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Abstract 

As vital carriers of cultural heritage, rural areas are facing the threats of degradation and urbanization during rapid 
urbanization processes. In recent years, China has formulated and implemented a series of national policies, regula-
tions, and heritage protection lists to safeguard and perpetuate the traditional patterns and historical features of rural 
heritage. However, these rural heritage listings exhibit significant macro-level distributional imbalances and generally 
lack consideration of regional characteristics. This study uses the Taihang Baxing (THBX) in China as a case study, ini-
tially employing historical local documents and maps as base data. It utilizes the stability in the evolution of Chinese 
characters to compare historical and contemporary village names, filtering out existing historical rural settlements 
(HRS) to construct a dataset. Further, a multi-scale geographically weighted regression (MGWR) model is applied 
to analysis the impacts of natural, economic, and social factors on the concentration of HRS (CHRS). The study reveals 
that the CHRS in the region is markedly characterized by clustering, with evident spatial heterogeneity in the impacts 
of various factors. Slope (SLP), total annual precipitation (TP), and potential crop yield (PCY) significantly influence 
the CHRS globally, while elevation (ELV), distance to ancient path (DAP) and surface runoff (DSR), gross domestic 
product (GDP), and road density (RD) have significant local impacts. This research offers a methodological framework 
for HRS data compilation and provides theoretical and methodological references for national and local levels of rural 
heritage protection, optimization of rural spatial patterns, prediction of rural evolution pathways, and implementation 
of China’s rural revitalization strategy.
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Introduction
Rural settlements carry a myriad of critical functions 
related to the production and daily lives of rural resi-
dents, emerging from the long-term interaction between 
humans and their natural environments [1, 2]. Over 
time, these interactions have imbued rural settlements 
with archaeological values reflecting historical, cultural, 
and social significance [3]. The rapid development of the 
global economy has induced profound changes in urban-
rural dynamics, leading to a global phenomenon of rural 
decline and increasing concern for the simultaneous ero-
sion of rural heritage. In 2017, ICOMOS proposed that 
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all rural areas could be interpreted as heritage sites and 
encouraged nations to establish rural heritage invento-
ries at various levels to enhance the protection of these 
heritages [4]. As a major agricultural country with a 
large rural population and extensive geographic area, 
China has approximately 580 million people distributed 
across millions of undeveloped villages. Since the eco-
nomic reforms initiated in 1978, China has accumulated 
a vast and diverse array of rural heritages [5]. During this 
period, China’s urbanization has continuously advanced, 
marked by a rapid urban-rural transformation. The 
urbanization rate increased from 17.9% in 1978 to 63.9% 
in 2020 [6]. Under the development philosophy of “strong 
cities, weak countryside,” rural settlements generally face 
challenges such as population outflow, resource scarcity, 
and economic frailty [7, 8]. Issues such as depopulation 
and aging within rural residential areas have become 
prevalent in China, posing challenges to the preservation 
and development of rural heritage [9].

In 2012, China initiated the “Traditional Villages Sur-
vey,” introducing the concept of Traditional Chinese Vil-
lages (TCV) to better protect China’s rural heritage. TCV 
are defined as villages that were established early on, 
possess a wealth of traditional resources, and have sig-
nificant historical, cultural, scientific, artistic, social, and 
economic values worthy of preservation [10]. The launch 
of the TCV survey sparked extensive research on rural 
settlements in China, accumulating significant findings in 
areas such as spatial form [11], landscape imagery [12], 
value assessment [13], archaeological preservation [14, 
15], and the impacts of tourism development [16–18]. 
Additionally, numerous studies have analyzed the spatial 
distribution patterns of TCV at the regional level, sum-
marizing their characteristics and identifying key areas 
for heritage conservation [19], leading to contributions 
to recognizing and safeguarding important rural heritage 
conservation areas [20].

Numerous studies have begun to focus on how differ-
ent location conditions influence the distribution pat-
terns of rural heritage, summarizing the underlying 
determinants. The migration and evolution of rural set-
tlements are influenced by a complex interplay of natural, 
economic, and social factors [1, 21]. Understanding these 
intricate coupling relationships remains one of the key 
challenges in the field of rural settlement research [22]. 
The exploration of large-scale, selforganizing variable 
factors in the evolution of rural settlement patterns has 
become a necessary component in achieving the revitali-
zation of rural China. This encompasses both theoretical 
inquiries and practical applications aimed at enhancing 
rural areas’ sustainability and cultural integrity [23, 24].

While the TCV directory has generated significant 
discourse on rural heritage, research into the macro 

distribution and influencing factors of TCV remains sub-
ject to further scrutiny. The selection mechanism and 
process for TCV impose limitations that result in blind 
spots in their spatial distribution, leading to significant 
local clustering and overall extreme imbalance [25]. Stud-
ies on the macro spatial distribution focusing on the 
TCV can only to a limited extent reveal the correlation 
between the distribution characteristics of the currently 
listed TCV and influencing factors such as the current 
natural environment and social conditions. Some stud-
ies have begun to focus on historical rural settlements 
(HRS) with larger sample sizes as their research subjects. 
These efforts focus on studying spatial distribution and 
influencing factors, aiming to accurately reconstruct the 
real state of rural heritage distribution on a national or 
regional scale, and to elucidate the relationships with 
specific external environmental conditions [26–28]. The 
findings from these dataset construction efforts reveal 
that China still has a vast amount of valuable rural her-
itage that has not yet been fully explored. However, due 
to the difficulty in obtaining historical data, acquiring 
a more comprehensive database of HRS samples has 
become one of the obstacles hindering current research 
on the macro distribution of rural heritage.

Furthermore, on the methodological level, the devel-
opment of geographic information technology and 
geospatial big data has facilitated the quantitative and 
multi-scale analysis of distribution patterns and vari-
able factors concerning rural heritage. The integration 
of various types of geospatial big data provides auxiliary 
support to field research in the study of rural heritage. 
Moreover, statistical analysis methods such as regres-
sion models [29], Geodetector [30, 31], and panel data 
models [32] have also been incorporated into rural herit-
age research. These studies have more broadly identified 
potential quantitative variables that could impact the dis-
tribution of rural settlements, deepening the understand-
ing of geospatial big data in rural heritage research and 
preliminary explaining the underlying determinants of 
rural heritage distribution from a mathematical and logi-
cal perspective.

Rural settlements exhibit distinct spatial attributes, 
with their evolution driven by nonlinear dynamics and 
spatial non-stationary. Traditional quantitative analy-
sis methods often overlook these characteristics, which 
can lead to results that deviate from reality [33]. Conse-
quently, scholars have employed traditional Geographic 
Weighted Regression (GWR) models to study the spa-
tial differentiation of traditional villages across various 
scales, including nationwide in China [34], the Wuling 
Mountain area [35], and the middle reaches of the Yang-
tze River urban agglomeration [36]. These studies have 
confirmed that the spatial distribution of rural heritage 
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is significantly influenced by geographic location, and the 
effectiveness of driving factors shows noticeable spatial 
heterogeneity [37]. However, a limitation of the GWR is 
its assumption that all variables operate at the same spa-
tial scale. Factors influencing the spatial distribution of 
rural settlements may exhibit similarities at certain spa-
tial scales, significant differences may arise beyond those 
scales [38]. While GWR can account for spatial non-sta-
tionary, it fails to capture the scale differences in spatial 
heterogeneity of various influencing factors [39]. The 
Multi-Scale Geographic Weighted Regression (MGWR) 
model addresses these shortcomings by not only ana-
lyzing spatial heterogeneity effectively but also by auto-
matically adjusting the regression bandwidth for different 
influencing factors. This adjustment allows for a more 
accurate reflection of the spatial variations of these fac-
tors [37], thereby providing more reliable results in the 
analysis of spatial heterogeneity [40].

In conclusion, the increasingly refined integration 
of spatial datasets on rural heritage with spatial statis-
tics facilitates a deeper understanding of rural heritage 
research and comprehensive conservation planning. In 
this study, HRS is defined as rural settlements established 
before the Republic of China era (1912 A.D.) that have 
been preserved to the present day. TCV falls within the 
definition of HRS, and therefore, TCV is also considered 
a component of HRS. The objective is to develop more 
objective and applicable methods for extracting HRS 
data and to broadly examine the spatial heterogeneity of 
different influencing variables. Using the Taihang Bax-
ing (THBX) area as a case study, we analysis the spatial 
distribution characteristics of HRS, evaluate the impacts 
of underlying driving factors through correlation analy-
sis and spatial regression models, and test for spatial 
heterogeneity.

