual execution, leading to apparent 
artifacts in the generated restored mural image. There-
fore, this paper introduces cycle consistency loss to 
improve network stability and ensure content consist-
ency between the restored and content mural images, 
calculated using the following formula:

Experiment
Due to the limited number of existing Dunhuang mural 
images and the rarity of fully preserved murals, directly 
training models on mural datasets can lead to overfit-
ting and insufficient learning of effective feature repre-
sentations. To overcome this issue, we adopted a transfer 
learning approach. Specifically, we first pretrained our 
network on the large-scale WikiArt dataset [28] to enable 
the model to learn rich image features. Subsequently, we 
fine-tuned the pretrained model on the mural dataset 
to better adapt it to the task of mural color restoration. 
This strategy of pretraining and fine-tuning allows us to 
achieve better model performance on the limited mural 
data and enhance the effectiveness of color restoration.

Datasets
The WikiArt dataset is a publicly available art dataset fea-
turing over 80,000 paintings from various artists, styles, 
and genres. This dataset covers a range of styles from the 
Renaissance to modern art, including murals, portraits, 
and abstract paintings. While the specific content and 
details of WikiArt images differ from Dunhuang murals, 
they share similarities in artistic style, color usage, and 
visual features. By pre-training on the WikiArt dataset, 
it learns these general visual features, providing a robust 
foundation for subsequent fine-tuning on the mural 
dataset. To better simulate the task of mural image color 
restoration during the pre-training, we applied the deg-
radation method proposed by Wang et al. [29] to images 
in the WikiArt dataset. This process simulates the fading 
and discoloration phenomena observed in mural images, 
enabling us to construct image pairs consisting of faded 
and original images for pre-training.

(18)Lcyc = ||Ĩc − Ic||1

Our mural image dataset was curated from The Com-
plete Collection of Chinese Dunhuang Murals. Beiliang 
Northern Wei [30], The Complete Collection of Dun-
huang Grottoes [31], and Dunhuang mural restoration 
collection [32]. The dataset comprises 1,200 faded mural 
images and 800 well-preserved, high-resolution reference 
mural images. To enhance dataset diversity and scale, we 
applied data augmentation techniques such as cropping, 
rotating, flipping, and scaling. This resulted in a total 
of 9,000 curated faded mural images with clear content 
information and 6,000 reference mural images. Using an 
automatic selection module based on reference images, 
each faded mural image was paired with the most suit-
able reference image. The training-test set ratio was set 
at 5:1, with the training set consisting of 7500 image pairs 
and the test set containing 1,500 pairs. All images were 
standardized to 512 × 512 pixels in size.

Experimental settings
The proposed network architecture consists of 20 revers-
ible residual blocks and two squeeze layers. Experi-
ments were conducted using the PyTorch deep learning 
framework on a Linux system. We employed the Adam 
optimizer for training with a batch size of 2 and 100,000 
iterations. The initial learning rate was set to 1e-4 with a 
decay rate of 5e-5. All experiments were conducted on a 
single NVIDIA RTX 3090 GPU.

When setting the weighting parameters for the loss 
function, we initially used lower values. Through itera-
tive experimentation and validation, we determined that 
a cycle consistency loss weight (λcyc) of 10 and a Mat-
ting Laplacian loss weight (λm) of 1200 achieved the 
best balance between color restoration effectiveness and 
visual quality. The cycle consistency loss plays a role in 
maintaining accuracy in image content and structure; a 
smaller weight helps retain sufficient color information 
in the restored images without overly disturbing the con-
tent of the originals. The Matting Laplacian loss focuses 
on preserving image details and edges; a larger weight 
suppresses excessive smoothness, resulting in clearer 
and more refined color restoration images. This balance 
ensures that the generated images not only retain struc-
tural integrity but also capture subtle color variations, 
thereby enhancing overall visual quality and realism.

Objective evaluation metrics
Image quality assessment is a crucial aspect in validat-
ing the effectiveness of color restoration for faded mural 
images. In this study, we combine full-reference and no-
reference evaluation metrics to comprehensively evaluate 
the quality of color-restored images. Full-reference image 
quality evaluation metrics are typically used to measure 
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the difference between restored mural images and their 
original counterparts. On the other hand, no-reference 
image quality evaluation metrics are more suitable for 
assessing the perceived quality of mural images when 
original reference images are not available.

