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Wooden architectural heritage, an irreplaceable repository of cultural value, is highly vulnerable to
factors such as component aging, biological infestations, and various forms of damage. Most current
preservationmethods primarily focus on salvage and repair after damage occurs, lacking the ability to
predict changes in the structural components in advance. This study addresses this gap by
constructing a digital twin behavioral model through the design of a TLSA-PSO prediction network
grounded in the broader digital twin framework. Using typical ancient wooden architectural heritage in
China as a case study, the validity and accuracy of the behavioral prediction model are verified.
Additionally, a digital twin behavioralmodel visualization system is developed to display the prediction
results. Experimental outcomes demonstrate that the behavioral prediction model can accurately
forecast the behavioral changes of architectural heritage, achieving a goodness of fit of 0.99. This
makes preventive protection of architectural heritage feasible.

As a tangible testament to history, architectural heritage is highly vulnerable
to the ravages of time, mainly when constructed with wood, which is sus-
ceptible to weathering, moisture, and the effects of prolonged exposure to
the elements. This often results in structural degradation, such as cracks,
tilting, and other forms of damage1–3. Particularly susceptible are ancient
wooden pagodas andMing andQing official buildings, such as the Yingxian
Wooden Pagoda—China’s oldest and tallest wooden tower—which pos-
sesses distinctive structural characteristics and significant historical value,
making it an essential focus for cultural heritage preservation4. Since its
construction, the YingxianWooden Pagoda has endured numerous natural
disasters, including earthquakes and storms. However, due to inadequate
restoration efforts, the pagoda has suffered irreversible structural tilts, with
the second floor being the most severely damaged, thereby jeopardizing the
structure’s overall stability5. These deformations have exacerbated localized
stress concentrations within the structure and compromised the tower’s
mechanical integrity, heightening the risk of potential safety hazards6–8.
Consequently, the real-timemonitoring and analysis of deformation inbuilt
heritage are critical for assessing its current state of health and predicting
future risks to its structural integrity.

To ensure the long-term safety and preservation of wooden archi-
tectural heritage, national authorities have consistently enacted laws and
regulations to safeguard architectural heritage. Concurrently, researchers
have pursued advanced restoration techniques and protection strategies for

such heritage. However, most current preservation efforts predominantly
focus on emergency response and post-damage salvage, often neglecting the
critical need for continuous monitoring and proactive, preventive
conservation9. The emergence of digital twin technology offers innovative
solutions and new perspectives for conserving architectural heritage, pro-
viding a transformative approach to long-term preservation and risk
mitigation10. Digital twin technology leverages multi-dimensional virtual
models and real-time data integration to offer a wide array of practical and
functional services, including monitoring, simulation, prediction, and
optimization, all facilitated through closed-loop interactions between the
physical and virtual environments. By employing the digital twin model,
advanced data analysis and simulations can be conducted to forecast the
future state of a building, enabling predictive maintenance and enhancing
the proactive management of structural integrity11. Although digital twin
technology has demonstrated distinct advantages across various domains,
its application in conserving architectural heritage remains exploratory.
Vuoto et al.12 investigated its potential for preserving the structural integrity
of architectural heritage, yet their study lacked practical validation. Simi-
larly, Grigor Angjeliu et al.13 proposed a digital twin model development
program aimed at predicting the structural behavior of masonry heritage
based on the response of the Milan Duomo. However, a comprehensive
theoretical framework for applying digital twin technology in the preventive
conservation of built heritage has yet to be established.
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Behavioral models can be mainly divided into mechanistic prin-
ciples and behavioral changes, and this study will focus on model
construction in terms of behavioral change prediction14. Architectural
heritage, a complex system influenced by multiple interconnected
factors, benefits from behavioral models, enabling digital twin tech-
nology to simulate and reflect the real-time condition of physical
entities15. By precisely modeling the behavior and responses of these
entities, behavioral models not only facilitate a deeper understanding of
the system’s current state but also allow for the prediction of future
conditions and potential issues based on historical and real-time data16.
This capability provides a valuable platform for architectural heritage
conservation, enabling the testing and validating of new strategies or
modifications without directly affecting the physical structures
themselves.