The main research questions addressed in this study 
are as follows:

•	 How to objectively obtain geographic information 
about existing HRS?

•	 What are the distribution patterns and underlying 
determinants of HRS?

•	 What is the spatial heterogeneity of the roles played 
by variables on the distribution patterns of HRS?

By addressing these issues, the study aims to provide key 
insights into the distribution and determinants of rural 
heritage. These insights will offer guidance for incor-
porating historical and cultural heritage into regional 
development planning. Additionally, the findings will 
contribute a macro-level theoretical reference for 
national strategies aimed at rural revitalization, thus sup-
porting efforts to preserve and enhance rural areas in the 
context of their unique historical and cultural values [3].

Materials and methods
Research framework
The research framework of this study is illustrated in 
Fig.  1. This study began by collecting and filtering geo-
graphic information on HRS, thereby creating a dataset 
for the THBX. Subsequent steps involved collecting vari-
ous variables to test their validity for the analysis, culmi-
nating in the selection of the MGWR to analysis spatial 
heterogeneity. The findings related to these research 
questions are discussed in Sections "Analysis of HRS 
spatial distribution patterns", "Applicability analysis of 
selected variables", and "Analysis of spatial heterogeneity 
in the effects of variables". Finally, Section "Discussion" 
serves as a retrospective overview of the study, discussing 
the insights gained, the limitations encountered, and the 
prospects for future research.

Study area
The Taihang Mountains, located in northern China, 
extend from the northeast to the southwest and act as 

Fig. 1  Research framework
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the geographical boundary between the North China 
Plain and the Loess Plateau. This range also marks the 
transition zone between the second and third terraces 
of China’s topography. Characterized by its complex ter-
rain and challenging access, the region features eight val-
leys formed by river erosion, which serve as crucial roads 
connecting the east and west sides of the Taihang Moun-
tains. Historically known as the Taihang Baxing (THBX), 
the word ’Xing’ refers to ancient paths. These include, 
from north to south, the Jundu Xing, Puyin Xing, Feihu 
Xing, Jing Xing, Fukou Xing, Bai Xing, Taihang Xing, 
and Zhiguan Xing, as depicted in Fig. 2a. Alongside the 
Silk Road and the Grand Canal, the Taihang Baxing are 
an integral part of China’s route-based cultural heritage 
[41, 42]. As history has progressed to the present, THBX 
no longer solely represents the eight ancient paths; it has 
come to represent the area where these paths are located, 
becoming a cultural symbol with regional attributes. The 
military, cultural, economic, and transport features that 
have emerged along the THBX have fostered the devel-
opment of uniquely characteristic settlements clusters in 
this region.

As is shown in Fig.  2b, the overall distribution of 
TCV across the country is characterized by a higher 

concentration in the south than in the north, and more 
in the east than in the west. The THBX stands out as an 
important and unique high-density cluster of TCV in 
the north. This suggests that the settlement characteris-
tics of this region are representative of northern Chinese 
settlements.

Consequently, as shown in Fig.  2c, the study area 
encompasses parts of Beijing, Hebei Province, Henan 
Province, and Shanxi Province, spanning four provinces 
and municipalities. The boundaries of the specific study 
area are primarily determined by the administrative 
boundaries, covering a total of 120 county-level admin-
istrative units. Notably, 11 of these counties have been 
selected for the national list of “Demonstration Coun-
ties for Concentrated and Continuous Protection of Tra-
ditional Villages,” which ensures the effectiveness of our 
subsequent HRS information extraction efforts [43–45].

Collection of HRS information and geographic location
The initial step of this study involves proposing a method 
for selecting HRS within the THBX, focusing on compil-
ing an HRS dataset along with corresponding geospatial 
information. Figure 3 illustrates the workflow for captur-
ing the spatial locations of HRS. The criteria for selecting 

Fig. 2  a Profile of THBX (including the position of Eight Ancient Paths). b Provinces involved in THBX. c Distribution of TCV nationwide
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HRS are defined as rural settlements established prior to 
the founding of the Republic of China (1912 A.D.) that 
have persisted to the present day. Research in the field of 
historical toponymy has indicated that place names serve 
as linguistic evidence of a region’s historical civilization, 
providing a link between the present and the past. The 
inheritance displayed by place names supports archaeo-
logical and heritage studies [46]. In China, a Chinese 
character has a more direct connection to its represented 
meaning compared to an English word and has main-
tained a stable correspondence between symbols through 
historical evolution (from traditional to simplified Chi-
nese). Therefore, by matching recorded HRS names 
with the names of contemporary rural settlements, it is 
possible to identify existing HRS [47]. This method lev-
erages the linguistic and historical continuity inherent 
in place names to bridge historical and contemporary 
data, enhancing the accuracy and depth of rural heritage 
studies.

Three types of historical information data are accessi-
ble for research: historical documents, historical maps, 
and modern documents, all formally recorded and cat-
egorized by administrative divisions. Martínez de la 
Fuente has demonstrated that historical documents con-
tain crucial information on HRS and possess significant 
potential for studies in spatial distribution [28]. After col-
lection and organization, the historical data for counties 
encompassed by the THBX and their associated histori-
cal administrative regions can be categorized into image 
data and text data. For image data, Optical Character 
Recognition (OCR) systems analysis the visual patterns 
of text characters within document images, converting 
them into machine-readable text. The CnOCR package, 
a Python-based tool, excels in recognizing and extract-
ing Chinese textual information, thus it is employed to 
extract text from image data [48]. To facilitate smoother 
expression in subsequent research, the extracted tradi-
tional Chinese text is converted into simplified Chinese. 
Following this, the SpaCy package, a tool within the Nat-
ural Language Processing (NLP) domain, is utilised to 
extract place names associated with HRS from the entire 
text corpus, and these are cataloged by county [49]. The 
text produced through automated processes undergoes a 
further stage of manual proofreading to ensure its accu-
racy and reliability. This integrated approach of com-
bining advanced computational tools with meticulous 
human verification ensures the integrity and usability of 
the data for further analysis.

For the information and geographical coordinates of 
modern rural settlements, the publicly accessible POIKit 
tool was utilized to extract Points of Interest (POI) data 
from Amap, including place names [50, 51]. Subse-
quently, using the Pandas and Numpy packages in Python 

[52, 53], the place names from the HRS dataset were 
matched with those of modern villages to determine the 
precision of the matches. Since the information for HRS 
is aggregated by county, the data for modern rural set-
tlements were also filtered by county during the match-
ing process. Following this, the matching results were 
graded, and entries classified as Grade A or Grade B were 
saved as valid data. Finally, the HRS dataset was pro-
cessed using ArcGIS Pro (Version 3.0.1) to determine the 
spatial locations of HRS, thus enabling subsequent spatial 
analysis. This approach not only ensures the accuracy of 
the data integration but also provides a robust foundation 
for analyzing the geographical distribution and continu-
ity of historical and contemporary rural settlements.

Ultimately, we identified 15,208 existing HRS within 
the THBX, each equipped with detailed geographical 
information, including latitude and longitude (Counties 
table (with the number of HRS) included in THBX is in 
Appendix 1). The number of HRS identified significantly 
exceeds the number of TCV listed in the national catalog 
for the THBX, which totals 778. Subsequently, using Arc-
GIS Pro, we created a point dataset for HRS and plotted 
their distribution based on the standard map approved 
by the Ministry of Natural Resources of China, with the 
approval number GS(2019)1822, as shown in Fig. 4.

Analytical methods
Spatial analysis
Traditionally, methods for describing the spatial distribu-
tion of rural settlements typically employ administrative 
regions as controlling variables, calculating the density 
of rural settlements within each administrative area [54]. 

Fig. 4  Spatial dataset of HRS in THBX (compared with TCV)
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However, this approach is unsuitable for characterizing 
the CHRS, as HRS emerged during a period character-
ized by central authority’s limited control and reach. The 
appearance of HRS often depends on specific geographic 
conditions being favorable, and their development dem-
onstrates marked adaptability and self-organizing char-
acteristics. Therefore, this study opts for kernel density 
estimation to represent the CHRS [54]. Moreover, to fur-
ther determine the spatial distribution patterns of HRS, 
the Average Nearest Neighbor (ANN) method is utilized 
to assess whether HRS are clustered, randomly distrib-
uted, or dispersed, analyzing from both a global and top-
ological perspective [55].

