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The Terracotta Warriors, a hallmark of China’s cultural heritage, frequently exhibit fragmentation and
deformation due to natural factors like earthquakes and human activities. Accurate classification and
segmentation of their 3Dmodels are essential for effective restoration. However, the irregularity of the
fragmented terracotta pieces renders manual annotation time-consuming and labor-inteśnsive. To
address this challenge, we propose a self-supervised learning method utilizing high-order mixed
moments for 3D point clouds. It employs a high-order mixed moment loss function instead of the
traditional contrastive loss function and does not require special techniques like asymmetric network
architectures or gradient stopping. Our method involves calculating the high-order mixed moment of
feature variables and forcing them to decompose into individual moments, enhancing variable
independence and minimizing feature redundancy. Additionally, we integrate a contrastive learning
approach to maximize feature invariance across different augmentations of the same point cloud.
Experiments demonstrate that ourmethod outperforms previous unsupervised learning techniques in
the downstream tasks of 3D point cloud classification and segmentation. Additionally, our method
shows strong performance in the specific tasks related to the Terracotta Warriors. We hope this
success can pave the way for new avenues in the virtual protection and restoration of cultural relics.
Code is available at https://github.com/caoxin918/PointMoment.

As a significant material cultural heritage of Chinese civilization, the Ter-
racotta Warriors possess considerable academic value and social sig-
nificance for an in-depth understanding of China’s extensive history and
culture. However, due to long-term natural erosion and human activities,
most of the Terracotta Warriors have been unearthed as fragments, posing
substantial challenges to their protection and restoration1. Traditional
manual restorationmethods are cumbersomeand time-consuming,making
it difficult to meet the demands of large-scale restoration projects. In recent
years, the rapid development of 3D laser scanning technology has sig-
nificantly advanced virtual restoration techniques, offering new possibilities
for the digital preservation and restoration of the Terracotta Warriors2.
Within the virtual restorationprocess, the classificationand segmentationof
Terracotta fragments are crucial steps. Accurate fragment classification
directly impacts the effectiveness of subsequent matching and assembly,
while precise segmentation not only addresses the issue of insufficient
calibration data but also enables semantic annotation of the Terracotta
Warriors, facilitating an in-depth analysis of the relics’ structure and fea-
tures. Thus, obtaining an effective feature representation is essential for

improving the accuracy of downstream classification and segmentation
tasks, thereby enhancing the overall restoration efficiency.

Traditional heritage feature extraction methods primarily rely on
expert-designed feature descriptors. Rasheed et al.3 proposed a method to
extract texture features based on RGB color features and the gray-level co-
occurrencematrix. Lin et al.4 proposed amulti-scanpoint cloudhierarchical
registration method for the 3D reconstruction of ancient buildings, which
effectively solved the problem of digitally reconstructing complete and real
models of complex architectural structures without damage. Although
effective, these methods often depend on expert prior knowledge, and the
expressive power of hand-designed feature extraction techniques is limited,
which constrains the generalization performance of classification models.
With the rapid advancement of deep learning technology and the pro-
liferation of 3D data acquisition devices, point cloud-based representation
learning algorithms, such as PointNet5, PointNet++6, andDGCNN7, have
been proposed, providing novel approaches for feature extraction from
cultural relic fragments. Zhou et al.8 introduced the Multi-scale Local
Geometric Transformer-Mamba (MLGTM) method to improve the
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accuracy and robustness of Terracotta Warriors point cloud classification
tasks by effectively capturing complex local morphology and handling data
sparsity and irregularity. Zhu et al.9 developed a transfer learning-based
method to recover the three-dimensional shapeof cultural relics faces froma
single old photo, effectively addressing the issue of limited cultural relic
samples. However, these methods typically require labeled data, posing
challenges for their application in the field of cultural heritage. Self-
supervised representation learning (SSRL), which has shown promise in
fields like computer vision and natural language processing (NLP), may
provide new solutions to these challenges10.

SSRL seeks to enhance the performance of various downstream tasks
by learning general and robust feature representations from unlabeled
data11. Recent research in the field of image processing has shown that
representations obtained through SSDL can be as effective as those achieved
through supervised learning methods12. However, the learned embedded
features often contain redundant information, leading to a decrease in
semantic representation ability and impacting downstream task perfor-
mance. To address these challenges, innovative approaches such as Barlow
Twins13 and HOME14 have been proposed. These methods focus on feature
redundancy to of SSDL in image-processing tasks. In recent years, several
algorithms also have been developed for self-resolve the aforementioned
issues, enhancing the overall efficacy supervised learning with point clouds,
including self-reconstruction, adversarial generation, and completion15,16.
However, methods like Latent GAN17, FoldingNet18, and OcCo19 require
significant computing resources and time, and all these algorithms are
highly sensitive to rotational and translational variations. Contrastive
learning, successful in video and image domains, is increasingly being
applied to point cloud understanding20. For instance, PointContrast uses
contrastive learning to achieve viewpoint-invariant point cloud repre-
sentations, facilitating high-level scene understanding21. CrossPoint
enhances this by leveraging multiple modalities for contrastive learning,
extracting richer signals22. These methods involve pre-training with a pre-
text task designed to bring similar samples closer and push dissimilar ones
further apart in the feature space. Yet, thesemethods commonly facemodel
collapse, where the learned representation vector shrinks to a constant or
low-dimensional subspace, underutilizing the full representational capacity.
Existing contrast-based learning methods often mitigate this by using
complex mechanisms, such as memory banks23 or asymmetric networks
with gradient stopping, predictor networks, and momentum update
strategies24. Notably, in the field of cultural heritage protection, particularly
in the digital preservation of Terracotta Warriors, significant strides have
beenmade.Wang et al.25 proposed a transformer-basedmethod to enhance
point cloud registration, effectively improving the accuracy of point cloud
alignment in Terracotta Warriors preservation. Additionally, Xu et al.26

developed CPDC-MFNet, a conditional point diffusion completion net-
work with multi-scale feedback refinement for repairing damaged 3D
models of Terracotta Warriors, which improves generation speed while
maintaining diverse outputs. Despite these advancements in the preserva-
tion of Terracotta Warriors, the open challenge of preventing model col-
lapse without relying on complex designs still remains, underscoring the
need for further research in this area.