This study employs four full-reference evaluation 
metrics: Structural Similarity Index (SSIM), Peak Sig-
nal-to-Noise Ratio (PSNR), Feature Similarity Index 
(FSIM) [33] and Gradient Magnitude Similarity Devia-
tion (GMSD) [34]. Additionally, two no-reference eval-
uation metrics are utilized: Perception-based Image 
Quality Evaluator (PIQE) [35] and Natural Image Qual-
ity Evaluator (NIQE) [36].

SSIM is used to measure the similarity between two 
images in terms of their structure, luminance, and con-
trast. The result is a numerical value between 0 and 
1, where a higher value indicates greater similarity 
between the two images. The calculation formula is:

Here, μx, μy, σx, σy and σxy are the mean, variance, 
and covariance of the original mural image x and the 
restored mural image y, respectively. C1 and C2 are con-
stants used to stabilize the computation. SSIM effec-
tively reflects the structural information of images and 
provides an accurate assessment for structurally similar 
images.

PSNR is defined based on Mean Squared Error (MSE) 
and is used to compare the difference between the 
original mural image and the restored mural image. 
A higher PSNR value indicates less pixel difference 
between the two images. The calculation formula is:

where MAX represents the maximum possible value of 
image pixels, and MSE is calculated as:

Here, I(i, j) and K(i, j) denote the pixel values of the 
original mural image I and the restored mural image 
K, respectively, where m × n represents the dimensions 
of the images. PSNR is insensitive to human percep-
tion and may not effectively reflect characteristics of 
the human visual system. Therefore, combining other 
quality metrics is often necessary for a more accurate 
assessment of image quality.

FSIM evaluates the similarity between two images by 
comparing their structural features and gradient mag-
nitudes, making it particularly suitable for assessing the 

(19)SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ
2
x + σ 2

y + C2)

(20)PSNR = 10log10(
MAX2

MSE
)

(21)MSE =
1

mn

∑m−1

i=0

∑n−1

j=0
[I(i, j)− K (i, j)]

2

quality of images with intricate details and structures. 
The index ranges from 0 to 1, where a higher value indi-
cates greater similarity between the images. The for-
mula is expressed as:

Here, SL(i) and PCm(i) represent the local similarity and 
gradient magnitude similarity at position i of images x 
and y, respectively, where Ω denotes the set of all pixel 
positions in the images.

GMSD assesses the similarity deviation between two 
images based on their gradient magnitude information, 
exhibiting good sensitivity to detail loss or changes in 
images. A smaller GMSD value indicates higher similar-
ity in gradient magnitude between the restored mural 
image and the original mural image, suggesting better 
image quality. The formula is given by:

GMS(i, j) represents the gradient magnitude similar-
ity at position (i, j) of the images. μGMS is the average of 
all GMS(i, j) values, and m and n denote the height and 
width of the images, respectively. GMSD provides a com-
prehensive and accurate assessment when evaluating 
complex and detail-rich images.

PIQE is a no-reference image quality assessment 
method that measures and evaluates the subjective qual-
ity of images by simulating the human visual system. It 
assesses the noise level of each block by analyzing local 
gradient variations and integrates these noise levels 
across all image blocks to derive an overall quality score. 
Scores range from 0 to 100, with lower scores indicating 
higher image quality.

NIQE evaluates image quality by analyzing natural 
scene statistics of images, including local contrast, mean 
brightness, standard deviation of brightness, among oth-
ers. It calculates the overall quality score by measuring 
how much the features of the evaluated image deviate 
from those in a given reference model. A lower NIQE 
score corresponds to higher image quality.

Evaluation of automatic reference image selection results
In this section, we evaluate and analyze the results of the 
automatic reference image selection module. We present 
pairs of faded-reference mural images used in ablation 
and comparative experiments, along with additional ref-
erence images. Structural and textural similarity scores 
between all reference images and their corresponding 
faded images are listed to justify our selection criteria. 

(22)FSIM(x, y) =

∑

i∈� SL(i) · PCm(i)
∑

i∈� PCm(i)

(23)

GMSD =

√

1

mn

∑m

i=1

∑n

j=1
(GMS(i, j)− µGMS)

2
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Fig. 4  Reference image selection results. a Content b [1] c [2] d [3] e [4] f [5] g [6] h [7].
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Figure  4 shows examples of faded mural images paired 
with reference mural images, arranged from left to right 
based on decreasing similarity.