Quantitative analysis of the underlying determinants 
spatial distribution patterns will focus on the mathemati-
cal relationships between various variables. This study 
requires the extraction of results from kernel density 
analyses conducted at HRS locations to develop vari-
ables that describe spatial distribution. Following the 
extraction, testing for spatial dependency of the data is 
essential. Spatial autocorrelation analysis aids in under-
standing the latent structures within spatial datasets, 
thereby detecting spatial dependencies. The global 
Moran’s I index assesses the extent to which similar 
attribute values tend to cluster together or display spatial 
dispersion, providing a comprehensive measure of spa-
tial autocorrelation across the entire study area. On the 
other hand, the local Moran’s I employs a more nuanced 
approach to identify clusters of high or low attribute 
values within specific areas, revealing spatial hot-spots, 
cold spots, and outliers. Concurrently, Local Indicators 
of Spatial Association (LISA) maps facilitate the visual 
interpretation of these characteristics [56].

Statistical analysis
HRS exhibit heterogeneity in their spatial distribution 
determinants and are influenced by geographic location 
changes [57]. This study employs correlation and regres-
sion analyses to discuss the impact of various variables 
on the spatial distribution patterns of HRS, while also 
accounting for changes in spatial locations. The Pearson 
correlation coefficient quantifies the strength and direc-
tion of the linear relationship between two continuous 
variables, thus it is utilized to interpret the numerical 
relationships among variables and the spatial patterns of 
HRS distribution [54]. In Geodetector, the factor detec-
tor and interaction detector use spatial statistical meth-
ods to test the influence weight of variables on the spatial 
distribution patterns of HRS and to detect the impact of 
combinations of two variables on this proportion [58].

Regression analysis is better suited for exploring the 
relationships among multiple variables. The early Ordi-
nary Least Squares (OLS) is a global regression model 

that assumes constant relationships between variables 
across the entire study area, which is ineffective at cap-
turing spatial variations [59]. GWR addresses this limita-
tion by allowing relationships to vary locally, but it still 
uses a single bandwidth to smooth spatial data, which 
may not fully capture multi-scale processes [60]. There-
fore, this study adopts MGWR, allowing the analysis of 
relationships across multiple spatial scales to more accu-
rately understand the spatial heterogeneity of different 
variables’ impacts [61]. The software version used for 
MGWR is 2.2. Additionally, to confirm the applicability 
of MGWR, the results from OLS and GWR analyses are 
used as supplementary comparisons.

Selections of variables and data sources
Variable collection
In the context of correlation and regression analyses, 
the outcomes of kernel density analysis for HRS are 
employed as the dependent variable, denoted as the 
concentration of HRS (CHRS). This study further inves-
tigates the independent variables that exert an influence 
on this measure. The spatial distribution of rural settle-
ments is affected by both physical geography and socio-
economic factors [62, 63]. Table 1 displays the results of 
the collected independent variables, including detailed 
information.

Firstly, terrain has a controlling effect on the selection 
of rural settlement sites [64]. From a macro perspective, 
elevation (ELV), slope (SLP), and topographical relief 
(TR) determine the fundamental conditions for regional 
agricultural production and transportation [64, 65].

Secondly, agricultural production activities influenced 
by regional climate and production resources subse-
quently affect the spatial distribution of rural settlements 
[66]. Temperature and precipitation are basic indicators 
of regional climate. Research from Guangjin has shown 
that annual average temperature (AAT) and total annual 
precipitation (TP) significantly impact the distribution 
of rural settlements [67], with heterogeneity across dif-
ferent regions; thus, they are included as independent 
variables. Relevant data often come from suitable open-
access spatial datasets. As for production resources, this 
study focuses on the influence of water resources and 
arable land resources [68] on the distribution of rural 
settlements. Access to water sources is crucial for drink-
ing, irrigation, and other daily uses. Fertile soil enhances 
agricultural productivity, which is the primary economic 
activity of rural settlements, ensuring food production 
and agricultural trade.

Thirdly, the current state of regional development 
also determines the macro distribution and individual 
development of rural settlements. Population density 
(PD), gross domestic product (GDP), and road density 
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(RD) respectively represent the community, economy, 
and transportation development of a region. Higher 
population density is usually associated with more 
developed infrastructure and services. Rural areas with 
higher GDP usually have better economic opportunities 
and development potential. As for road density, rural 
commerce and the flow of people often rely on it [5, 69, 
70]. It should be noted that regional development can 
contribute to the development and retention of rural 
settlements, which is beneficial for the preservation 
of HRS. On the other hand, urbanization brought by 
development can also lead to the disappearance of rural 
settlements [71]. Furthermore, considering the unique 
influence of the eight ancient paths in the THBX area, 
this study also employs the distance to the ancient 
paths (DAP) to analyze their impact on HRS.

Finally, this study introduced the concentration of 
large cities (CLC) and the concentration of national 
cultural heritage units (CCHU) to further explore the 
potential risks of urbanization and over-development 
of HRS. Among them, large cities are defined as urban 
area point data of city-level administrative units. The 
spatial distribution dataset of national cultural heritage 
units can be publicly accessed.

Data sources
The quantitative data sources are shown in Table  2. 
Firstly, three composite data sources are introduced. 
Among them, the ASTER Global Digital Elevation Model 
is a global digital elevation data product jointly released 
by the National Aeronautics and Space Administra-
tion (NASA) and the Ministry of Economy, Trade, and 

Table 1  Description and pre-processing of variables

Variable 
types

Variable 
categories

Variable names Variable description Abbreviations Units Sig. VIF

Dependent
variable

– Concentration
of HRS

Density of HRS within a specified
area.

CHRS HRS/km2 – –

Independent
variable

Natural
indicators

Elevation The average elevation of the
entire HRS area.

ELV m 0.000 8.869

Slope The average slope within each 30m2

area across the entire HRS region.
SLP ◦ 0.000 14.046

Topographical relief Change in elevation per km2. TR m/km2 0.000 14.063

Total precipitation Total precipitation sum over 12
months within a specified area.

TP mm 0.000 9.206

Annual average
temperature

Average temperature over 12
months within a specified area.

AAT​ ◦
F 0.000 1.327

Distance from
the Ancient Paths

Minimum Euclidean distance
from HRS to the Ancient Path.

DAP m 0.000 1.227

Distance from
surface runoff

Minimum Euclidean distance
from HRS to surface runoff.

DSR m 0.000 1.122

Socio-economic
indicators

Potential crop yield Maximum yield of cereal crops
that can be produced per
hectare of land annually.

PCY kg/ha 0.000 2.273

Gross domestic
product

Gross Domestic Product(GDP)
per km2.

GDP 10,000CNY/km2 0.000 3.878

Population density Number of people per km2. PD Person/km2 0.000 4.449

Road density Total length of roads per km2. RD km/km2 0.000 2.259

Concentration of
large cities

Density of large cities within a
specified area.

CLC LC/km2 0.000 2.627

Concentration of
cultural heritage
units

Density of cultural heritage units
within a specified area.

CCHU CHU/km2 0.000 1.580

Table 2  Data source description

Name Data 
references

Access 
time

ASTER Global Digital Elevation Model [72] 2020

Climatic Research Unit Time-Series
datasets version 4.07

[73] 2022

China GDP spatial distribution
kilometer grid dataset

[74] 2020

National district and county point dataset [50] 2022

Map of National Key Cultural Relics
Protection Units

[75] 2019

OpenStreetMap dataset [76] 2023

LandScan Global population dataset [77] 2022

“Potential crop yield in China” dataset [78] 2010
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Industry of Japan (METI), completed based on the obser-
vations of NASA’s TERRA satellite. This data source can 
provide quantitative data for ELV, SLP, and TR of THBX. 
The Climatic Research Unit Time-Series (CRU TS) is one 
of the most widely used climate datasets, supported by 
the NERC Centres for Atmospheric Science, UK. CRU 
TS provides monthly data covering the land surface 
from 1901 to 2022 at a resolution of 0.5◦ (approximately 
1  km). The quantitative data for AAT and TP of THBX 
in 2022 used in this study are provided by this dataset. 
OpenStreetMap (OSM) is a free and editable world map 
containing numerous data such as roads, waterways, 
and buildings, created and maintained by nearly 5 mil-
lion registered users and over 1 million map contribu-
tors from around the world using free tools and software. 
The quantification of variables RD and DSR relies on the 
open data provided by OSM. Moreover, this study also 
employed various other data sources that support only 
individual variables. Specific citation information also 
can be found in Table 2.