Motivated by the above analysis and inspiration from14, we introduce a
self-supervised contrastive learning method for terracotta fragment classi-
fication and segmentation that leverages high-order mixed moments. This
approach effectively prevents model collapse by minimizing redundancy
among feature variables without relying on complex mechanisms. Specifi-
cally, we utilize high-order mixed moments to minimize redundancy
among arbitrary feature variables, aiming to learn meaningful point cloud
representations. It is known that pairwise independence of each variable
doesnot guarantee theirmutual independence, and that the total correlation
among all variables is minimized only if multiple variables are independent.
This implies that the mixed moment of multiple features can be decom-
posed into the product of their individual moments. Drawing from statis-
tical theory and the contrastive learning paradigm,we design a loss function
based on high-order mixed moments. This function reduces redundancy

among multiple variables, allowing the high-dimensional features learned
through self-supervised learning to be rich in information and independent.
It also ensures maximum consistency in representation across different
augmented point clouds. Our extensive experiments on various datasets
show that our method achieves state-of-the-art accuracy.

The main contributions of this paper are as follows:
• We propose a self-supervised learning method for point clouds using

high-order mixed moments. Our approach reduces feature redun-
dancy, enhancing representational capabilitywhile inherently avoiding
model collapse without additional techniques. We also successfully
applied it to Terracotta warrior analysis.

• Our approach offers a plug-and-play solutionwith symmetric network
architecture, enabling flexible integration with various point cloud
processing methods.

• We evaluated our approach on object classification and segmentation
tasks. PointMoment significantly outperformed existing unsupervised
learning methods. Notably, its application to the Terracotta Warriors
dataset yielded exceptional results, further validating our method’s
effectiveness and superiority in point cloud analysis.

Related work
In this section, we provide a brief overview of recent advancements in two
pertinent areas: supervised and self-supervised representation learning for
point clouds.

Supervised representation learning on point cloud
We can divide supervised representation learningmethods for point clouds
into twomain categories: structure-based and point-based. Structure-based
methods often transform point clouds into 2D images or regular structured
data like voxels for feature extraction. MVCNN27 uses 2D convolutional
networks with max-pooling to create global shape descriptors from multi-
view features.However, itmay result in information loss and overlooks view
relationships. To address this,View-GCN28 employs aGraphConvolutional
Network (GCN) on the view graph for hierarchical feature aggregation.
VoxNet29 uses 3D convolutional networks to extract features from voxel
grids but can be computationally intensive and memory-demanding with
dense 3D data, which grows cubically with resolution. Overall, these
methods may struggle to capture fine-grained geometric details and can be
memory-intensive.

Point-based methods utilize raw data without conversion to other
formats and canbe divided into four types:MLP-based, Transformer-based,
Graph-based, andCNN-based.MLP-basedmethods, such as thepioneering
PointNet5, as a pioneering work, has inspired many subsequent methods,
such as PointWeb30. PointNet++6 improves upon PointNet by using set
abstraction to capture local features and generate global representations.
CNN-based methods use specially designed convolution kernels for point
cloud feature extraction. PointCNN31 introduces the X-Conv operator for
direct processing of point clouds, while SpiderCNN32 employs step func-
tions and Taylor expansions to capture complex local geometries. Graph-
based methods treat each point as a graph vertex and construct edges to
reflect relationshipswithneighbors.DGCNN7 reconstructs local graphs and
uses EdgeConv for local feature extraction but may not fully capture edge
features. Recently, Transformer-based methods, leveraging self-attention
mechanisms successful in image analysis and NLP, have been explored for
point cloud data, as seen in PCT33 and PointTransformer34. However, the
primary challenge for these supervised methods is the scarcity of large
annotated datasets.

Self-supervised representation learning on point cloud
Self-supervised representation learning is aprominent researcharea inpoint
cloud analysis, adept at extracting effective features without labeled data. It
can be divided into two main types: contrastive and generative.

Generativemethods usemodels to approximate the underlying data or
feature distribution, revealing intrinsic point cloud characteristics. Com-
mon models include variational autoencoders and generative adversarial
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networks (GANs). Latent-GAN17 is a pioneeringmodel that appliesGAN to
raw point cloud data and embedded features to generate high-quality
samples. Yang et al.18 developed a decoder based on the concept that 3D
object surfaces can be folded from 2D planes, enhancing 3D reconstruction
quality. As transformers gain popularity in image and NLP fields,
transformer-based generativemethods like Point-BERT35 andPoint-MAE36

are emerging, with Point-MAE extending Point-BERT. OcCo19, introduced
by Wang et al. is a novel approach to point cloud completion that learns
representations by reconstructing missing data. However, these methods
can struggle with accurate reconstruction and are computationally
demanding.