In the realm of behavioral models, there exist two distinct com-
ponents: mechanism principle and behavior prediction. The present
study will specifically concentrate on developing a model for behavior
prediction. There are two aspects to consider when selecting the model
substrate: the characteristics of the surface displacement data of
architectural heritage components that are nonlinear, non-stationary,
dynamic, and complex17,18. The second is that given the dynamics and
uncertainty of time series data, a prediction network is needed to
capture these complex changes effectively. Conventional approaches to
sequence analysis, such as ARIMA and VAR19,20, mostly rely on linear
assumptions and have limitations in fully capturing nonlinear
dynamics. To date, deep learning has substantially advanced predictive
modeling21.Within deep learningmodels, backpropagation (BP) neural
networks, which are conventional neural networks, do not transmit
information between neurons in their network layers22. This limitation
restricts the network’s ability to comprehend the semantic connections
between data points in a sequence. Conversely, conventional recurrent
neural networks (RNNs) incorporate inter-layer node connections into
BP neural networks, enabling the transmission of information along the
sequence, thereforemerging past information with the present time23,24.
However, the RNN gradient concatenation method encounters the
issue of vanishing or bursting gradients when used to long sequence
data, which restricts the duration of its predictions. To solve the pre-
diction challenges of time series data with long-term dependencies,
GRU was introduced as a variant of LSTM that uses hidden units to
record historical data25,26. Ju et al.27 used a GRU neural network to deal
with long-term structural temperature prediction of an ancient build-
ing in China and solved the problem of low accuracy due to the time lag
effect. Furthermore, extensively researched by scholars, convolutional
neural networks (CNNs) can efficiently capture local characteristics in
time-series data28,29. Nevertheless, these findings do not apply to data
that rely on long-termmonitoring of relationship building. A temporal
convolutional network (TCN) is proposed based on CNN to study and
predict the feature relationships in time series30,31. Nevertheless, more
than those mentioned above, a single predictive network model is
required to fulfill the application needs due to the intricate architecture
of existing heritage and the growing amount of data on intricate
component behaviors. Therefore, several hybrid models are suggested
to fully exploit each approach’s benefits. TheCNN-LSTMhybridmodel
proposed byWu et al. demonstrates superior performance compared to
a single CNN and a single LSTM approach in the prediction mode32.
However, in this model, all features are treated equally, which may
result in the underappreciation of key features that play a critical role.
Babak Alizadeh et al.33 introduced an LSTM model integrated with the
attention mechanism and Bayesian optimization. This LSTM-
Attention model enhances complex time series data processing by
focusing on pivotal time points. Similarly, Wen et al.34 proposed a deep
learning model for predicting displacement deformation based on SA-
LSTM. Their SA-LSTM model demonstrated superior performance in
predicting long-term sequence data compared to a single LSTM net-
work. However, this model cannot address abrupt anomaly data. Given

that the digital preservation of architectural heritage is still in its early
stages, and considering the complexity and uncertainty of surface
displacement data for architectural components, no existing research
has yet proposed a time series prediction network model that can be
effectively applied to architectural heritage conservation.

Facing the demand for preventive protection of architectural
heritage, this study aims to provide a digital solution for accurate
cognition of the health status of architectural heritage from the per-
spective of a digital twin. Through an in-depth analysis of the archi-
tectural heritage digital twin framework and the comprehensive
integration of various deep learning techniques, this study combines
TCN and LSTM neural networks. TCN is particularly adept at cap-
turing long-range dependencies in time series data. At the same time,
LSTM excels at detecting more minor, abrupt fluctuations or local
nonlinear features, especially when dealing with data characterized by
long-term dependencies. Fusing these two models enables a more
robust handling of complex relationships within extended time series
data. Furthermore, this study incorporates the self-attention mechan-
ism, which allows each element in the input sequence to focus on the
relevance of other elements and account for its relationship within the
sequence. This mechanism assigns weights to different features,
enabling the network to prioritize the most pertinent aspects of the
input data for the current task. Additionally, the PSO algorithm is
employed to optimize the parameters of the networkmodel, providing a
practical and flexible approach to fine-tuning and identifying the
optimal model solution. This study centers on developing behavioral
models for architectural heritage digital twins, utilizing the designed
TLSA-PSO deep learning neural network. A digital twin system for
architectural heritage was created to visualize and display the predicted
outcomes of the behavioral model, thereby enabling the shift from
reactive salvage conservation to proactive preventive conservation.

Methods
Digital twin behavioral model
The core concept of the digital twin is to create a complete virtual model to
mirror a real-world object or system, so constructing a digital twinmodel of
architectural heritage is the key to the preventive conservation of archi-
tectural heritage, and the construction of a behavioralmodel is at the core of
the implementation of digital twin technology. The digital twin behavioral
model can be described by the Eq. (1):

BM ¼ fBAT;BLA; BFg ð1Þ

Where BAT denotes behavioral attribute, BLA denotes behavioral algo-
rithm, and BF denotes behavioral function.