Data pre‑processing
Multicollinearity reduces the overall interpretability of a 
model; therefore, it is necessary to examine multicollin-
earity among variables before proceeding with further 
statistical analyses. The Variance Inflation Factor (VIF) 
provides a quantified metric that indicates how much a 
predictor variable’s variance is inflated due to its linear 
relationship with other predictor variables. This met-
ric assists in removing outliers from the data, thereby 
enhancing the interpretability and stability of the regres-
sion model [79]. A VIF value greater than 10 indicates 
significant multicollinearity, suggesting that the coef-
ficient estimates may be unreliable. Variables with VIF 
values between 5 and 10 also warrant caution as they 
may still pose a mild risk of multicollinearity. Given that 
multicollinearity is a property of synergy among multiple 
variables, outlier variables often do not appear in isola-
tion. Thus, potential multicollinearity can be mitigated by 
selectively removing or transforming these outlier vari-
ables and retesting.

The VIF diagnostics within this study revealed that 
the VIF values for SLP and TR were 14.046 and 14.063, 
respectively, indicating significant multicollinearity. The 
VIF values for ELV and AAT were also notable at 8.869 
and 9.206, respectively. Indeed, the calculation of TR 
inherently reflects some aspects of the SLP characteristic 
of HRS, and variations in ELV also influence AAT. Con-
sequently, TR and AAT were removed from the analysis, 
and VIF diagnostics were performed again. The results 
indicated that no multicollinearity issues remained 
among the remaining variables, thereby clearing the path 
for further statistical analysis.

Results
Analysis of HRS spatial distribution patterns
Using ArcGIS Pro for kernel density estimation, the 
CHRS in the THBX was mapped as shown in Fig.  5, 
allowing further exploration of spatial distribution pat-
terns. The characteristics of HRS distribution at the 
regional level in THBX are as follows:

HRS are more densely distributed in the southern 
part of the THBX than in the north. Within the south-
ern range of Fukou Xing—Taihang Xing, two prominent 
high-density areas emerge, with the highest value reach-
ing 0.44 / km2 . There is a significant correlation between 
the spatial position of the Xing (Ancient Paths) and the 
high-density CHRS. The density of HRS is higher along 
the sides of the ancient paths than in the central part, 
which may be related to the central zone of the Taihang 
Mountains. The terrain of the Taihang Mountains is too 
steep, making it difficult to establish villages or protect 
them from natural disasters. Further analysis reveals that 
HRS on the western or northern endpoints of each Xing 
show a punctuated clustering distribution. Although 
high values are present throughout the THBX, there is a 
substantial difference between high and low values. On 
the other hand, the highly clustered areas of HRS on the 
eastern or southern endpoints exhibit a distinct striped 
or areal distribution, with a generally higher number and 
more uniform spread.

The results of ANN analysis, as displayed in Fig.  6a, 
show an nearest neighbor ratio of 0.649771 and a z-score 
of −82.626356, both indicating that the likelihood of a 
random CHRS is less than 1%, with clustering character-
istics evident in the distribution. In THBX, the average 

Fig. 5  Kernel density analysis results of HRS in THBX
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observed distance among HRS is 1300.3771  ms, com-
pared to an expected average distance of 2001.2842 ms. 
This clustering pattern of HRS suggests the importance 
and potential value of investigating underlying deter-
minants in subsequent studies. However, the study of 
determinants focuses on the relationships between dif-
ferent variables. Therefore, it requires a statistically sig-
nificant and quantified set of variables (in this study, the 
kernel density estimates of HRS in THBX are used as the 
dependent variable, CHRS). This approach allows for a 
deeper understanding of the factors influencing HRS dis-
tribution and contributes to more targeted and effective 
spatial planning and development strategies within the 
region.

In addition to the ANN analysis, spatial autocorrela-
tion analysis was conducted to examine the kernel den-
sity values at locations of HRS [80]. From the global 
spatial analysis, the global Moran’s I for the kernel den-
sity attribute of HRS in THBX is recorded at 0.967717 
with a z-score of 66.006809, indicating a significant 
clustering trend in the overall distribution of this attrib-
ute value (Fig.  6b). Consequently, the kernel density 
attribute values of HRS in THBX fulfill the prerequisites 

for further spatial statistical investigations. The Local 
Indicators of Spatial Association (LISA) map, generated 
from the analysis of local spatial autocorrelation results 
(Fig. 6c), allows for more precise determination of the 
distribution types of HRS within THBX. Viewed across 
the entire region, most local Moran’s I calculations for 
HRS show statistical significance. The predominant dis-
tribution patterns for HRS are high/high clustering and 
low/low clustering. Low/high and high/low clustering 
patterns are mainly found in transitional areas between 
the two aforementioned clusters. The findings from the 
spatial autocorrelation analysis indicate that the ker-
nel density values of HRS exhibit spatial dependency, 
which validates their use as numerical values for CHRS 
in subsequent statistical analyses. This demonstrates 
the significance of considering spatial relationships to 
better understand and model the distribution patterns 
of rural settlements effectively.

Applicability analysis of selected variables
Univariate applicability assessment
This study initially explores the suitability of selected var-
iables for explaining the CHRS in the THBX from three 

Fig. 6  a Average Nearest Neighbor analysis for HRS in THBX. b Global Moran’s I analysis for HRS in THBX. c LISA clustering results of HRS in THBX 
based on Local Moran’s I
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perspectives (Fig.  7). Firstly, Pearson correlation analy-
sis is employed to examine the similarity in numerical 
trends among variables. As depicted in Fig. 7a, under the 
influence of single factors, the driving effects of different 
variables vary. Significant correlations are widely pre-
sent among the variables. Notably, all natural geographic 
variables show significant correlations with CHRS. How-
ever, the correlations between RD, CCHU and CLC with 
CHRS are not significant. Across the entire Pearson 
analysis, both higher and lower values of coefficients are 
found in the analysis of correlations among independ-
ent variables. The highest correlation coefficient between 
CHRS and the GDP is 0.29, and the lowest is −0.28 of 
DAP, with other coefficients having absolute values less 
than 0.25. Among them, ELV, SLP, DSR, and CLC exhibit 
negative correlations with CHRS, whereas TP, PCY, GDP, 
and RD show positive correlations. The correlation coef-
ficients between the selected variables and CHRS in 
this study are too low to fully explain the relationships 
therein [81]. This suggests the need for further investi-
gation, potentially incorporating additional variables or 
exploring more complex statistical models to capture the 
nuances of these relationships better.

Secondly, the factor detection tool of the Geodetec-
tor generates q-values, which indicate the proportion 
of the sample variance that an independent variable can 
explain (q * 100%). This can be interpreted as a method of 

expressing a variable’s explanatory power or weight. The 
factor detection results, as shown in Fig. 7c, are signifi-
cant for all variables. The variables with the highest influ-
ence weights are DAP at 0.34, CLC at 0.28, and CCHU at 
0.32. Notably, the influence weight of CCHU is evidently 
stronger than what was observed in the correlation anal-
ysis. However, no variable is able to explain more than 
50% of the CHRS.

This result highlights the complexity of factors influ-
encing the CHRS in the THBX. The significant q-values 
suggest that while these variables have a measurable 
impact, the CHRS is likely influenced by a combination of 
multiple factors. The lack of any single variable explain-
ing a majority of the variance indicates the potential need 
for a multifaceted approach in further research, integrat-
ing various socio-economic and environmental factors to 
gain a more comprehensive understanding of CHRS.