Contrastive learning methods train a feature encoder to learn repre-
sentations that are similar to positive examples and dissimilar to negatives.
Info3D23 merges mutual information with contrastive learning to enhance
3D object representation by optimizing the mutual information between
local structures and the global shape. PointGLR20 integrates normal esti-
mation, self-reconstruction, and contrastive learning into a single frame-
work for bidirectional inference between global and local 3D object features,
in an unsupervisedmanner. PointContrast21 unifies the contrastive learning
paradigm for 3D point clouds to promote high-level scene understanding
throughmulti-view learning.DepthContrast37 introduces a joint strategy for
voxel and point cloud contrastive learning to improve downstream task
performance. STRL24 adapts BYOL10 for point cloud representation learn-
ing, while CrossPoint22 uses 2D images to enhance 3D point cloud under-
standing with a cross-modal contrastive method, however, obtaining 2D-
rendered images can be challenging.

Unlike methods that rely on complex strategies to prevent model
collapse, such as memory banks or asymmetric networks, we propose a
versatile contrastive learning framework with a novel loss function for ideal
point cloud representation.

Methodology
In this section, we introduce PointMoment, a self-supervised approach for
learning meaningful point cloud representations using high-order mixed
moments. We first explain the concept of high-order mixed moments
(section High-order mixed-moment). Then, we present a loss function
(section Formulation of high-order mixed-moment as a loss) designed to
pre-train the feature extractor fθðÞ in a self-supervised manner. Figure 1
shows the network framework of our approach. Finally, we detail an
application of our approach to third-order mixed moment-based self-
supervised representation learning (section Instantiating three-order
mixed-moment for contrastive learning), as depicted in Fig. 2.

High-order mixed-moment
Moments are numerical characteristics used in probability theory and sta-
tistics to describe the distribution of random variables. The most common
moments are the first-order moment (mean) and the second-order central
moment (variance), which measure the average and dispersion of a single
random variable, respectively. For a more comprehensive assessment of
multiple random variables, mixed moments are utilized.

Mixedmoments are statisticalmeasures that describe the fundamental
characteristics of a multivariate random variable’s distribution. They are
typically defined as follows:

For any positive integer ki, the mathematical expectation E½Xk1
1 :::X

kn
n �

of multiple random variables is called the k-order mixed moment, where
k ¼ k1 þ :::þkn. E½ðX1 � E½X1�Þk1 :::ðXn � E½Xn�Þkn � is then called the
k-order central mixed moment. If there are only two random variables and
both ki are 1, then the mixed moment E½ðX1 � E½X1�ÞðX2 � E½X2�Þ� is
called the covariance, which describes the degree of correlation between the
two random variables13. just start from the perspective of covariance and
reduce the feature redundancy by reducing the correlation between any two
feature variables.

After introducing mixed moments, we’ll explain their utility. In high-
dimensional feature spaces, redundant information within embedded fea-
tures can impair their utility. Tomitigate this, we applymutual information
to measure the interdependence among random variables. Let
X1;X2; :::;Xd be the random variables representing each dimension
(denoted asd)of the embedding feature.Wecanuse themutual information
(MI) formula to measure the shared information between variables:

IðX1;X2; :::;XdÞ ¼
Z
X1

Z
X2

:::

Z
Xd

pðx1; x2; :::; xdÞ log
pðx1; x2; :::; xdÞ

pðx1Þpðx2Þ:::pðxdÞ
dx1dx2:::dxd

ð1Þ
where pðx1; x2; :::; xdÞ is the joint density function of X1;X2; ::::Xd and
p x1
� �

; p x2
� �

; :::; pðxdÞ is the marginal probability density function of
X1;X2; ::::Xd respectively.

Tomake the information contained in the embedding features rich and
compact, we need to minimize Eq.1 to reduce the redundant information
between feature variables. According to statistics, Eq.1 can be minimized
when X1; X2; :::Xd are independent of each other, that is,
pðx1; x2; :::; xdÞ ¼ pðx1Þpðx2Þ:::pðxdÞ. However, this minimization process
faces two key challenges. One challenge is that pairwise independence of
randomvariables does not necessarily ensure that the total redundancyof all
variables isminimized, unless pðx1; x2; :::; xdÞ follows amultivariate normal

Fig. 1 | The overall architecture of our approach PointMoment. The loss is composed of two important parts, one is the loss based on invariance, and the other is the loss
based on redundancy reduction. The latter involves constraints of order two or higher.
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distribution, which is often hard to satisfy in practice. Another challenge is
that directly modelling the probability distribution of continuous variables
can be difficult. Therefore, a common approach is to use statistical moment
to model the probability distribution. We introduce high-order mixed
moment. We exploit the fact that all random variables are independent of
each other if and only if the expectation of all random variables is equal to
the product of their individual expectations, which can be mathematically
expressed as follows:

E½
YD
d¼1

Xd� ¼
YD
d¼1

E½Xd� ð2Þ

where E½QD
d¼1

Xd� is themixedmoment of orderD.We canminimize Eq.1 by

modelling and enforcing the random variables to satisfy the condition of
Eq.2, which induces more independence among them.