Behavioral models mainly describe the real-time behaviors of archi-
tectural heritagephysical entitiesunder different temporal and spatial scales,
such as evolutionary behaviors and performance degradation behaviors
over time under the coupling of the external environment and internal
causes. Suchmodels are based on physical laws, statistical data andmachine
learning algorithms. They can predict and simulate architectural heritage
entities’ possible behaviors and changes under realistic and specific condi-
tions. In the preventive conservation of architectural heritage, historical data
and on-site monitoring data are used to train the models to predict the
future deformation of the building by simulating the environmental impacts
it is subjected to, to guide themaintenance of the architectural heritage, and
to prioritize the parts that may suffer serious consequences due to envir-
onmental changes or physical wear and tear, to achieve predictive
maintenance.

TLSA-PSO network model design
In this paper, aTLSAdeep learningneural network is designed, and thePSO
algorithm is used to optimize the prediction networkmodel to construct the
TLSA-PSOmodel used for predicting the digital twin behaviors of wooden
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tower components. The structure of the TLSA-PSO model is shown in
Fig. 1.

The architecture consists of an input layer, a TCN layer, stacked LSTM
modules, an attention layer, and anoutput layer. The input layer receives the
data in the form of a three-dimensional tensor with dimensions of
(batch_size, look_back, input_features). Through the fully connected layer,
the output layer converts this data into a two-dimensional tensor of
(batch_size, output_features). Here, batch_size denotes the overall sample
size, and the dataset is partitioned into training and testing sets with an 80%
to 20% ratio.

The TCN module primarily comprises a series of residual units,
including two types of one-dimensional dilated causal convolution
units, weight normalization, activation functions, and a discard layer.
TCN is a specific convolutional neural network developed for analyzing
time series data. It achieves this using convolutional layers, such as
causal and dilated convolution, significantly enhancing the receptive
field. This enables TCN to capture long-term dependencies in time
series data efficiently. Conventional causal convolution is limited to
analyzing a small quantity of historical data. The receptive field’s size
grows linearly even when several hidden layers are included. Within
dilation convolution, the dilation basis, denoted as d, governs the dis-
tance between input data points in the layer. The receptive field of a
causal convolution in one dimension is equivalent to the size of the
kernel. To augment themagnitude of the receptive field, it is essential to
incorporate the dilation base, represented as b. There is a mathematical
equation d ¼ bi, where i represents the number of layers below. It
should be noted that the kernel size must be greater than or equal to the
value of the dilation base b. As shown in the Fig. 2, a multilayer dilation
convolution with b equal to 2 and kernel size equal to 3 is schematically
illustrated. In general, adding one layer of dilation convolution will
increase the size of the receptive field ðk� 1Þ*d, and the expression for
the size of the receptive field s is shown in Eq. (2):

s ¼ 1þ
Xn�1

i¼0

ðk� 1Þ*bi ¼ 1þ ðk� 1Þ* b
n � 1
b� 1

ð2Þ

Where n is the number of layers of the extended convolution, k is the kernel
size, and b is the expansion base.

The equation demonstrates that the magnitude of the sensory field
increases exponentially as the number of layers increases. Minimizing
the number of layers required to ensure comprehensive data coverage is
possible for time series data with substantial quantities. Causal con-
volution in TCN is unidirectional, meaning that the output at time t in
the model is solely influenced by the inputs at time t and before time t in
the preceding layer. This ensures that the model retains historical
information and is not sensitive to future information, preserving the
time series properties of the data. The residual linking unit converts the
causal convolution between one dimension into residual block linking.
Every residual block is represented by the numerical valuesðk; dÞ,
wherek represents the size of the relevant kernel. The input for the next
block is generated by augmenting each residual block with two con-
volutional layers. The network demonstrates fast convergence, and the
extended convolution ensures the extraction of all intrinsic properties
of the data.

The LSTM layer is typically positioned after the TCN output to
facilitate the continued processing of sequence data and extract valu-
able temporal characteristics for long-term memory. Due to its capa-
city to accommodate nonlinear entities and regulate the flow of
information by incorporating “gate” structures (input gates, oblivion
gates, and output gates), the LSTM model is especially well-suited for
analyzing and forecasting events with extended time intervals in a time
series.

Figure 3 shows the LSTM cell’s structure, including the three gates’
workingmechanism and the information flowpath between different parts.
t-1 moment of the memory cell state valueCt�1, t-1 moment of the hidden
state informationht�1, and the currentmoment of the input xt are the inputs
of the LSTM cell, and the current moment of the cell state value Ct and the
currentmoment of the hidden state ht are the outputs of the LSTMcell. The
LSTM When the network is running, the input xt of the current moment
and ht�1 of the previous moment are input to the network together; firstly,
some information is forgotten through the forgetting gate; then the input
gate is used to update the state of the storage cell, realizing the update of the
cell state variable; the cell state valueCt of the currentmoment is determined
through the forgetting gate and the input gate; finally, the updated hidden
state ht is obtained through the output gate to use it as an input for the next
moment.