The results of the univariate analyses indicate that the 
influence of single variables alone is insufficient to fully 
explain the spatial distribution patterns of HRS. A signifi-
cant feature of the interaction detector in Geodetector 
is its ability to detect interactions between two factors, 
thereby revealing potential synergistic or antagonistic 
effects that may not be apparent when considering sin-
gle factors alone (Fig. 7b). The detection results for each 
combination are characterized by two features: bivariate 
enhancement (55, 63.64%) and nonlinear enhancement 

Fig. 7  Pearson correlation analysis. b Results of interaction detector by Geodetector. c Results of factor detector by Geodetector
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(20, 36.36%). This suggests that the combined explana-
tory power of any two variables on CHRS is better than 
that of individual variables. Among the variable combi-
nations exhibiting nonlinear enhancement, the combi-
nation of RD and DAP has the best explanatory power 
for the CHRS in THBX, with a q-value of 0.527. Subse-
quently, three other combinations-CCHU with GDP 
(q=0.387), DAP with SLP (q=0.353), and CCHU with 
SLP (q=0.332)-also explain over 30% of the CHRS. For 
combinations exhibiting bivariate enhancement, more 
than 50% of the CHRS can be explained by the combi-
nation of CCHU and DAP (q=0.570, the highest value 
in the interaction detection results) or CLC and DAP 
(q=0.539). Additionally, there are 19 pairs of variable 
combinations that have a bivariate enhancement effect 
(34.55%), explaining 30% to 50% of the CHRS. Although 
some bivariate combinations still possess weaker explan-
atory power (q<0.3), the results from the interaction 
detector in Geodetector still indicate that a multivari-
ate integrated analysis can more effectively explain the 
CHRS in THBX.

Comparative analysis of multivariate regression results
In this section, we conducted spatial heterogeneity analy-
sis using three models: OLS, GWR, and MGWR, and 
compared their fitting results with data based on four 
indicators: Optimization criterion (corrected Akaike 
information criterion, AICc), determination coefficients 
( R2 ), adjusted determination coefficients ( Adj.R2 ), and 
residual sum of squares (RSS). In order to facilitate inter-
pretation and comparison of the local parameter out-
puts of the models, we standardized the data for each 
variable [82]. This method also effectively guards against 
potential multicollinearity risks. The results are shown 
in Table 3. Lower values of RSS and AICc indicate better 
model performance, whereas R2 and Adj.R2 exhibit the 
opposite behavior. In addition, Table  3 also displays the 
bandwidth values (Bw) of the independent variables in 
the model analysis results, representing the usage of dis-
tance metrics for each independent variable. In the three 
multivariate regression models, the OLS model exhibits 
the highest AICc value (245933.163), with the lowest R2 
(0.238) and Adj.R2 (0.237), and a slightly higher RSS value 
(5542.798) compared to GWR. This suggests that the 
OLS model provides the least satisfactory explanation for 
the CHRS in THBX due to the presence of spatial non-
stationarity in the relationship. Subsequently, the GWR is 
utilised. Its AICc value (32248.356) demonstrates a nota-
ble decrease, with R2 (0.342) and Adj.R2 (0.324) slightly 
surpassing those of the OLS model. However, the GWR’s 
RSS value (5616.460) is the highest, likely attributable 
to considerable variations in the spatial scales of differ-
ent variables, indicating the need for multiscale analysis. 

MGWR demonstrates the best performance, with the 
lowest AICc value (29734.703) and RSS value (4865.900), 
while achieving the highest R2 (0.634) and Adj.R2 (0.622). 
These findings suggest that the MGWR outperforms both 
OLS and GWR in explaining the CHRS in THBX, provid-
ing a more effective insight into the influencing patterns.

In terms of bandwidth selection, the GWR adopts 
a single bandwidth (406, 2.67%), whereas the MGWR 
exhibits a significant disparity in bandwidth selection for 
different independent variables. It ranges from 90 (0.59%) 
to 15207 (99.99%), showing a large variation, which indi-
cates that a single bandwidth cannot accurately reveal 
the scale effects of various factors. Different influencing 
factors have different ranges of effects on the CHRS in 
THBX. The bandwidths of GDP (Bw=90), RD (Bw=202), 
DAP (Bw=307), ELV (Bw=484), PCY (Bw=853) and DSR 
(Bw=1243) account for 0.42% to 8.17% of the total sam-
ple size, indicating their effects operate at a micro-scale, 
locally. Then, the bandwidths of SLP (Bw=4344) and TP 
(Bw=6129) account for 28.56% to 40.30% of the total 
sample size, indicating that their effects exhibit limited 
spatial non-stationarity. Lastly, the bandwidths of CCHU 
(Bw=13224), RD (Bw=15207), and CLC (Bw=15207) 
account for 86.95% to 99.99% of the total sample size, 
indicating their effects are at a global scale, with little spa-
tial heterogeneity, which indicates that their effects are all 
at the global scale, with minimal spatial heterogeneity. 
Additionally, using the same kernel function and band-
width parameters may exacerbate collinearity among 
variables, sometimes called concurvity. By permit-
ting bandwidth variation, variables can undergo diverse 

Table 3  Model comparison of fitting results between OLS, GWR 
and MGWR​

Metrics OLS GWR​ MGWR​

AICc 245933.163    32248.356 29734.703

R
2 0.238 0.342 0.634

Adj R2 0.237 0.324 0.622

RSS 5542.798 5616.460 4865.900

ELV: 484 (3.18%)

SLP: 4344 (28.56%)

TP: 6129 (40.30%)

DAP: 307 (2.02%)

DSR: 1243 (8.17%)

PCY: 853 (5.61%)

Bandwidth (%) – 406 (2.67%) GDP: 90 (0.59%)

PD: 15207 (99.99%)

RD: 202 (1.33%)

CLC: 15207 (99.99%)

CCHU: 13224 (86.95%)

Intercept: 65 (0.42%)
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transformations, thereby circumventing the induction of 
multicollinearity/concurvity [82]. Hence, during model 
computations, we conducted thorough local multicollin-
earity checks using the local condition numbers of GWR 
and MGWR, without encountering any issues. In sum-
mary, we will further interpret the results of MGWR.

Overall interpretation of MGWR results
Table  4 summaries the local parameter estimates of 
MGWR, including “Bandwidth (%)”, “Sig. HRS (%)” (the 
proportion of effective coefficients of HRS to the total 
number of HRS when P ≤ 0.05), “+” (the proportion of 
significant positive coefficients of Sig. HRS), and “-” (the 
proportion of significant negative coefficients of Sig. 
HRS). The results indicate that the coefficients of PD and 
CLC, with the bandwidth accounting for 99.99% of the 
total sample size, are completely insignificant, which also 
represents a type of global consistency. The remaining 
independent variables exhibit significance for over 60% 
of HRS, which holds statistical significance in terms of 
interpretation. Initially, the entirely significant independ-
ent variables include SLP, TP, and PCY, displaying a glob-
ally consistent effect feature. The coefficients of TP and 
PCY are all positive, while that of SLP is negative. Addi-
tionally, although the effect of CCHU with bandwidth 
proportion close to the global scale only explains part 
of the HRS (66.79%), all significant coefficients exhibit 
negative impact effects. Subsequently, the significant 
coefficients of the remaining influencing factors exhibit 
different effect patterns, with some impacting Sig. HRS 
positively while others negatively. It is worth noting that, 
although the effect patterns exhibited by significant coef-
ficients vary, they still show clear tendencies. Whether 
positive or negative, there will definitely be one type of 
feature accounting for over 75% of the total.

Figure 8 depicts the maximum, minimum, and average 
values of the local parameters of effective HRS samples 
under the interpretation of different variables. Obviously, 
the fluctuations in the minimum and maximum values 
of each variable are larger than the mean value. The local 
parameters of CCHU, SLP, and TP hardly change and 
their values are close to 0. The range of variation of the 
local parameters of ELV, PCY, and DSR is larger, but the 
mean values are still around 0. It is worth noting that the 
local parameters of RD, GDP, and DAP have the largest 
variation and produce the highest and lowest values in 
the variation. The overall interpretation of the MGWR 
results indicates that the effects of different variables on 
CHRS are nonlinear, which implies spatial heterogeneity 
in the distribution of local parameters. Although we can 
preliminarily characterize the effects of different vari-
ables, further research on the spatial distribution of their 
local parameters is still needed.