Formulation of high-order mixed-moment as a loss
Preliminary. Given a batch of randomly selected point clouds
B ¼ fpigjBji¼1, where pi 2 RN× 3, jBj denotes batch size and N denotes the
total number of points in each point cloud. We apply random data
augmentation techniques such as rotation, jittering and scaling to each
point cloud pi, generating two distinct enhanced versions of the original

data, pt1i and pt2i . Next, we feed both enhanced datasets into a network
architecture. Specifically, the feature extractor f θ maps pt1i and pt2i into a
feature representation space, followed by a projection head gφ, which
projects resulting feature vectors onto an embedding feature space. We
denote the final embedding vectors produced from this process as zt1i and
zt2i , respectively, where zti ¼ gφðf ðpti ; θf Þ;φgÞ and zti 2 RD, θf and φg
denote the trainable parameters of the encoder and projector, respec-
tively, and D denotes the dimension of the embedding vector. Our goal is
to learn compact, meaningful feature vectors without the need for
complex network architectures or optimization processes. Furthermore,
our loss function can be used in combination with a range of other
network frameworks. Figure 1 provides a general representation of our
self-supervised learning approach for point clouds.

Loss based on high-order mixed-moment. We argue that an ideal
embedding feature should possess two key attributes: invariance to
random augmentations of samples and minimal total correlation among
the vector’s variables. To achieve these, we’ve crafted distinct loss func-
tions for each property.

Redundancy reduction based on high-order mixed-moment:
Minimizing redundancy prompts the network to learn a compact embed-
dingwhere each variable conveys unique semantic information.As outlined
in Section “High-order mixed-moment,” we enforce Eq. 2 to reduce total

Fig. 2 | Self-supervised representation learning based on third-order mixed
moment. a Indicates that mixed moment are calculated for the output of each
branch, and b indicates that mixed moment are calculated for the output of a
particular branch, where the dashed line indicates that the corresponding output is

not constrained by themixedmoment. cVisualization shows the specificmeaning of
each curve, and the red square part does not take into account the calculation of the
mixed moment.

https://doi.org/10.1038/s40494-025-01571-8 Article

npj Heritage Science |          (2025) 13:252 4

www.nature.com/npjheritagesci


correlation among variables to a certain extent. We apply the Law of Large
Numbers to estimate a variable’s expectation using samplemoments, which
are then used to calculate the expectation in Eq. 2. For ease, we standardize
each feature variable z across the batch dimension to have a mean of zero
and a variance of one, as follows:

ẑtb;d ¼
ztb;d � 1

B

PB
b¼1z

t
b;dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPB

b¼1ðztb;d � 1
B

PB
b¼1z

t
b;dÞ

2
=B

q ð3Þ

Now for each dimension satisfies E½Ẑd� ¼ 0, so we only need to set

E½QD
d¼1

Ẑd� ¼ 0 to make Eq.2 hold, that is, E½QD
d¼1

Ẑd� ¼
QD
d¼1

E½Ẑd� ¼ 0.

Therefore, we propose the redundancy reduction loss based on the high-
order mixed moment as follows:

LRR ¼ 1
T

XT
t¼1

1
2M

XD
K¼2

XD
d1

XD
d2≠d1

��
XD

dK≠��≠d2≠d1
Ed1;d2 ;��;dK

� �2

0
@

1
A

2
4

3
5 ð4Þ

where K denotes the order of the mixed moment and M denotes the total
number of combinations of mixed moment of all orders, i.e.
M ¼ PD

K¼2
D!

ðD�KÞ!K!. Ed1 ;d2;��;dk is the matrix of mixed moment of order K
calculated along the batch dimension:

Ed1 ;d2 ;��;dK ¼ 1
B

XB
b¼1

YK

i¼1
ẑtb;di ð5Þ

where d1; d2; ��; dK etc. denote the index of the dimension of the embedding
vector, respectively, for any K variables with K≤D and with 1≤ dK ≤D for
any dK. Ed1;d2 ;��;dk denotes the value of the K-order mixed moment of the
random variables with index value d1; d2; ��; dk, respectively.

Transformation invariance based on co-correlation: Invariance is
the property that ensures semantically similar point cloud data are mapped
to close regions in the embedding feature space. While many methods
calculate cosine similarity between different augmented point cloud ver-
sions and build contrastive losses around it, we utilize the co-correlation
matrix from13 to bolster invariance, proposing the following loss function:

LTI ¼
1
D

XD
d¼1

1� Cdd

� �2 ð6Þ

where C is the co-correlation matrix, calculated from the outputs of two
identical networks along the batch dimension:

Ci;j ¼
PB

b¼1ẑ
t1
b;iẑ

t2
b;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPB

b¼1 ẑt1b;i

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPB

b¼1 ẑt2b;j

� �2
r ¼ 1

B

XB

b¼1
ẑt1b;iẑ

t2
b;j ð7Þ

where i and j denote the dimensional index of the embedding vector, C is a
square matrix of size D and �1≤Ci;j ≤ 1, -1 denotes negative correlation
and 1 denotes positive correlation. It is analytically easy to see that Eq.7 can
eventually be reduced to the same expression as Eq.5, which essentially
satisfies the same underlying logic. Equation 6maximizes the correlation of
the different augmented embedding features by forcing the diagonal ele-
ments of the co-correlationmatrix tobe1, thus satisfying the transformation
invariance.

Based on the above analysis, we give the final loss:

Ltotal ¼ LTI þ λLRR ð8Þ

where λ is a parameter used to trade off the first and second terms.

Instantiating three-ordermixed-moment for contrastive learning
Following the discussions in sections “High-order mixed-moment” and
“Formulation of high-order mixed-moment as a loss,” we introduce a self-
supervised representation learning approach for point clouds that utilizes
third-ordermixedmoments, as depicted in Fig. 2a. Additionally, we present
a more computationally efficient version shown in Fig. 2b, which alleviates
the requirement for all network branches to be active. It randomly selects a
branch to achieve the desired outcome, thereby reducing computational
demands. The experimental results validating this approach are detailed in
the subsequent section. The subsequent experiments are all based on k = 3,
that is, the third-order mixing moment.