Fig. 1 | Structure of the TLSA-PSO network model.
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After multiple rounds of experimentation and validation, it was
determined that the optimal structure in the PSO optimization network
process consisted of three stacked LSTMmodules. The first LSTM layer
processes the raw input data, while the intermediate LSTM layer
enhances feature extraction and transfers the processed information to
the final LSTM layer. The last LSTM layer generates the prediction
results. Following PSO optimization, the number of neurons in each
layer was set to 100, 200, and 300, respectively. This configuration
demonstrated the highest prediction accuracy and network stability in
the experimental trials. In order to mitigate the risk of overfitting, the
Dropout layer decreases the complexity of the model by randomly
eliminating (zeroing) a fraction of the neuron outputs throughout the
training phase. TCN and LSTMmodels may undergo a progressive loss
of predictive information when predicting long-term sequences. The
self-attention structure establishes a direct connection between each
time step of the input sequence and the output, preventing information
from weakening during the layer-by-layer transfer process. The pur-
pose of the self-attention layer is to allocate weights to the outputs of the
LSTM layer to augment the model’s capacity to discern the crucial
information of the input sequence. This enables the model to con-
centrate on the specific portions of the input data that need more
emphasis, enhancing the prediction’s accuracy and the model’s
response speed.

TLSA-PSO model includes several hyperparameters, including the
convolutional kernel, number of convolutional layers, and learning rate, that
substantially influence the model’s performance. The ideal combination of
these parameters often requires rigorous experimentation and fine-tuning.
PSOaims to generate the optimal combination of parameters forTLSA.The
pseudocode representation of the PSO algorithm is shown in Table 1.

PSO algorithm can find the best solution in a hyperparametric mul-
tidimensional space bymimicking the search behavior of a flock of birds. Its
objective is to minimize the loss function. The algorithm systematically
modifies the location of each “particle” by exchanging information and
updatingpositions amongall participants, therebynearing the ideal solution
on a global scale. This dynamic process may bemathematically represented
by Eq. (3):

Vkþ1
i ¼ ωVk

i þ C1r1ðpkbest;i � Xk
i Þ þ C2r2ðgkbest;i � Xk

i Þ
Xkþ1
i ¼ Xk

i þ Vkþ1
i

ð3Þ

Where Xk
i is a vector with N dimensions that represents the position

information of the ith particle at the Kth iteration,ω is the weight of inertia,
Vk

i is the current velocity of the particle, r1 and r2 are random numbers in
the range of ½0; 1�; C1 and C2 are coefficients of social acceleration, Pbest;i is
the local optimal position of the ith particle up to this point, and d is the
global optimal position of the particle swarm.

Fig. 3 | LSTM cell structure and working mechanism.

Fig. 2 | Schematic diagram of dilated causal con-
volution structure.
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This study used three statistical indicators—mean absolute error
(MAE), mean square error (MSE), root mean square error (RMSE), and
goodness of fit (R2)—to measure the deviation between the evaluation
model’s predicted values and the actual observed values. These indicators
reflect the model’s performance and prediction accuracy level.

Mean Absolute Error (MAE) measures the average absolute error
between a model’s projected value and its actual value. It represents the
average level of all prediction errors. A smallerMAE value indicates a better
prediction effect. Minimum Mean Square Error (MSE) is a metric used to
evaluate the extent of the difference between amodel’s predicted values and
the actual value. A smaller MSE value indicates that the model’s prediction
results are closer to the actual value, enhancing themodel’s accuracy.On the
other hand, Root Mean Square Error (RMSE) is the standard deviation of
the prediction error, which is more responsive to prediction errors.
A smaller number indicates the model’s superior prediction performance.
TheR2 statistic quantifies the level of agreement between theprojected value
and the actual value in the prediction model. A higher R2 value indicates a
more accurate model. Explicit computations are shown in Eq. (4).

MAE ¼ 1
n

Pn
i¼1

jyi � ŷij

MSE ¼ 1
n

Pn
i¼1

ðyi � ŷiÞ2

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

ðyi � ŷiÞ2
s

R2 ¼ 1� SSres
SSrot

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

Where n is the number of samples, yi and ŷi are the actual and predicted
values, respectively, SSres andSSrot are the residual sum of squares and
the total sum of squares, respectively, SSres ¼

Pn
i¼1ðyi � ŷiÞ2,

SSrot ¼
Pn

i¼1ðyi � �yÞ2, and �y denotes the mean of all actual values.