Table  1 presents the calculated structural and tex-
tural similarity scores using Eq.  (5). Smaller scores indi-
cate fewer structural and textural differences between 
the pairs of mural images, indicating higher similarity 
between them. Combining Fig. 4 and Table 1 reveals that 
the automatic reference image selection module accu-
rately identifies the most suitable images from a large 
dataset of references. This approach effectively reduces 
the subjective impact of manual selection methods based 
on human visual perception and personal experience. 
Moreover, it saves time and costs associated with manual 
screening.

Ablation experiments
To verify the effectiveness of each module in the pro-
posed model, we conducted a set of comparative experi-
ments. We restored the colors of faded mural images 
using the following network structures: the base-
line model ArtFlow, VGG19 + UCT, RRN + UCT, and 
RRN + UCT + CR (Ours). The restoration results are 
shown in Fig. 5.

As seen in Fig. 5c, ArtFlow is able to maintain the con-
tent structure of the image reasonably well but still suf-
fers from issues related to feature resolution and the loss 
of fine details, especially in areas with complex content 
structures, such as the Bodhisattva’s arm in the second 
row of Fig. 5c. Additionally, since this method does not 
address the redundant feature information within the 
network, color artifacts appear at the edges of the image. 
For example, red artifacts can be seen on the right edge 
in the first row of Fig. 5c, and green artifacts are present 
on the left edge in the third row of Fig. 5c as well as at the 
seam between the carpet and the floor.

Figure 5d presents the results obtained by utilizing pre-
trained VGG19 to extract image features and restoring 
colors using the UCT module. It is apparent that while 

the UCT module transfers color information from the 
reference mural to the faded image, the loss of content 
information during feature extraction and the presence of 
image reconstruction errors degrade the content details 
of the generated image. For instance, in Fig. 5d, the con-
tent structure and texture details of the Bodhisattva arm 
ornaments in the second row and the facial features of 
the ladies in the third row become blurred.

In Fig. 5e, the reversible residual network is employed 
to learn mural image representation and reconstruct the 
color-restored image. The texture structure and content 
information of the generated image are preserved. How-
ever, accumulating channel redundancy information in 
the network leads to artifacts and false color in the res-
toration result. There are apparent artifacts on the arms 
and body parts of the Bodhisattva in the first row in 
Fig. 5e. The forehead part of the maiden in the third row 
also exhibits artifacts, and the color restoration results in 
this area are inconsistent with the rest of the face.

Figure  5f shows the results after adding the channel 
refinement module. Compared to ArtFlow, the addition 
of this module effectively reduces artifacts and color dis-
tortions in the restored images. Moreover, the introduc-
tion of reversible residual blocks and the use of WCT 
based on Cholesky decomposition significantly help in 
preserving fine details within local regions of the image. 
In summary, the proposed network architecture effec-
tively restores the colors of faded mural images while 
maintaining detailed content information.

The quality evaluation data of the restored images 
obtained using the four different network structures 
are shown in Table  2. It can be seen that replacing the 
VGG19 network with the reversible residual network for 
feature extraction results in significant improvements 
in SSIM, FSIM, and GMSD, bringing them on par with 
the ArtFlow method. This is because the reversible net-
work effectively reduces information loss during feature 
extraction, leading to stronger retention of the con-
tent structure in the restored images. After adding the 

Table 1  Structural texture similarity scores of selected results

Input Reference 1 Reference 2 Reference 3 Reference 4 Reference 5 Reference 6 Reference 7

Row 1 0.2272 0.2426 0.2548 0.2982 0.3057 0.3451 0.3860

Row 2 0.2457 0.2566 0.2615 0.2712 0.2794 0.3117 0.3386

Row 3 0.1640 0.1711 0.2291 0.2481 0.2843 0.3131 0.3381

Row 4 0.2487 0.2585 0.2817 0.3008 0.3165 0.3432 0.3974

Row 5 0.2632 0.3032 0.3241 0.3299 0.3548 0.3445 0.3764

Row 6 0.2754 0.2763 0.2795 0.2805 0.2811 0.3085 0.3467

Row 7 0.2841 0.2922 0.2961 0.2987 0.2977 0.3164 0.3358

Row 8 0.3097 0.3114 0.3295 0.3314 0. 3374 0. 3449 0. 3515
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channel refinement module, the scores of the restored 
images improved further. Both PIQE and NIQE values 
are lower than those of the ArtFlow, indicating that the 
proposed method achieves better visual quality in the 
restoration results.