Figure 2 illustrates our approach utilizing third-order mixedmoments
to compute the total lossLtotal for K = {2,3}. The green curve represents the
second-order mixed moment calculated for the embedding features of the
branch output. Similarly, the blue curve represents the third-order mixed
moment computed for the branch output. These two constraints are
combined, i.e. LRR, to eliminate redundancy in the embedding features.
Finally, the red curve signifies the consistency of data after undergoing two
transformations, i.e. LTI, which completes the transformation invariance
constraint.

Experiments
This section presents a comprehensive evaluation of our proposed method.
First, we elucidate our pre-training strategy and describe the datasets
employed. Second,we assess the transferability of our approach through two
prevalent downstream tasks: object classification and segmentation. Third,
to validate the efficacy of our loss function and parameter selection, we
conduct thorough ablation studies. Finally, we demonstrate the practical
utility of our method by applying it to the Terracotta Warriors dataset,
showcasing its performance in a real-world scenario.

Pre-training
Dataset. For pre-training, we utilized the ShapeNet38 dataset, a compre-
hensive repository of synthetic 3D shapes comprising over 50,000 unique
models across 55 common object categories. To ensure comparability, we
adhered to the training protocol established by STRL24. This procedure
involved randomly sampling 2048 points from each model in the dataset.
Subsequently, we applied a series of data augmentation techniques,
including random rotation, translation, scaling, clipping, and jittering, fol-
lowed by normalization. These augmented samples were then fed into the
network for pre-training, maintaining consistency with established meth-
odologies in the field.

Pre-training Detail. For a fair comparison with existing methods,
we adopt the same method as STRL24, OCCO19, etc., using PointNet5

and DGCNN7 as feature extractors for point clouds and a two-layer
multilayer perceptron as the projection head to map feature vectors
into a 512-dimensional embedding space. We train the model in an
end-to-end manner for 200 rounds using an Adam optimizer with a
weight decay of 1×10-6 and an initial learning rate of 1 × 10-3. Addi-
tionally, we also adjust the learning rate by implementing a decay
strategy based on cosine annealing. The batch size is 16. After pre-
training, we discarded the projection head gϕðÞ and retained f θðÞ for the
following downstream task.

Downstream tasks
3D Object classification. The 3D object classification task involves
categorizing point cloud data to identify the specific class of each point
cloud. We assess the shape understanding and generalization of pre-
trained models using two benchmark datasets: ScanObjectNN39 and
ModelNet4040. ScanObjectNN, a challenging dataset of real-world 3D
point clouds from indoor scenes, contains 15 categories with 2880
objects, Among these, 2304 for training and 576 for testing. ModelNet40,
featuring synthetic objects, includes 12,311 CAD models across 40
categories, and 2468 for testing and 9843 for training, allowing us to
evaluate classification performance on synthetic data.
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Linear classification is a common method to evaluate the migration
and generalization ability of self-supervised models in classification tasks.
We follow the standard protocols of ref. 24 and ref. 19 to test the accuracy of
our network model in object classification. On the classification data set, a
linear Support VectorMachine (SVM) classifier is employed. This classifier
is trained on features extracted from the training set using a pre-trained
feature extractor, whose parameters remain fixed during this process.
Subsequently, the trained SVM is applied to predict classifications based on
the 3D features extracted from the test set. This methodology is widely
adopted in the field for assessing the effectiveness of learned feature
representations in downstream classification tasks. For our experiments, we
employ two commonly used backbonenetworks, PointNet andDGCNN, as
feature extractors.

Table 1 presents the accuracy of PointMoment for linear classification
onModelNet40. To conserve computational resources, we randomly chose

onenetworkbranch for thehigh-ordermixedmoment constraint, achieving
comparable results to using all branches, and adopted this single-branch
constraint for subsequent experiments. Our method surpasses other state-
of-the-art (SOTA) unsupervised and self-supervised algorithms when
employing PointNet or DGCNN as the backbone network. Notably, our
approach uses a basic network architecture without the complex features of
STRL, such as asymmetric networks or gradient stopping. Specifically, our
method outperforms STRL by 0.5% and 0.1% when using PointNet and
DGCNN, respectively, highlighting the effectiveness of our approach. We
assessed the generalizability of PointMoment in real-world scenarios by
testing on ScanObjectNN with an SVM classifier.

Table 2 compares the linear classification accuracy of other self-
supervised methods on ScanObjectNN. Our method outperformed the
previous SOTA approaches by 4.8% and 2.6% when using PointNet and
DGCNN as feature extractors, respectively. This result underscores the
generalizability of representations learned from synthetic data, confirming
the effectiveness of our approach.

3DObjectpart segmentation. Object part segmentation, a complex and
crucial task in 3D recognition, involves categorizing each point of an
object into specific part classes, such as a table’s leg or a car’s tire. We
conducted experiments using the ShapeNetPart41 dataset, which includes
16,991 objects across 16 categories with 50 distinct parts, ranging from 2
to 6 parts per object. As a benchmark, ShapeNetPart effectively measures
object part segmentation performance. Following the approach of pre-
vious studies24 and19, we pre-trained our model using DGCNN as the
backbone network, followed by fine-tuning to enhance performance.
Specifically, we conducted fine-tuning experiments on the ShapeNetPart
dataset in an end-to-end manner. For the fine-tuning process, we
employed SGD as the optimizer, with an initial learning rate of 0.1 and
weight decay of 1 × 10−4. The momentumwas set to 0.9, with a batch size
of 8. The model was trained for 300 epochs. We selected mean Inter-
section over Union (mIoU) as the evaluation metric, given its precision
and widespread use in the field.