Analysis of spatial heterogeneity in the effects of variables
In the MGWR output, the local parameter of Intercept 
represents the influence of different geographical loca-
tions on the dependent variable when other independent 
variables are fixed. To some extent, the MGWR intercept 
can capture factors uniquely determined by geographical 
location, which influence the CHRS in THBX but are not 
included in the model. Notably, in this study, the inter-
cept has the smallest bandwidth (Bw=65, 0.42%), indi-
cating a micro-scale variable. Moreover, it shows global 
significance (Sig. HRS=15208, 100%), highlighting the 
high sensitivity of THBX’s HRS to geographical changes. 
In Fig.  9, the global distribution of the intercept’s local 
parameters is displayed, as well as the global distribu-
tion of standardized residuals. Following Sullivan, we 

Table 4  Parameter estimation using MGWR​

a Sig. HRS(%) refers to the number and proportion of samples in the HRS dataset 
that meet the significance requirements in spatial statistics, where P is greater 
than 0.05

Variables Bandwidth (%) Sig. HRS (%) +% –%

ELV 484 (3.18%) 9216 (61.60%) 21.76% 78.24%

SLP 4344 (28.56%) 15208 (100.00%) 0.00 100.00%

TP 6129 (40.30%) 15208 (100.00%) 100.00% 0.00

DAP 307 (2.02%) 10644 (69.99%) 0.16% 99.84%

DSR 1243 (8.17%) 9937 (65.34%) 16.06% 83.94%

PCY 853 (5.61%) 15208 (100.00%) 100.00% 0.00

GDP 90 (0.59%) 11148 (73.30%) 99.62% 0.38%

PD 15207 (99.99%) 0 (–) – –

RD 202 (1.33%) 9842 (64.72%) 88.16% 11.84%

CLC 15207 (99.99%) 0 (–) – –

CCHU 13224 (86.95%) 10158 (66.79%) 0.00 100.00%

Intercept 65 (0.42%) 15208 (100.00%) 0.00 100.00%
Fig. 8  MGWR local parameters of each variable
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should focus on positions where the standardized residu-
als exceed three times the standard deviation, as these 
locations may contain outliers [83]. The standardized 
residuals in THBX have a global distribution of no more 
than 0.5 standard deviations, suggesting that there are 
no prominent outliers or outlying points in the MGWR 
results. Thus, the model offers a good fit to the data, and 
the explanatory variables employed effectively account 
for the spatial variation of the dependent variable.

Figure  10 presents the distribution of significant HRS 
samples and the spatial patterns of local parameters in 
the THBX across various explanatory factors. It is evi-
dent that the use of variable bandwidth offers a more 
comprehensive and precise view in spatial data explora-
tion. Additionally, the standardization of data enables 
more meaningful comparisons of specific values of local 
parameters across different variable factors, aiding in a 
more intuitive summarisation of the determinants and 
magnitudes of these factors.

Figure 10a displays the significant samples and spatial 
distribution of local parameters for ELV. The local param-
eter range for ELV is between [ −0.231,0.353], suggesting 
a predominant negative effect on the CHRS in THBX 
with a minor positive influence as well. In terms of spa-
tial distribution, the positive impacts are predominantly 
found in the northernmost part of THBX, specifically 
around Jundu Xing and its vicinity, primarily located in 
Shanxi Province. Furthermore, certain HRS in the low-
elevation areas on the southeastern side of THBX also 
demonstrate a positive effect from ELV. ELV demon-
strates detrimental impacts on two strip-shaped regions: 

the Taihang Xing - Jing Xing region and the Feihu Xing - 
Puyin Xing region. It is noteworthy that the local param-
eters of the samples at the outer edges of the strip exhibit 
slightly higher than those in the interior. The areas of 
positive influence may be associated with the Ming Great 
Wall. The THBX area is closely linked to the Zhenbao 
Town defense zone. Many of the fortifications in Zhen-
bao Town were built along the Taihang Mountains, while 
the passes were constructed over significant paths, such 
as Juyong Pass, Zijing Pass, Daoma Pass, Gu Pass, Dong-
yang Pass, Tianjing Pass, and Hengling Pass [84]. The 
Military Capital Ridge in THBX falls within the Juyong 
Pass defense area of the Ming Great Wall, a region acting 
as the closest pass city to the capital, Beijing. As a result, 
a large number of military settlements were established 
around this area, typically located at higher altitudes on 
sites that are easy to defend but difficult to attack [85].

The spatial pattern of significant samples and local 
parameters for SLP is shown in Fig. 10b. The data sum-
mary indicates a significant negative influence of SLP 
on all HRS in THBX at a global level. The range of local 
parameter values is [ −0.151, −0.048], with less variabil-
ity than ELV. This indicates that in mountainous terrain 
areas, the clustering trend of HRS in THBX is inhibited 
with the increase of SLP. The southeastern part of THBX 
experiences the most pronounced negative impact, 
while the low-impact zone is located in the eastern part 
of the central region. With a bandwidth of 4344 for SLP, 
its influence scale is closer to medium-range, indicating 
weak spatial heterogeneity and a smoother transition of 
global local parameters. Due to the more complex ter-
rain and greater variation in slope, the southeastern part 
of THBX exhibits the most significant negative impact. 
Conversely, the eastern central region, which is the 
alluvial fan plain of the Hutuo River and close to Shiji-
azhuang city in Hebei province, has a relatively gentle 
slope, resulting in a lesser impact on CHRS in this area.

The results in Fig.  10c indicate that TP can also 
explain the distribution characteristics of all HRS in 
the THBX. However, the local parameter variation 
range for TP is [0.025,0.067], suggesting that its impact 
on the CHRS is consistently positive, but the specific 
parameter values are smaller and the variations are 
very slight. The area with the most pronounced impact 
is the southeastern part of THBX, while the least pro-
nounced area is on the western side of the Fukou 
Xing—Bai Xing region. Notably, this area also has the 
highest density of CHRS. With TP’s bandwidth at 6129, 
which falls within a medium-scale effect range, its spa-
tial heterogeneity is comparably weak, leading to a 
smoother transition of local parameters across differ-
ent regions. The southeastern part of THBX, close to 
Zhengzhou City in Henan province, is influenced by 

Fig. 9  Spatial distribution of standardized (STD) residuals and local 
parameters (Beta) of intercept in MGWR results
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Fig. 10  The spatial distributions of local coefficients for influencing factors of HRS distribution in THBX
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the Yellow River alluvial fan plain [86]. Henan has his-
torically been one of China’s most populous provinces, 
hence the relatively high number of settlements in the 
area. Additionally, the higher ELV and complex terrain 
in the southeast block much of the summer monsoon, 
resulting in higher TP than nearby areas, which has the 
greatest impact on CHRS in this area. Conversely, the 
area west of Fukou Xing to Bai Xing within THBX is 
the area with the densest concentration of settlements, 
influenced by the mountains with lower TP, making it 
the least affected area by TP.

Figure 10d, e display the spatial patterns of significant 
samples and local parameters for DAP and DSR, eluci-
dating the relationship between the CHRS in THBX and 
the main linear elements. In the case of DAP, it is evident 
that the majority of Sig.HRS distributions are negatively 
correlated with DAP. The local parameter range for DAP 
is [ −2.302,0.840], which stands as the most extensive and 
variable among all independent variable local param-
eters, emphasizing its significant impact. This suggests 
that being far from the ancient path is unfavorable for the 
CHRS. Interestingly, the CHRS at the intersections of the 
three ancient paths in the south are positively impacted 
by DAP. This suggests that overly accessible geographic 
conditions might pose potential risks to the HRS in this 
location. The eight ancient paths not only played a cru-
cial role as transportation routes in ancient times, such as 
during the Qin Dynasty when they served as vital routes 
for imperial travel, but also as main postal roads dur-
ing the Ming and Qing dynasties. Many of these ancient 
paths still form part of the routes of modern highways 
today [84].

For DSR, its local parameter variation range is [ −0.121, 
0.400], with both the numerical value and the degree 
of change being smaller than DAP. However, similar to 
DAP, the distribution of the majority of Sig.HRS is neg-
atively correlated with DSR. This suggests that surface 
runoff majorly shows positive influence on the aggrega-
tion of HRS. Spatially, the HRS in the Jing Xing—Taihang 
Xing region is segmented into three clusters with nega-
tive local parameters, having lower values internally and 
relatively higher values at the periphery. However, in the 
northwestern part of the Jundu Xing— Puyin Xing area, 
the distribution of some HRS shows a positive correla-
tion with DSR, indicating that surface runoff has caused 
damage to their aggregation and development. Moreo-
ver, the bandwidths for DAP and DSR are 307 and 1243, 
respectively, with DAP exhibiting more pronounced spa-
tial heterogeneity compared to DSR.