Data cleaning
To enhance the prediction accuracy and generalization performance of the
TLSA-PSO model, a set of data-cleaning preprocessing procedures on the
input displacement data sequences is necessary. These procedures include
data screening, vacancy filling, and data standardization. These operations

aim to simplify the computational process, reduce the computation time,
and guarantee that the implemented model can effectively reveal the fun-
damental laws of the data.

The data must meet the specified equal interval criteria when
conducting time series modeling and analysis. Hence, extracting the
relevant data from the raw data at regular intervals is fundamental to
constructing a dataset. Owing to the data transmission issues of the
automated monitoring robot, there will inevitably be some missing
values in the series data. To guarantee the validity and precision of the
data, it is necessary to employ suitable techniques for its completion.
The often employed techniques for handling missing values can be
broadly classified into three categories: direct rounding, filling fixed
values (such as sample mean, median, plurality, etc.), and proximity
interpolation (including linear interpolation and k proximity inter-
polation, etc.). In this study, the direct rounding approach was exclu-
ded due to the need to analyze the time-series data for each monitoring
point. The filling of fixed values method was also prohibited as it would
reduce the overall randomness of the data. Additionally, the continuity
of the monitoring point data in this study was improved, with fewer
missing values, making linear interpolation sufficient for filling them
in. This approach presupposes a linear relationship between data
points, so enabling the computation of missing values between two
known data points, so appropriately preserving the continuity and
trend of the data. The method of linear interpolation is represented by
Eq. (5):

V interpolated ¼ Vstart þ
ðVend � VstartÞ× ðT interpolated � TstartÞ

ðTend � TstartÞ
ð5Þ

whereV interpolated is the data point after interpolation;Vstart andVend are the
known data points before and after interpolation, and T represents the
corresponding time point.

Since the TLSA-PSOmodel is susceptible to the scale and range of the
data, it is necessary to scale all the features to the same range, i.e., data
normalization, to speed up the model iteration and enhance the con-
vergence speed during model training while reducing the model error,
which is usually [0,1] or [−1,1]. This study uses the Min-Max scaling
method to normalize the data set (x,y,z), which is transformed according to

Table 1 | PSO optimization network process

1: Input: Total number of tasks and resources

2: Output: Optimal allocation of tasks to resources

3: Begin:

4: Initialize parameters and environment (set population size, particle positions, velocities, etc.)

5: Initialize scheduler components (assign initial resources and tasks)

6: while (termination condition not met) do

7: for each particle in population do

8: Compute fitness of the particle

9: Update personal best (pbest) if current fitness is better

10: Update global best (gbest) if current fitness is better

11: end for

12: for each particle in population do

13: Update particle velocity and position based on personal best and global best

14: end for

15: end while

16: Retrain the network model using optimized hyperparameters

17: Train different network structures, including base models, LSTM for textual processing, convolutional, and character-level models

18: End
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Eq. (6) to lie between [0,1].

yi ¼
xi � min
max � min

ð6Þ

Wheremin is theminimum value among the sample series data andmax is
the maximum value among the sample series data.

Results
Analysis of behavioral prediction results
In this study, the proposed network model is applied to real-world
monitoring data from the Muta architectural heritage to evaluate its
performance. The dataset selected for this analysis originates from
displacement monitoring conducted at the Yingxian Wooden Pagoda
in China, spanning the period from July 2023 to October 2023. The
study used an automated monitoring robot to deploy monitoring
prisms on the outer columns of each floor of the Yingxian Wooden
Pagoda, as shown in Fig. 4. The coordinates of the fixed monitoring
points of the Yingxian Wooden Pagoda and the displacements (in
millimeters) covering the longitudinal, transverse, and vertical direc-
tions were collected.

The automatic monitoring robot is equipped with high-precision
measurement capabilities, offering an accuracy of 0.5”. It is designed to
operate reliably in outdoor environments, ensuring the precision and
consistency of data collection. Data is acquired every four hours, a
frequency chosen after considering factors such as the rate of structural
change in the building and the robot’s power consumption. The dis-
placement and deformation processes of wooden buildings occur
relatively slowly and diffusely over time. Due to environmental factors,
this acquisition frequency balances capturing structural changes and
minimizing resource wastage. The collected data is wirelessly trans-
mitted directly to the monitoring cloud platform for storage and sub-
sequent processing. This wireless transmission method effectively
reduces data transmission delays and ensures the real-time nature and
continuity of the data. Nearly all the Yingxian Wooden Pagoda col-
umns exhibit deformation, with the columns on all sides tilting towards
the northeast at varying degrees. From a longitudinal perspective, the
degree of tilting differs across the layers, with the deformation
becoming progressively more severe towards the lower sections. The
tilting in the second and third layers is markedly more significant than
that in the upper two layers, with the second layer displaying the most
significant tilt, as shown in Fig. 5.