Table 3 compares segmentation outcomes for supervised learning
methods andvarious self-supervised approachesonShapeNetPart.Ourpre-
training approachoffered better initialweights forDGCNNthan those from
random initialization by supervised learning, increasing mIoU by 0.3%.
Additionally, our model outperformed the current SOTA self-supervised
method by 0.3% in mIoU, indicating that our use of high-order mixed
moments yields more discriminative and less redundant features. The
visualization results are presented in Fig. 3 Our segmentation outcomes
demonstrate a high degree of similarity to the ground truth, indicating that
our method effectively captures fine-grained information within the point
cloud. This close correspondence between our results and the actual seg-
mentation underscores the capability of our approach to discern and
represent detailed structural features in point cloud data.

3D semantic segmentation. Semantic segmentation is a challenging
task that aims to assign a semantic label to each point in a point cloud,

Table 1 | Comparison of the linear SVM classification on
ModelNet40

Method ModelNet40

3D-GAN42 83.3

Latent-GAN17 85.7

SO-Net43 87.3

FoldingNet18 88.4

MRTNet44 86.4

3D-PointCapsNet45 88.9

MAP-VAE46 88.4

DepthContrast37 85.4

Jigsaw47+PointNet 87.3

Rotation11+PointNet 88.6

OcCo19+PointNet 88.7

STRL24+PointNet 88.3

PointMoment-all(Ours)+PointNet 88.8

PointMoment-singler(Ours)+PointNet 88.8

Jigsaw47+DGCNN 90.6

Rotation11+DGCNN 90.8

STRL24+DGCNN 90.9

OcCo19+DGCNN 89.2

PointMoment-all(Ours)+DGCNN 90.9

PointMoment-singler(Ours)+DGCNN 91.0

The linear classifier is fitted on the training set of ModelNet40 using the pre-trained model, and the
model performance is evaluated on the test set.

Table 2 | Comparison of classification on ScanObjectNN

Encoder Method Acc.

PointNet Jigsaw47 55.2

OcCo19 69.5

STRL24 74.2

PointMoment(Ours) 79.0

DGCNN Jigsaw47 59.5

OcCo19 78.3

STRL24 77.9

PointMoment(Ours) 80.5

PointMoment achieves improvements compared to other self-supervised methods on both
PointNet and DGCNN, which illustrates the effectiveness of our method in real-world scene
classification.

Table 3 | Part segmentation results on ShapeNetPart dataset

Category Method mIoU

Supervised PointNet5 83.7

PointNet++6 85.1

DGCNN7 85.1

Self-Supervised PointContrast21 85.1

Jigsaw47 84.3

OcCo19 85.0

PointMoment(Ours) 85.4

Our method outperforms supervised learning methods with random initial weights and other self-
supervised learning methods with pre-trained weights.
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enabling the grouping of regions with meaningful significance. This task
is particularly important in complex indoor and outdoor scenes, which
are often characterized by substantial background noise. To evaluate the
representational capacity and generalization capability of our model, we
conducted semantic segmentation experiments on the Stanford Large-
Scale 3D Indoor Spaces (S3DIS) dataset. S3DIS is awidely used 3D indoor
scene dataset that comprises scanned data from272 rooms across 6 zones,
covering a total area of approximately 6000 square meters. The dataset
defines 13 semantic categories and provides fine-grained, point-wise
semantic labels, where each point is annotated with comprehensive
9-dimensional feature information, including spatial coordinates (XYZ),
color attributes (RGB), and normalized positional coordinates.

In our experiments, we fine-tuned the pre-trained model on all areas
except Area 5 (the largest region in the dataset) and evaluated it on Area 5.
The backbone network of our model is PointNet. To ensure experimental
fairness, we strictly adhered to the experimental protocol proposed by Qi
et al.5 andWang et al.7 Specifically, we divided each room into small blocks of
1m × 1m and randomly sampled 4096 points from each block as inputs to
the model, using only geometric features (XYZ coordinates) for each point.

The experimental results are summarized in Table 4. Our method
demonstrates significant performance improvements compared to existing
supervised and self-supervised learning approaches. Specifically, our
method achieves a mIoU (mean Intersection-over-Union) improvement of
0.2 over the Multi-view rendering method. Furthermore, by applying self-
supervisedpre-training onPointNet, our approach achieves a 1.5-point gain
in mIoU compared to PointNet trained from scratch. These results clearly
highlight the effectiveness of self-supervised pre-training in learning robust
and transferable features, particularly in scenarios with limited labeled data.

Ablations and analysis
Impact of high-order mixed moment. To assess the impact of high-
order mixed moments, we conducted ablation studies with three loss
functions: i) an invariance-based loss as a baseline; ii) the baseline plus a
second-order mixed moment loss to evaluate its effectiveness; iii) the
second-order loss plus a third-order mixed moment loss to understand
the third-order’s impact. Table 5 presents the comparative results.

Relying only on the invariance-based loss led to an uneven feature dis-
tribution and reduced classification accuracy. Adding the second-order
mixed moment mitigated model collapse and redundancy, significantly
improving the model’s representational power for both PointNet and
DGCNN across datasets. The third-order mixed moment further mini-
mized redundancy. It increased classification accuracy by 0.8% for
PointNet and 1.7% for DGCNN onModelNet40 compared to using only
the second-order moment. These findings underscore the importance of
incorporating higher-order mixed moments.