Comparison of color restoration results of faded 
reproduced mural images
Reproduced murals are created by artists who care-
fully observe the original mural works, understand their 
composition, lines, colors, and lighting characteristics, 
and then use corresponding painting materials and tech-
niques to recreate them. This practice helps preserve 
and pass on the valuable cultural heritage of Dunhuang 

Fig. 5  Comparison results of ablation experiments. a Reference, b Input, c ArtFlow, d VGG + UCT, e RNN + UCT, f Proposed Method

Table 2  Ablation experiment evaluation index indicators

Bold font is used to highlight the evaluation index results of the method proposed in this paper

Method PIQE(↓) NIQE(↓) SSIM(↑) PSNR(↑) FSIM(↑) GMSD(↓)

ArtFlow 8.1703 10.6248 0.7398 13.7933 0.8943 0.2723

VGG19 + UCT​ 7.9525 9.4688 0.5529 12.098 0.8019 0.3109

RRN + UCT​ 8.9863 9.4453 0.6032 12.4583 0.8944 0.2998

Proposed Method 7.0284 8.5137 0.7987 14.5036 0.9252 0.2092
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murals and provides important reference materials for 
academic research. Reproduced murals typically retain 
the texture details and color styles of the original murals 
better, offering clearer and more complete content and 
texture structures compared to the actual faded murals. 
However, over time, these reproduced murals also face 
issues of color fading.

To evaluate the effectiveness of the method proposed 
in this paper, we conducted color restoration on faded 
reproduced mural images using our method, S2WAT 

[37], CAST [38], CCPL [12], and MicroAST [39]. The 
selected comparative methods were all proposed in 
recent years and have demonstrated good performance 
in preserving the original content structure of images 
during the color restoration process. The comparison 
results are shown in Fig.  6. Figure  6a depicts the refer-
ence murals, Fig.  6b shows the reproduced murals, and 
Fig. 6c–f display the images restored by the comparative 
methods. Figure 6g showcases the images restored by the 
method proposed in this paper.

Fig. 6  Comparison of experimental results of color restoration of faded reproduced murals. a Reference, b Content, c S2WAT, d CAST, e CCPL, f 
MicroAST, g Proposed Method
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Table 3  Evaluation of color restoration results of faded reproduced mural images

Bold font is used to highlight the evaluation index results of the method proposed in this paper

Method PIQE(↓) NIQE(↓) SSIM(↑) PSNR(↑) FSIM(↑) GMSD(↓)

S2WAT​ 17.2297 14.4182 0.4949 15.1347 0.8102 0.2806

CAST 14.4853 14.3723 0.5847 14.6272 0.8863 0.2970

CCPL 10.0306 10.8547 0.6901 18.1576 0.9333 0.1897

MicroAST 10.2548 11.1788 0.6389 16.2704 0.8884 0.2401

Proposed Method 9.1675 8.2281 0.8752 19.9836 0.9728 0.1379

Fig. 7  Comparison of experimental results of color restoration of faded real murals. a Reference, b Content, c S2WAT, d CAST, e CCPL, f MicroAST, g 
Proposed Method
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S2WAT utilizes Transformers combined with different 
shapes of window attention outputs to achieve feature 
extraction, addressing the locality problem of window 
attention. However, this method still exhibits inconsist-
ent color restoration within regions of the same seman-
tic area. In the fourth row of Fig. 6c, different patches of 
the geisha’s skirt show varying colors. Similarly, in the 
sixth row of Fig. 6c, the dancer’s hair also demonstrates 
this issue. Although S2WAT maintains the overall con-
tent structure of the image, it struggles to preserve fine 
details in structurally complex areas, such as the orna-
ments on the bodhisattva’s arm in the second row of 
Fig. 6c. Additionally, as seen in the first row of Fig. 6c, the 
color restoration results of this method are not accurate. 
CAST employs domain enhancement to learn the color 
style representation of artistic images, resulting in bet-
ter color restoration. However, from the perspective of 
content structure preservation, this method distorts the 
mural’s line structures, causing deformation in areas with 
intricate lines. For instance, in the second row of Fig. 6d, 
the ornaments on the bodhisattva’s arm are distorted. 
Furthermore, in the third row of Fig. 6d, the background 
area of the geisha is filled with numerous artifacts. CCPL 
applies contrastive consistency loss to local patches and 
incorporates a neighborhood adjustment mechanism 
to ensure content consistency between images dur-
ing color restoration. Therefore, it excels in preserving 
image content structure details. However, it achieves 
the poorest color restoration results, exhibiting color 
casts and significant lack of color saturation. As shown 
in the third row of Fig.  6e, the restored image appears 
predominantly dark purple. MicroAST employs a min-
iature encoder to extract image features and uses a dual 
modulation mechanism combining Adaptive Instance 
Normalization (AdaIN) and Dynamic Instance Normali-
zation (DIN) for color restoration. Although this method 
completely preserves the content detail information of 
the murals, it shows noticeable color restoration errors 
due to its insufficient color feature extraction capabil-
ity. In the first row of Fig. 6f, the bodhisattva’s lotus seat 
and halo appear cyan instead of green. In the sixth row of 
Fig. 6f, the dancer’s hair color is white. In comparison to 