As shown in Fig.  10f, PCY has a significant positive 
effect on all CHRS in THBX. The local parameter val-
ues of PCY vary between [0.112−0.460], indicating a 
moderate impact intensity. The HRS in the southeast 

and northwest parts of THBX are most affected by PCY, 
while the local parameters around Jing Xing are relatively 
lower. Although the bandwidth of PCY is 853, falling into 
the semi-microscopic scale, it still shows a significant 
global trend in THBX, with higher values in the north 
and south and lower in the central part. The southeastern 
and northwestern areas, which are the most positively 
impacted areas mentioned above, comprise the Yellow 
River alluvial fan plain and the Datong Basin, respectively 
[86]. Both areas feature geological conditions conducive 
to agriculture, leading to a concentration of agriculturally 
oriented rural settlements.

The results in Fig.  10g display the significant samples 
and spatial patterns of the local parameters for GDP. 
The local parameters of GDP vary between −0.599 and 
1.187, showing a large variation range, with mostly posi-
tive values. This indicates that GDP mainly has a posi-
tive impact on the CHRS in THBX. A minority of HRS 
negatively impacted by GDP are predominantly located 
near the eastern endpoint of the Puyin Xing, where GDP 
growth might deter CHRS. Given a bandwidth of 90, 
GDP operates on an extremely micro scale, just slightly 
larger than the intercept. Hence, the high-value regions 
of GDP’s local parameters in THBX display a scattered 
distribution, with pronounced variations in influence 
across different areas. Additionally, influenced by the 
river systems originating from the Taihang Mountains, 
numerous alluvial fans have formed along the eastern 
side of the mountains, bringing fertile soil to the North 
China Plain. Historically, these lands have been densely 
populated, forming a north-to-south urban belt along the 
Taihang Mountain range with cities like Beijing, Baoding, 
Shijiazhuang, Xingtai, Handan, Anyang, Hebi, and Xinxi-
ang located on these alluvial fans. Consequently, the GDP 
within the THBX area is generally higher on the eastern 
side than on the western side.

In Fig.  10h, regarding the driving characteristics 
explained by RD, we found that its local parameter vari-
ation range is [ −0.408,0.841], mostly positive, indicating 
that it mainly exerts a positive influence on the aggrega-
tion of Sig.HRS. Among them, a small part of the HRS 
affected negatively by RD mainly gathers in the middle of 
the Feihu Xing - Puyin Xing region and the west side of 
the Jing Xing - Fukou Xing region. Due to the bandwidth 
being 202, RD is a driving factor at the microscale. Con-
sequently, there is considerable variability in the influ-
ence among different Sig.HRS aggregation areas. Lastly, 
in Fig. 10i, the local parameter variation range for CCHU 
is [ −0.0301,−0.0172], indicating that the CHRS in THBX 
is suppressed by the enhancement of CCHU. Compared 
to the determinants mentioned earlier, the negative 
impact generated by CCHU is extremely weak. Addition-
ally, CCHU is significant only for the HRS in the southern 
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part of THBX, with the most negative impact occurring 
at Jing Xing—Fukou Xing. t is worth noting that the anal-
ysis related to CCHU is a discussion focused on the early 
development determinants of HRS. It serves to elucidate 
the CHRS rather than probing into their future develop-
mental trends.

Discussion
The primary objective of this study is to catalog the HRS 
that persist today in the Taihang Baxing, establish a GIS-
based geospatial data set for these rural settlements, 
and analysis their spatial distribution characteristics. 
Additionally, the study examines the factors influencing 
the distribution of these HRS and the underlying deter-
minants. The research involved the compilation of HRS 
recorded in the archival materials of the THBX, followed 
by a comparison with the names of modern villages. 
Based on various levels of confidence, a total of 15,208 
HRS have been identified and preserved to date. The 
study first employed kernel density analysis to explore 
the clustering characteristics of these HRS. Subsequently, 
using the MGWR, it analysed the spatial heterogeneity of 
the distribution patterns and influencing factors of these 
historical settlements.

Insights
One of the key focuses of this research is the compilation 
and analysis of historical documents, and the continuity 
characteristics of Chinese place names. This led to the 
development of a novel process for identifying and organ-
izing historical settlements. The research reveals that the 
CHRS in the THBX generally exhibits a pattern of greater 
density in the south and sparser distribution in the north, 
aligning along a north–south axis following the Taihang 
Mountains. Two primary clustering cores of HRS have 
formed near the Fukou Xing, Bai Xing, and Taihang Xing, 
mainly located at the intersections of these three Xings 
and the eastern end of the Fukou Xing. A secondary core 
has developed in the central areas of the Feihu Xing and 
Jundu Xing. Previous studies, such as those by Hui on 
TCV in the Taihang Mountains, analyzed the distribu-
tion characteristics of traditional villages [26]. However, 
since TCV represent only a subset of HRS, the cluster-
ing characteristics identified in those studies show nota-
ble differences from the findings of this research. A more 
comprehensive dataset typically yields clearer and more 
accurate statistical results regarding settlement distribu-
tion. The study continues to explore the underlying driv-
ing factors of HRS distribution through deeper analysis 
using the MGWR.

The analysis using the MGWR indicates that natu-
ral factors have consistently been one of the critical 

influences on the spatial distribution of villages. The 
ELV demonstrates an alternating pattern of significant 
and non-significant influences on the spatial CHRS, pre-
dominantly exerting a negative impact with clear spatial 
heterogeneity. The SLP has a universally significant nega-
tive impact on the CHRS. Conversely, the TP exhibits a 
positive influence on the CHRS, although the changes are 
very subtle. In the initial stages of village formation, natu-
ral geographical factors often play a crucial restrictive 
role in site selection, with environments conducive to 
survival and labor typically hosting numerous HRS. This 
finding aligns with the conclusions of Lai, who focused 
on TCV as his study subjects [37]. Although traditional 
villages are a subset of HRS, they exhibit similar charac-
teristics and conclusions in some aspects of the research.

The analysis reveals that the DAP has a significant 
negative correlation with the CHRS, exhibiting the most 
pronounced effect. The DSR impacts HRS in a manner 
similar to DAP, but its influence is less significant. These 
results underscore a clear dependency of HRS clustering 
on both Xing and water systems, with a stronger reliance 
on the former. This suggests that transportation condi-
tions play a more critical role in settlement site selec-
tion than water systems. Similar findings are echoed in 
the research by Zhang Xinrui, who also noted the cor-
relation between settlement distribution and proximity 
to paths and water systems in his study of HRS around 
the Feihu Xing [27]. Feng Wenlan’s study on the distribu-
tion patterns of rural settlements in the upper reaches of 
the Min River further supports the greater dependency 
of settlements on transportation networks compared 
to water systems [87]. This research in the THBX reaf-
firms these conclusions and further identifies that DAP 
provides a stronger explanatory power for village clus-
tering than water systems, which exhibit greater spatial 
heterogeneity.

The analysis shows that the PCY significantly and posi-
tively affects the clustering of HRS on a global scale. GDP 
also exhibits a positive impact in most regions; however, 
in high-value areas, its influence is dispersed and occurs 
at a microscale. RD also impacts at a microscale and dis-
plays a dispersed influence globally. The effect of RD on 
the clustering of HRS varies significantly across different 
regions. In the rapid process of urbanization, the pres-
ervation of HRS depends on the contemporary socio-
economic and demographic developments. However, the 
impact of these factors varies by region, necessitating tar-
geted protection and development planning tailored to 
specific local conditions.

The CCHU have an extremely slight negative impact 
on HRS clustering, with significant effects observable 
only in the southern part of the THBX. This contrasts 
with Hongwei’s findings, where CCHU was positively 
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correlated with the concentration of TCV [25]. The differ-
ence might be due to TCV selections being influenced by 
local cultural preservation units, which are more numer-
ous and place greater emphasis on cultural heritage in 
certain areas, resulting in more approved traditional vil-
lages. However, in a more extensive and comprehensive 
HRS dataset, the influence of cultural preservation units 
on village clustering appears to be minimal [25].

The study on the variable factors influencing the CHRS 
in the THBX reveals the drivers behind the settlement 
patterns, which reflect the area’s natural environmental 
conditions and regional socio-economic development 
levels [30, 87]. In this study, the subject is the HRS within 
the THBX area that still exist today, with modern exter-
nal environmental factors as influences. The objective is 
to analyze the current developmental state to summarize 
the external environmental characteristics that affect the 
preservation of rural heritage. The results of this study 
can provide methodological and theoretical references 
for the excavation of rural heritage and the evolution of 
regional rural patterns. Small towns are a significant driv-
ing force behind urbanization and rural-focused develop-
ment in China [88]. Therefore, analyzing the distribution 
characteristics and variable factors of HRS can provide 
theoretical guidance for the comprehensive development 
of China’s contemporary rural settlement system in terms 
of structure and function.