Figure 4 visualizes features from theModelNet1040 test set using t-SNE,
extracted with the pre-trained PointNet. Incorporating second- and third-
order mixed moments improved the separability of different classes.
Notably, the addition of the third-order mixed moment allowed for clearer
differentiation of objects with less distinct boundaries, including sofas, beds,
and bathtubs.

Sensitivity analysis of λ. Intuitively, the parameter λ significantly
influences pre-training and, consequently, the performance on down-
stream tasks. Our study examines how varying λ affects classification
performance. We tested λ values from 0.001 to 5, using PointNet as the
backbone network for pre-training, and conducted linear classification
on both ScanObjectNN and ModelNet40 datasets. As Table 6 shows, an
optimal classification performance on both datasets was achieved when λ
was set to 0.5.

Application on the Terracotta Warrior Dataset
Terracotta Warriors Dataset. The Terracotta Warriors, renowned as
one of the Seven Wonders of the World, represent a significant ceramic
cultural relic in China. Their virtual restoration holds great importance
for cultural heritage preservation and transmission. This study focuses on
the 3D digitization and processing of Terracotta Warrior fragments for
neural network analysis. Our dataset was acquired using a CreaformVIU
718 handheld 3D scanner in the Visualization Laboratory. Due to the
high resolution of the resulting point clouds, which poses challenges for
direct neural network input, we employed a preprocessing step. The
Clustering Decimation method, available in the Meshlab tool, was uti-
lized to downsample the point cloud data. This approach effectively
preserves structural information while reducing each fragment to a
uniform 2048 points. The dataset was categorized according to the
anatomical parts of the TerracottaWarriors: arms, heads, legs, and bodies
(as illustrated in Fig. 5). The sample distribution across these categories is
presented in Table 7. For our experimental protocol, we adopted an
80–20 split, allocating 80%of the data for training and the remaining 20%
for testing.

Classification of TerracottaWarrior Dataset. To validate the efficacy of
our method on real-world 3D Terracotta Warrior fragments, we con-
ducted classification experiments using our dataset.We fine-tuned a pre-
trained DGCNN model on the Terracotta Warrior dataset, with the

Fig. 3 | The visualization of part segmentation results on ShapeNetPart. The first row is the ground truth, and the second row is our method.

Table 4 | Semantic segmentation results on S3DIS dataset,
evaluated on Area 5

Category Method mIoU mAcc

Supervised PointNet5 45.4 49.0

PointNet++6 53.5 –

Self-Supervised Multi-view rendering48 46.7 85.0

Jigsaw47 43.6 82.5

OcCo19 44.5 83.6

PointMoment(Ours) 46.9 85.5
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results presented in Table 8. It’s worth noting that research on self-
supervised representation learningmethods based onTerracottaWarrior
point cloud data is scarce. Consequently, our comparisons primarily
involve traditional and supervised methods. The highest accuracy
achieved by existing traditional methods is 87.64%. Our approach sig-
nificantly outperforms this benchmark, demonstrating an improvement
of 4.46%. Moreover, our method yields competitive results when com-
pared to supervised learning approaches. These experimental outcomes
indicate that our technique effectively bridges the gap between supervised
and self-supervised learning. It provides a robust set of initial model
parameters for the task of Terracotta Warrior fragment classification,
thus contributing a valuable research methodology for the virtual
restoration of these artifacts. These results not only demonstrate the
potential of our method for the specific task of Terracotta Warrior
restoration but also suggest its applicability to broader cultural heritage
preservation efforts involving 3D artifact reconstruction.

Segmentation of Terracotta Warrior Dataset. Segmentation of Ter-
racotta Warriors plays a crucial role in the effective and accurate

restoration of cultural relics, particularly in the virtual reconstruction of
ceramic artifacts. Unlike the Terracotta fragment classification task, our
segmentation study utilizes complete Terracotta Warrior models. We
compiled a dataset of 150 complete Terracotta models using 3D scanners
and data augmentation techniques, and all terracotta warriorsmodels are
uniformly downsampled into 4096 point clouds. Traditionally, the three-
dimensionalmodel of a TerracottaWarrior is divided into six parts: head,
body, left arm, right arm, left leg, and right leg. However, to enhance the
restoration process and rigorously evaluate our method’s performance,
we manually annotated the original Terracotta models into eight distinct
segments: head, body, left hand, left arm, right hand, right arm, left leg,
and right leg.We employed an 8-2 split for our dataset, allocating 80% for
training and 20% for testing. To validate the effectiveness of our approach
in segmenting TerracottaWarriors, wefine-tuned a pre-trainedDynamic
Graph CNN (DGCNN) on our Terracotta Warriors dataset. The seg-
mentation results are presented in Table 9. The empirical evidence
demonstrates that our approach significantly outperforms existing
unsupervised segmentation methods for Terra-cotta warriors. Specifi-
cally, our method achieves improvements of 6.8% and 3.8% in segmen-
tation accuracy compared to SRG(DGCNN) and EGG(DGCNN),
respectively. The resulting segmentation outcomes are illustrated in Fig.
6. The visual results demonstrate that our method achieves high-quality
segmentation, effectively distinguishing between the eight predefined
parts of the Terracotta Warriors. These results not only showcase the
capability of our method in accurately segmenting Terracotta Warrior
models but also highlight its potential in facilitating more precise virtual
restoration processes. The improved granularity of segmentation (eight
parts instead of six) allows for more detailed analysis and reconstruction,
potentially leading to more accurate and comprehensive restoration
outcomes.