the above methods, our method effectively maintains the 
overall content structure and texture information of the 
image. It also clearly preserves fine details in structurally 
complex areas. Moreover, the color restoration results 
of our method are more accurate, with fuller colors that 
better align with human visual perception. As seen in the 
third row of Fig. 6g, the background area of the figures is 
cleaner, without artifacts present in other methods, dem-
onstrating superior color restoration performance.

The evaluation metrics data for the color restoration 
results of the reproduced mural images are shown in 
Table  3. Our method achieves higher SSIM and PSNR 
values compared to other methods, indicating that the 
restored results of our work have smaller differences in 
structural similarity and pixel similarity with the origi-
nal mural images. FSIM and GMSD values also achieved 
the best scores, reflecting the advantages of our method 
in maintaining content structure and detail information. 
CCPL’s FSIM and GMSD values are slightly lower than 
our method, achieving the second-best results. How-
ever, due to the poor visual effect of its color restoration 
results, its performance on no-reference metrics PIQE 
and NIQE is inferior to our method. S2WAT loses more 
mural information, leading to content structure loss and 
unsatisfactory color restoration effects, resulting in lower 
objective evaluation metrics compared to other methods.

Comparison of color restoration results of faded real mural 
images
The real murals are affected by the instability of the 
chemical properties of the pigments, leading to fading, 
discoloration, mold growth, and contamination. Addi-
tionally, cracks due to the aging of the pigment layer 
and irregular spot defects and noise caused by pigment 
flaking present further challenges to the color restora-
tion of real mural images. To further validate the effec-
tiveness of the proposed method in this paper, faded real 
mural images were selected for color restoration process-
ing. Subsequently, the results generated by this method 
were compared with those of S2WAT, CAST, CCPL, 
and MicroAST. The comparison results are illustrated 
in Fig.  7. Figure  7a shows the reference mural, Fig.  7b 

Table 4  Evaluation of color restoration results of faded real mural images

Bold font is used to highlight the evaluation index results of the method proposed in this paper

Method PIQE(↓) NIQE(↓) SSIM(↑) PSNR(↑) FSIM(↑) GMSD(↓)

S2WAT​ 20.5134 15.5951 0.4398 13.2769 0.7063 0.2961

CAST 13.4227 16.3704 0.5231 14.9676 0.8399 0.2765

CCPL 8.0548 12.1849 0.6203 15.3815 0.8819 0.2025

MicroAST 9.2416 12.7052 0.5970 14.4452 0.7901 0.2598

Proposed Method 6.0733 9.6913 0.7891 17.0536 0.8946 0.1784
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displays the faded real mural, and Fig. 7c–f depict resto-
ration images using comparative methods. Figure 7g pre-
sents the restoration image using the method proposed 
in this paper.

In Fig.  7, S2WAT lacks constraints on semantic infor-
mation of the image, resulting in the loss of detailed con-
tent information in the restored image. For instance, in 
the sixth row of Fig. 7c, the texture structure of the Thou-
sand-Hand Guanyin’s fingers is distorted and blurred. 
Moreover, due to spot noise interference in the faded 
murals, this method exhibits incomplete color transfer, 
as shown in the enlarged region of the background of the 
Bodhisattva in the fourth row of Fig. 7c. CAST achieves 
better color restoration, but its ability to preserve the edge 
structures of images is insufficient, leading to chaotic tex-
tures in the restored images. For example, in the first row 
of Fig. 7d, the red strip decorations on the Bodhisattva’s 
clothing are intermingled. In the sixth row of Fig. 7d, the 
lines of the Thousand-Hand Guanyin’s fingers are dis-
torted, and the restoration in this area appears blurry. 
Interestingly, CAST is capable of removing point noise 
from the original mural image, as shown in the fourth 
row of Fig. 7d. We believe this is achieved because CAST 
maximizes mutual information between the reference 
image and the restored image through contrastive learn-
ing to learn representations of color style. This process 
effectively reduces the introduction of noise during color 
restoration. CCPL excels in retaining content details but 
struggles with color restoration, exhibiting various color 
issues in the restored images. Green artifacts appear 
in the first row of Fig.  7e, while blue artifacts and sig-
nificant color overflow are visible in the Thousand-Hand 
Guanyin’s finger area in the sixth row. The restoration 
result in the third row of Fig. 7e shows not only color arti-
facts but also noticeable color bias. MicroAST preserves 
the edge structures of complex areas well but is severely 
affected by noise in the images. This noise is further 
amplified, destroying the fine texture details of the origi-
nal image, greatly reducing the visual quality of the color 
restoration results. Coarse noise in the fourth and sixth 
rows of Fig.  7f illustrates this issue. Additionally, Micro-
AST struggles with complete color restoration within the 
same semantic regions, as observed in the finger area of 
the sixth row in Fig. 7f. In contrast, our proposed method 
accurately restores the color of mural images, resulting 
in more natural and complete color tones, thus achiev-
ing superior visual effects. In terms of preserving content 
details, our method is less affected by noise, with clearer 
edge structures. However, it also retains the noise infor-
mation from the original mural images while preserving 
content structure and texture details.