Within the second layer, column No. 223 is identified as the most
deformed. Therefore, this study focuses on the data frommonitoring point
No. 223, which exhibits the most significant variation for modeling and
analysis. The outer column No. 323 in the third layer is also selected for a
validation experiment to assess the predictive model’s ability to generalize

across different data sets. The distribution of the monitoring points for the
outer column is illustrated in Fig. 6.

A comparison of the performance of the displacement prediction
models based on TLSA-PSO and TLSA for monitoring point 223 in
Muta, Yingxian County, China, in the training and test sets is shown in
Fig. 7. In the figure, the True value is the actual monitoring data, train is
the prediction result of the training set of the TLSA network, test is the
prediction data of the test set given by the TLSAmodel, and pso-train is
the optimized TLSA-PSO training set prediction results, and pso-test is
the network test set prediction data of TLSA-PSO. In the comparison
results of the test set, the blue bar surrounds the actual value curve and
indicates the standard deviation of the true value, which is used to
compare the degree of conformity of the predicted values with the
actual values and the accuracy of the prediction model can be assessed
by observing whether the predicted value curves (test and pso-test) fall
within the blue bar most of the time. As shown in Fig. 7, the prediction
results of both TLSA and TLSA-PSO are roughly in line with the trend
of the actual values. However, the pso-test results predicted with the
TLSA-PSOnetwork are closer to the actual values, and almost all results
fall within the blue bars. On the contrary, most of the prediction result
values of the TLSA network deviate more and are farther away from the
blue bars. The results show that the accuracy of the prediction results of
the TLSA-PSO network is generally higher than that of the TLSA
network.

The accuracy of the TLSA-PSO prediction results was compared
with the TLSA model accuracy and the simple LSTM model accuracy
results. Table 2 lists the results of the respective comparisons in the
horizontal, vertical, and longitudinal directions. The results show that
the TLSA model outperforms the simple LSTMmodel in all evaluation
metrics in all three deformation directions. The prediction accuracy of
the TLSA-PSO network model is again significantly better than that of
the TLSA model, and it is the most effective and accurate among the
three network models.

Visualization of behavioral model predictions
Considering the vulnerability of architectural heritage and its high
sensitivity to environmental changes, real-time monitoring of com-
ponent displacement is particularly important. By deploying high-
precision sensors such as automatic monitoring robots to non-

Fig. 5 | Schematic diagram of column structure longitudinal tilt analysis.

Fig. 4 | Location of monitoring prisms at the Yingxian Wooden Pagoda.
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destructively collect quantitative data on the displacement and defor-
mation of architectural heritage components and relying on the dis-
placement behavior prediction model constructed in this study, this
systemwill realize the long-termmonitoring and short-term prediction
of component displacement status, and visualize the monitoring data.
The prediction results are presented through charts so that the man-
agement personnel can obtain the most updated information at any
time and take preventive measures according to the prediction results
promptly.

To ensure the stability of this research system and facilitate its
maintenance and development at a later stage, the whole system is
constructed based on the B/S architecture. The front-end and back-end
separation of technical solutions is selected, and the front-end interface
is developed using the HTML and CSS framework for data visualiza-
tion. The front-end and back-end use Fetch API to complete the data
interaction, and the back-end uses a spatial database to manage and
store the system data.

In this study, the displacement monitoring data, collected in real-
time by sensors, are gathered by an automatic total station and directly
transmitted to the cloud platform for preliminary storage. The cloud
platform offers highly scalable storage and processing capabilities,
ensuring secure storage and backup of large-scale real-time data. The
monitoring data are stored on the cloud server in the form of time
series, with an efficient time series database employed for optimal data
management. To enhance data access efficiency and system response
speed, this study also utilizes MySQL to establish a local database,
which is synchronized with the cloud platform via an interface to
facilitate data retrieval and updates from the cloud. Once the mon-
itoring data are imported into the local database from the cloud plat-
form, the system performs data querying, management, and
visualization through the local database. The TLSA-PSO prediction

model periodically analyzes the historical monitoring data within the
local database, extracting displacement trends and underlying patterns.
Based on this analysis, the model generates future displacement pre-
dictions, calculates the prediction accuracy against the actual mon-
itoring data, and stores these predicted values alongside the historical
data in the local database.

Unique identifiers (IDs) are systematically assigned to the com-
ponents of the YingxianWooden Pagoda model within the system. The
model is efficiently loaded and interactively displayed via the web
interface. When a user selects a component on the web page, the system
promptly highlights the chosen element to differentiate it from others
visually. Concurrently, the system transmits a request to the server,
embedding the component’s unique identifier (ID). In response, the
server retrieves the real-time monitoring data and predicted displace-
ment trend data from the database, delivering this information to the
front end through an API. The front end then generates a line graph
representing the data. It presents the model’s prediction accuracy
metrics in a tabular format, ensuring transparency and verifiability of
the prediction results, as illustrated in Fig. 8.

