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GuidePaint: lossless image-guided
diffusion model for ancient mural image
restoration
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Ancientmurals, vital cultural heritage, suffer fromdamage due to natural erosion and human activities.
Traditional restoration methods, relying on manual repair, have limitations, making virtual restoration
an innovative solution. This paper proposes a virtual restoration method based on diffusion model.
Using a lossless image-guided algorithm, we adapt diffusion model designed for image synthesis to
restoration. Instead of feeding damaged images into the network, we use them to adjust the network’s
outputs directly, achieving unsupervised training. We also use random seeds to generate diverse
outputs from a single image. Proposed similarity function ensures alignment of undamaged areaswith
the guiding image, and an interrupt sampling strategy removes subtle, dense degradations.
Experiments on simulated and real damagedmurals show ourmethod yields results comparable to or
better than other advanced methods for simple cases. For complex and severely damaged murals, it
excels, outperforming others in both objective and subjective evaluations.

From the first spark that ignited the flames of civilization in ancient times to
the industrial machines that reshape the world today, human has had a
magnificent journey. Reflecting on the past, we possess precious treasures—
chief among them is our history. Murals, as one of the earliest means of
recording information, carry significant historical and cultural value.
However, due to natural erosion and human activities,many ancientmurals
have suffered from issues such as cracks,flaking,mold, and fading.As anon-
renewable resource, the protection and restoration of these murals have
become urgent tasks.

Traditional mural restoration primarily relies on manual, physical
methods, requiring specialists with comprehensive knowledge of history,
humanities, arts, and archeology. Moreover, these methods may cause
irreversible damage to themurals.As an alternative, thedigital restorationof
mural images has emerged as a novel approach in the field of ancient mural
preservation. Without affecting the original artwork, this method uses
computer technology to virtually reconstruct the murals. The digitally
restored mural images can not only serve as references for physical
restoration but also help build a replicable database, offering amore reliable
means for the preservation and transmission of these cultural artifacts.

Using computer technology to restore digital images of ancientmurals
aims to virtually reconstruct the missing or degraded areas as accurately as
possible. In recent years, many outstanding image restoration techniques
have emerged, which can generally be categorized into two types: conven-
tional image restoration methods and deep learning-based methods.

Conventional image restoration methods are primarily based on two
techniques: patch-based and diffusion-based (not to be confused with the
diffusion model discussed in this paper). The core idea behind patch-based
methods is to find image patches similar to the damaged areas and use them
to replace the missing regions. Yang et al.1 proposed a method for restoring
complex damaged areas in the Dunhuang murals using Dempster-Shafer
evidence theory and its data fusion. This algorithm outperforms the
Criminisi2 algorithm and its improvements in visual quality, though it
requires more processing time. Li et al.3 introduced an automatic recogni-
tion and virtual restoration method for mud-spot damage in Tang dynasty
tomb murals. This method automatically analyzes images to obtain mud-
spot area masks, which are then used in a patch-based approach for
restoration. Jiao et al.4 proposed an improved patch-based algorithm to
restore the Wutai Mountain murals. Compared to other methods, their
algorithm shows better restoration results for textures, edges, and smooth
areas, though it depends on the relative position and connectivity of the
mask regions.Wang et al.5 tackled the issue of large-scale structural damage
in the murals of Yulin Caves and Mogao Caves in Gansu. They proposed
using manually drawn lines to assist with restoration and combining global
and local featureweightingbasedon structural guidance for restoration.The
method surpasses other restoration methods for the targeted murals but
heavily relies on artist guidance and line drawings. Cao et al.6 developed an
algorithm for restoring ancient temple murals that employs a local search
algorithm of an adaptive sample block. Compared to the Criminisi
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algorithm, the approach improves both the efficiency and effectiveness of
restoration.

Diffusion-basedmethods fill missing areas by simulating the spread of
pixels within an image, typically using gradient information and local fea-
tures to guide the restoration process. Shen et al.7 proposed a mural
restoration algorithm based on Morphological Component Analysis
(MCA), inspired by the manual restoration approach for Tang dynasty
tomb murals, where the global structures are addressed first, followed by
local textures. The algorithm shows significant results in restoring cracks in
Tang tombmurals but does not extend to murals of other styles or damage
types. Jaidilert et al.8 introduced a computer aided semi-automatic repair
framework. The framework involves user-provided seeds, followed by
region-growing and morphological operations to identify the location of
scratches, and finally applies various conventional image restoration
methods such as Total Variation (TV)9, Curvature-Driven Diffusion
(CDD)10, Lattice Boltzmann Method (LBM)11, and Group Sparsity Reg-
ularization (GSR)12. Chen et al.13 proposed an improved adaptive curvature-
driven model for restoring Dunhuang murals. The approach addresses
issues such as false edges and staircase effects in the restoration results, and
uses adaptive control strategies to reduce restoration time, but is less
effective when dealing with extensive irregular damage and specific mural
diseases.