Table  4 presents the quality evaluation scores for the 
restoration results of real faded mural images for each 

Fig. 8  Restoration results of the proposed method. a Reference, b 
Content, c Proposed Method
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method. Our method achieves the highest scores across 
all evaluation metrics, indicating that it effectively pre-
serves the content information and texture features of the 
original mural images while achieving high-quality color 
transfer. The mural images restored by our method are 
closer to the initial color of the real murals, significantly 
enhancing the authenticity of the mural color restoration 
results.

Comparison of color restoration results of faded real mural 
images
Figure  8 illustrates additional restoration results using 
our method, and Table  5 presents the corresponding 
evaluation metric data for the images in Fig. 8. The first 
set of images demonstrates high accuracy and effective-
ness in restoration. The high SSIM and FSIM values 
indicate strong structural and feature similarity between 
the restored images and the reference images. The high 
PSNR values suggest minimal image noise, while the low 
PIQE and GMSD values indicate good perceptual qual-
ity and gradient similarity, respectively. In the second 
set of restored images, the lower NIQE score suggests 
good natural quality, but the poorer performance in the 
other four full-reference metrics may be attributed to 
significant brightness and contrast differences between 
the restored and original images, along with retained 
noise from the original images. In the fifth set of data, 
we attempted restoration on architectural murals, which 
exhibit complex structures and rich information com-
pared to human-figure murals. Despite this complexity, 
we achieved satisfactory color restoration results. Low 
GMSD and high FSIM values suggest preservation of 
structural features and texture details. For the seventh 
set of restored images, high FSIM and low GMSD val-
ues indicate good performance in feature similarity and 
quality. However, higher NIQE and PIQE scores suggest 
poorer perceptual quality affected by noise.

Overall, our method demonstrates good restoration 
performance in most cases, particularly in preserving 

content structure and texture details. However, further 
improvements are needed for some images, especially in 
reducing noise and enhancing perceptual quality.

Conclusions
This paper proposes a mural image color restoration 
method based on reversible residual networks. We 
begin by using an automatic reference selection module 
based on structural texture similarity to address inaccu-
racies in manual selection methods for reference mural 
images. Subsequently, leveraging the bijective proper-
ties of reversible residual network to realize the lossless 
extraction of image features, ensuring preservation of 
image information throughout the transmission pro-
cess. The channel refinement module eliminates chan-
nel redundancy within the network, preventing artifacts 
in the color restored images. The unbiased color trans-
fer module accurately restores faded mural image colors 
while better preserving the original content structure 
and texture details. Compared to the baseline methods, 
the SSIM, FSIM, and PIQE values improved by 7.97%, 
3.46%, and 13.98%, respectively. Comparative evaluations 
against representative color restoration methods cited in 
the literature demonstrate superior performance across 
multiple objective assessment metrics for our proposed 
method.

By restoring the original colors of Dunhuang murals, 
we aim to authentically reproduce their historical and 
cultural value, enhancing public awareness and under-
standing of Dunhuang cultural heritage. Simultaneously, 
by creating high-quality digital replicas, the method will 
also contribute to future academic research and virtual 
exhibitions. We hope that this method will play an active 
role in the color restoration of mural images, help restore 
and protect Dunhuang mural, a valuable cultural herit-
age, and promote the inheritance and dissemination of 
Dunhuang culture and art.
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