Validation of model generalization capabilities
To evaluate the generalization capability of the TLSA-PSO model across
data from diverse monitoring points, a validation experiment was con-
ducted in this study using column 323, which was chosen from the three
outer columns exhibiting the second highest degree of inclination. These
validation experiments aim to assess the model’s applicability and accuracy
within varying structural contexts, thereby confirming the reliability and
practical applicability of the model.

The validation experiment primarily contrasts the prediction out-
comes of twomodels, TLSA andTLSA-PSO, by evaluating the performance
of monitoring site 323 in Muta, Yingxian County, China, across both the

Fig. 6 | Distribution of monitoring stations
inYingxian Wooden Pagoda.
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training and test sets, as illustrated in Fig. 9. In this figure, “True value”
represents the actual monitoring data, “train” denotes the prediction results
from the TLSAmodel applied to the training set, and “test” corresponds to
the prediction data from the TLSAmodel for the test set. “Pso-train” refers
to the optimized prediction results of the TLSA-PSOmodel for the training
set, while “pso-test” represents the test set predictions generated by the
TLSA-PSO model. Upon analyzing the prediction result plots, both the
TLSA and TLSA-PSO models demonstrate a strong alignment with the
long-term trends of the monitoring data, thereby confirming the models’
ability to capture the overarching patterns of complex time series data.
Notably, the result plots reveal that the “pso-test” curve is significantly closer
to the actual monitoring data curve, underscoring the model’s enhanced
accuracy and sensitivity in predicting transient fluctuations of the actual
values. Even in regions where the data exhibit pronounced fluctuations, the
predicted values from TLSA-PSO remain close to the true values, a marked

Fig. 7 | Comparison of training set and test set prediction results for TLSA-PSO and TLSA models. a Transverse deformation: comparison of TLSA and TLSA-PSO
predictions. b Longitudinal deformation: comparison of TLSA and TLSA-PSO predictions. c Vertical deformation: comparison of TLSA and TLSA-PSO predictions.

Table 2 | Comparisonof TLSA-PSOandTLSAandLSTMmodel
prediction result error

Deformation Models MAE MSE RMSE R2

Lateral deformation lstm 0.0639 0.0071 0.0841 0.8834

TLA 0.0435 0.0033 0.0575 0.9452

TLSA-PSO 0.0235 0.0012 0.0346 0.9802

Longitudinal deformation lstm 0.1052 0.0173 0.1315 0.8053

TLA 0.0802 0.0113 0.1064 0.8734

TLSA-PSO 0.0376 0.0026 0.0508 0.9711

Vertical deformation lstm 0.1193 0.0231 0.1519 0.8989

TLA 0.1013 0.0169 0.1302 0.9257

TLSA-PSO 0.0875 0.0128 0.1130 0.9442
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improvement over the accuracy limitations of the unoptimized
TLSA model.

The validation experiment compares the prediction accuracy of the
TLSA-PSOmodel for column 323 with that of the TLSAmodel. The results
of these comparisons for column323across the transverse, longitudinal, and
vertical directions are presented in Table 3. The findings demonstrate that,
in all three deformation directions, the TLSA-PSO network model con-
sistently outperforms the TLSA model, achieving a prediction accuracy as
high as 0.99.

An analysis of the predictive accuracy of columns 323 and 223
reveals that the disparity in accuracy is primarily attributable to the
data’s dynamic variations and nonlinear properties. The second level of
the wooden tower housing column 223 is significantly more damaged
and distorted, resulting in pronounced data fluctuations, particularly
along the z-axis of vertical deformation, which displays evident non-
linear variations. The nonlinearity and pronounced fluctuations make
it more challenging for the prediction algorithm to effectively forecast
these rapidly changing segments. The deformation at the third level,
where column 323 is situated, is marginally more uniform than that at
the second level, with relatively little data changes. Consequently, the
model is more adept at adapting to these changes, leading to enhanced
prediction accuracy in the x and y axes. Despite minor discrepancies in
predictions due to varying levels of undulation in the data, the model’s
undulation trends closely align with the actual monitoring data, sig-
nificantly enhancing accuracy compared to traditional prediction
models. The TLSA-PSOmodel’s stability and dependability in intricate
time series prediction tasks are evidenced.