Limitations and prospects
It must be acknowledged that this study has certain 
limitations. First, there are issues related to the sources 
of HRS data. China, with its extensive historical back-
ground, has rural settlements that have developed over 
thousands of years. However, when attempting to organ-
ize and excavate historical data, we encounter a lack of 
uniform standards in the documentation process. For 
instance, some historical county annals provide detailed 
records of village names, while others offer only brief 
mentions. Consequently, this study could not compile 
an entirely comprehensive dataset of HRS. Secondly, the 
process of matching HRS with modern place names pre-
sents challenges. Despite narrowing the administrative 
boundaries from provinces to counties, some rural settle-
ments still share names or have undergone name changes. 
In this study, such rural settlements have been marked 
with different confidence levels, and only those with a 
higher degree of match were included in the statistical 
analysis. Revealing and restoring HRS is a labor-intensive 
and lengthy task. It is hoped that future research can con-
tinuously refine the dataset created in this study to bring 
the data on HRS closer to their true state. By compar-
ing historical settlements with contemporary villages, or 
the distribution of villages across different periods, it is 

possible to summarize the patterns of village formation 
and development, as well as to better predict the trajec-
tory of rural evolution and development.

In Huang and Oliveira’s research, the correlation 
between clan culture and the internal spatial form with 
the development of HRS has been emphasized, though 
it still remains on an individual scale [89, 90]. Therefore, 
conducting extensive research and quantification of the 
spatial form of HRS and traditional culture, and introduc-
ing more detailed variables, will help enhance the com-
pleteness of the regression model in this study. A more 
comprehensive regression analysis will support the devel-
opment of a machine learning-based, multivariate model 
for predicting the spatial distribution of HRS. This model 
can be cross-validated with the HRS spatial information 
acquisition method proposed in this study, advancing the 
exploration and protection of rural heritage.

Conclusion
As China’s recognition of the value of rural herit-
age increases, research related to HRS is increasingly 
encouraged. China, with one of the longest histories of 
agriculture, provides a favorable environment for the 
preservation and development of HRS. In this study, we 
first established an objective methodology for acquir-
ing spatial information on HRS. This involved extract-
ing information about HRS from historical records and 
matching it with modern rural settlement POI to obtain a 
spatial distribution dataset for HRS. Subsequently, using 
this dataset, we analyzed the spatial distribution patterns 
of HRS in the THBX and employed the MGWR to quan-
titatively assess the impact of natural geographic and 
socio-economic factors on the CHRS.

This study has validated the correlation between vari-
ous factors and the formation of spatial distribution pat-
terns of HRS. Our results from the THBX indicate that 
the CHRS is the outcome of complex interactions among 
multiple factors. Additionally, the influence of these fac-
tors on the spatial distribution patterns of HRS is non-
linear and significantly affected by geographical location 
changes. The methodology for obtaining HRS data pro-
posed in this study will robustly support heritage explo-
ration efforts in various regions. Furthermore, HRS 
represent a living heritage, which requires not only pres-
ervation but also development. The impact of different 
factors on the spatial distribution patterns of HRS may 
indicate potential advantages and disadvantages for their 
future development. This study also validates the adapt-
ability of the chosen factors in understanding and analyz-
ing HRS.

The findings of this study provide methodological sup-
port for the discovery and preservation of rural heritage, 
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as well as insights for optimizing rural spatial patterns 
and predicting the evolutionary paths of rural areas. 
Future work should include expanding the scope of the 
study and examining a broader range of factors to gain a 
more comprehensive understanding of the logic behind 
the preservation and CHRS. Further research could focus 
on cluster analysis of heritages within different regions 
that have already been studied, which would produce 

more regionally specific and detailed research outcomes. 
For the THBX, the next steps could involve verifying the 
accuracy of the existing HRS dataset and conducting fur-
ther studies on non-significant or unique areas identified 
in the spatial regression model analysis. This approach 
will enhance the precision and relevance of the research, 
contributing significantly to regional planning and herit-
age conservation efforts.

Appendix A
Appendix 1: Counties (with the number of HRS) included in THBX

Province City County

Beijing – Changping(68) Mentou-
gou(90)

Fangshan(105) Yanqing(51)

Hebei Zhangjiakou Urban Dis-
trict(38)

Zhangbei(79) Shangyi(44) Chongli(36) Chicheng(99) Wanquan(85) Huaian(142)

Huailai(117) Zhuolu(100) Yu County(202) Yangyuan(172) Xuanhua(161)

Baoding Urban Dis-
trict(3)

Fuping(72) Laiyuan(166) Laishui(153) Yi County(165) Dingxing(168) Rongcheng(52)

Qingyuan(98) Wangdu(68) Boye(39) Anguo(118) Dingzhou(31) Quyang(177) Tang 
county(119)

Xushui(178) Shunping(87) Anxin(6) Man-
cheng(117)

Shijiazhuang Urban Dis-
trict(5)

Pingshan(122) Lingshou(98) Xingtang(138) Zhengding(35) Luancheng(92) Yuanshi(92)

Luquan(92) Jingxing(158) Zanhuang(145)

Xingtai Urban Dis-
trict(1)

Shahe(288) Xingtai(361) Neiqiu(101) Lincheng(43)

Handan Urban Dis-
trict(93)

Wuan(433) She 
County(269)

Ci County(219) Linzhang(230) Chengan(119) Handan(62)

Henan Anyang Urban Dis-
trict(1)

Linzhou(249) Anyang(261)

Xinxiang Weihui(176) Huixian(314) Huojia(53)

Jiaozuo Urban Dis-
trict(13)

Xiuwu(96) Wuzhi(161) Boai(134) Wen 
County(77)

Qinyang(187) Mengzhou(93)

Jiyuan Urban Dis-
trict(15)

Luoyang Mengjin(83) Xinan(5)

Sanmenxia Mianchi(10) Yima(1)

Shanxi Jinzhong Shouyang(143) Xiyang(203) Heshun(114) Zuoquan(189) Yushe(159)

Changzhi Urban Dis-
trict(106)

Qin 
County(151)

Lucheng(126) Zhangzi(79) Changzhi(179) Huguan(145) Pingshun(59)

Licheng(206) Wuxiang(389) Xiangyuan(410) Tunliu(290)

Jincheng Urban Dis-
trict(0)

Qinshui(144) Gaoping(455) Ling-
chuan(349)

Zezhou(436) Yangcheng(92)

Yuncheng Wenxi(103) Xia County(86) Xinjiang(11) Jiang 
County(44)

Yuanqu(9)

Linfen Xiangfen(6) Quwo(55) Houma(0) Yicheng(56)

Yangquan Urban Dis-
trict(33)

Yu 
County(164)

Pingding(100)

Xinzhou Fanzhi(141) Wutai(182)

Shuozhou Huairen(72) Ying 
County(142)

Datong Urban Dis-
trict(158)

Yanggao(125) Guangling(86) Lingqiu(145) Hunyuan(38) Datong(110) Tianzhen(102)
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Appendix B
Appendix 2: Abbreviations used in this paper (ranking 
from A‑Z)

Abbreviations Full name

AICc Corrected Akaike Information 
Criterion

ANN Average Nearest Neighbor

CCHU Concentration of Cultural Heritage 
Unities

CHRS Concentration of Historical Rural 
Settlements

CLC Concentration of Large Cities

DAP Distance to Ancient Paths

DSR Distance to Surface Runoff

ELV Elevation

GDP Gross Domestic Product

GWR​ Geographic Weighted Regression

HRS Historical Rural Settlements

LISA Local Indicators of Spatial Associa-
tion

MGWR​ Multi-Scale Geographic Weighted 
Regression

OLS Ordinary Least Squares

PCY Potential Crop Yield

PD Population Density

POI Points of Interest

RD Road Density

RSS Residual Sum of Squares

SLP Slope

TCV Traditional Chinese Villages

THBX Taihang Baxing

TP Total Precipitation

TR Topographical Relief

VIF Variance Inflation Factor
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