Conclusion
The digital preservation of cultural heritage has become increasingly crucial
in our technologically advancing world. This paper has explored the
application of point cloud self-supervised learning technology to the Ter-
racottaWarriors, introducing high-order mixed moments as an innovative

Table 5 | The accuracy of linear SVM classification using retrained embedding on ModelNet40 and ScanObjectNN for
PointMoment

Encoder invariance two-order
mixed moment

three-order
mixed moment

Acc.

ModelNet40 ScanObjectNN

PointNet √ 40.5 40.6

√ √ 88.0 73.4

√ √ √ 88.8 75.4

DGCNN √ 77.3 56.6

√ √ 89.3 79.3

√ √ √ 91.0 80.5

Fig. 4 | TheT-SNE feature visualization on theModelNet10 test set, post the training of PointNet as the self-supervised backbone network.The feature learned by three-
order mixed moment(right) provides better discrimination of classes (e.g., sofas, beds and bathtubs) than using only invariance(left) or two-order mixed moment(middle).

Table 6 | Linear classification results for different λparameters
onModelNet40 andScanObjectNNdatasets after pre-training
using PointNet

λ Acc.

ModelNet40 ScanObjectNN

0.001 72.5 57.3

0.005 78.5 62.9

0.01 81.2 66.6

0.05 84.4 71.4

0.1 88.5 74.8

0.5 88.8 79.0

1 88.0 76.4

5 87.8 74.1
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approach to enhance feature characterization while reducing redundant
information in high-dimensional embedded features. Firstly, our research
demonstrates the significant potential of high-order mixed moments in
feature redundancy reduction. By effectively minimizing redundant infor-
mation in high-dimensional embedded features, we have developed a fea-
ture extractor with superior representational capabilities. This approach
results in more independent and compact representational information,
which is crucial for accurate analysis and restorationof complexartifacts like
the Terracotta Warriors. Secondly, a key advantage of our method is its
ability to address the model collapse problem inherent in self-supervised
learning without resorting to complex techniques such as asymmetric
network frameworks. This simplification in implementation, while main-
taining robust performance, represents a significant step forward in thefield

of self-supervised learning for 3D data. Furthermore, extensive testing on
multiple downstream tasks using existing public datasets has validated the
versatility and effectiveness of our technique. The competitive results
achieved across various applications underscore the broad applicability of
our approach beyond the specific context of cultural heritage preservation.
Notably, when applied to the Terracotta Warriors dataset, our method has
shown remarkable performance, outperforming existing approaches in
both fragment classification accuracy and segmentation precision. These
results are particularly significant given the complexity and historical
importance of the Terracotta Warriors. The improved accuracy in

Fig. 5 | Illustration of the Terracotta Warriors fragments.

Table 7 | Number of fragments for each class in the Terracotta
Warriors fragments dataset

Label Arm Body Head Leg Total

Train 4178 4738 2430 4274 15,620

Test 1045 1185 607 1068 3905

Table 8 | Compared with other methods on the 3D Terracotta
Warrior fragment datasets

Method Acc.

Method in2 87.64

Method in1 91.41

PointNet5 88.93

PointMoment(Ours) 92.10
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classification and segmentation can potentially lead to more precise virtual
restorations and deeper insights into the manufacturing techniques and
artistic styles of ancient China. Looking ahead, we recognize that the
computational complexity of calculating high-order mixed moments is a
challenge that requires further improvement. To address this, we plan to
explore more efficient algorithms to approximate or estimate high-order
mixed moments. Our initial idea is to utilize feature decomposition tech-
niques to decompose high-order mixed moments into combinations of
lower-order moments, thereby reducing computational complexity. Addi-
tionally, we can employ block processing techniques to divide large-scale
data into smaller chunks, compute each separately, and then combine the
results. This approach would reduce memory usage and improve compu-
tational efficiency. Furthermore,we intend to perform random sampling on
the final result matrix based on existing high-order mixed-moment algo-
rithms. By avoiding the inclusion of all matrix elements in the loss calcu-
lation, we can significantly reduce computational complexity. Specifically,
we plan to adopt Monte Carlo sampling techniques to randomly select a
subset ofmatrix elements for estimation, approximating the true values.We
will then apply weighted sampling according to the importance of feature

variables to ensure that the impact of key features is fully considered. Finally,
during backpropagation, we will compute gradients only for the important
sampled points, further reducing computational load. This continued
research aims to optimize the performance of our methods and push the
boundaries of what’s possible in digital cultural heritage preservation.
Additionally, we anticipate that our approach could be extended to other
types of 3D cultural artifacts, potentially opening up new possibilities in the
field of virtual museums and digital archiving. In conclusion, our work not
only presents a novel technical approach but also demonstrates the trans-
formative potential of interdisciplinary research combining computer sci-
ence and archaeology. As we continue to refine and expand these
techniques,wemove closer to a futurewhere our cultural heritage is not only
preserved but also made more accessible and understandable through
advanced digital technologies. The success of our method in both general
point cloud tasks and specific Terracotta Warrior applications underscores
the potential of high-order mixed moments as a powerful technique for
point cloud representation learning, opening upnewavenues for research in
self-supervised learning for 3D data across various domains.

Data availability
Data underlying the results presented in this paper can be obtained from the
internet. The Terracotta Warriors data will be available upon reasonable
request.
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