Discussion
Based on the proposed TLSA-PSO behavioral prediction model, a
predictive analysis was conducted for the columns exhibiting the most
significant deformation among the outer columns on the second floor
of the corresponding county wooden tower. The prediction accuracy of
the TLSA-PSO model was compared to that of the TLSA and a single
LSTM model, with the comparative results presented in Radar Fig. 10.
The Mean Absolute Error (MAE) for TLSA-PSO shows a maximum
reduction of 0.0404, 0.0676, and 0.0318 across the three directions,
indicating that the model’s predictions are now closer to the actual
values. The Root Mean Square Error (RMSE) also demonstrates a

maximum decrease of 0.0495, 0.0807, and 0.0389 across the three
directions, suggesting a reduction in the overall prediction error and
more excellent stability in the model’s results. Furthermore, the R²
values show increases of up to 0.0968, 0.1658, and 0.0453, respectively,
highlighting that the TLSA model, optimized by the PSO algorithm,
has significantly improved its data-fitting capability and is now better
able to capture the underlying patterns and trends in the time series.

As the columns on all sides of the Yingxian Wooden Pagoda are
tilted to varying degrees toward the northeast, the TLSA-PSO predic-
tion results enable the advanced identification of key components that
may undergo significant deformation or damage, offering a proactive
warning of potential structural risks. For instance, the outer columns of
the tower and the roof structure connected to them exhibited sub-
stantial deformation trends during the displacement process, particu-
larly in the transverse and longitudinal directions. The displacements of
these components are crucial to the structure’s overall stability. The
deformation of the outer columns, which serve as the foundational
support for the entire tower, could precipitate a broader range of
structural issues, potentially compromising the tower’s overall safety.
For components predicted to experience severe deformation or
damage, researchers and conservators can implement targeted pre-
ventive measures based on the TLSA-PSO model’s forecasts. Feasible
protection recommendations for the more seriously damaged key
conservation areas of the pagoda, especially the peripheral columns on
the second and third floors of the pagoda, are as follows:

Structural reinforcement
For components predicted to experience increased deformation, such
as external columns or support beams, reinforcement measures can be
implemented to enhance their load-bearing capacity and stability,
thereby preventing further deterioration or damage. Generally, rein-
forcement for wooden structures is divided into two types: the
strengthening reinforcement method and the damage repair reinfor-
cement method.

Localized repair
The model accurately predicts the specific areas and extent of deterioration
for components exhibiting localized damage, thereby guiding targeted
repair efforts. By addressing the damage at an early stage, further

Fig. 8 | Digital twin behavioral model visualization system.
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propagation can be prevented, thereby ensuring the building’s long-term
structural integrity and safety.

Long-term monitoring and assessment
By regularly updating forecast data and integrating real-time mon-
itoring feedback, the health status of architectural heritage

components is continuously evaluated. This dynamic approach allows
for the adjustment of conservation strategies based on the latest fore-
cast results, ensuring the ongoing effectiveness of preservation
measures.

The TLSA-PSO deep learningmodel proposed in this study offers
more accurate prediction results for architectural heritage compo-
nents’ long-term behavior than traditional single-network prediction
methods. By optimizing model parameters through the PSO algo-
rithm, themodel not only enhances prediction efficiency and accuracy
but also strengthens its ability to adapt to complex data patterns.
While the model demonstrates excellent performance in prediction
accuracy, its current reliance solely on deformation data from the built
heritage, without incorporating other sensor data, may introduce
some bias in predicting the overall health status of the heritage.
Therefore, the model can be enhanced in the future by integrating
additional sensor data, such as temperature, humidity, vibration, and
other multi-source inputs. Moreover, applying the model to other
types of architectural heritage, such as Ming and Qing official build-
ings, could further improve the accuracy and comprehensiveness of
the predictions.

Fig. 9 | Comparison of training and test set predictions forTLSA-PSOandTLSAmodels for column323. aTransverse deformation: comparison of TLSA andTLSA-PSO
predictions. b Longitudinal deformation: comparison of TLSA and TLSA-PSO predictions. c Vertical deformation: comparison of TLSA and TLSA-PSO predictions.

Table 3 | Comparison of the accuracy of TLSA-PSO and TLSA
model prediction results for column 323

Deformation Models MAE MSE RMSE R2

Lateral deformation TLA 0.0313 0.0022 0.0471 0.9703

TLSA-PSO 0.0104 0.0003 0.0178 0.9958

Longitudinal deformation TLA 0.0955 0.0102 0.1008 0.9353

TLSA-PSO 0.0146 0.0008 0.0287 0.9947

Vertical deformation TLA 0.1141 0.0372 0.1928 0.9154

TLSA-PSO 0.1012 0.0309 0.1758 0.9296
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Data availability
No datasets were generated or analyzed during the current study.

Code availability
The underlying code for this study is not publicly available for proprietary
reasons.
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