Despite many years of development, conventional image restoration
methods still struggle to meet the demands of digital restoration for ancient
murals, mainly for two aspects: (1) poor performance in restoring murals
with large areas of damage, and (2) inability to generate new information
based on existing content. Consequently, with the rise of deep learning
techniques in the field of image processing, researchers have increasingly
shifted their focus to deep learning-based methods. Yu et al.14 proposed an
end-to-endnetwork based onU-Net for restoringDunhuangmurals, which
demonstrates excellent performance in repairing highly non-rigid and
irregular deteriorated regions.Cao et al.15 introduceddilatedconvolutions to
improve GANs16 for the restoration of ancient Chinese murals. However,
when dealing with complex structures and large missing areas, issues like
blurriness and loss of structural information may arise. Wang et al.17 pro-
posed a Thanka mural restoration method based on multi-scale adaptive
partial convolutions and stroke-like masks, but it also struggles with
handling complex structures and large damaged areas. Ciortan et al.18,
inspired by the modus operandi of an artist—edges first, then the color
palette, and color tones at last—proposed a GAN-based restoration algo-
rithm with two generators: one for edge and the other for color. The
approach achieves satisfactory results in the restoration of Dunhuang
murals. Li et al.19 proposed a line drawing guided progressive mural
inpaintingmethod, dividing the inpainting process into two steps: structural
reconstruction and color correction. The approach shows superior perfor-
mance in mural image restoration, but it relies on line drawings manually
created by professional artists as guidance. Schmidt et al.20 proposed an
image restorationmethod combiningCAR21 andHINet22 for the restoration
of Dunhuang murals. The method performs well even with large damaged
areas but may result in some loss of detail. Ge et al.23 proposed a virtual
restoration network for ancient murals based on global-local feature
extraction and structural information guidance. The method achieves
excellent results in terms of structural continuity, color harmony, and visual
rationality in the restoration of mural images. Ren et al.24 proposed a gen-
erative adversarial network model that combines a parallel dual convolu-
tional feature extraction depth generator and a ternary heterogeneous joint
discriminator, achieving effective restoration of Dunhuang murals.

Although current deep learning methods can handle some cases of
large-scale damage in murals, several challenges remain: (1) Existing
methods, mostly based on supervised learning, are highly influenced by the
types ofmasks used during training. This leads to inconsistent performance
when dealing with diverse types of damage. (2) Restoration of large-scale
damage often results in blurriness or loss of fine details, especially in murals
with intricate structures. This is a limitation common to existing methods.
(3) The trained models in existing methods typically produce deterministic

outputs. If a specific mural cannot be well-restored, repeated attempts will
yield the same unsatisfactory results. (4) Existing methods require masks to
be obtained through marking and cannot handle subtle, dense degradation
patterns that cannot be explicitly marked.

To address these challenges, we propose a mural image restoration
method based on conditional diffusion model25. The main contributions of
this paper are twofold: (1)We propose a similarity function that adapts the
diffusion model—originally designed for image synthesis tasks—to the
image restoration task in an indirect manner. The image synthesis cap-
abilities of the diffusion model surpass those of existing deep learning fra-
meworks, such as GANs. This contribution can result in extraordinary
performance when applied to restoration tasks, particularly for images with
large areas of damage and complex details (solve challenge 2).Moreover, the
proposed similarity function is applied to the sampling algorithm rather
than thebackbonenetwork, enablingunsupervised training and eliminating
reliance on masks (solve challenge 1). Additionally, since the similarity
function does not impose direct constraints on the unknown (damaged)
areas during the sampling process, it allows the inherent randomness of the
diffusion model in image synthesis tasks to be leveraged for restoration,
leading to more diverse restoration outcomes (solve challenge 3). (2) We
also propose an interrupted sampling strategy to address subtle, dense
degradation types that cannot be explicitly marked, without requiring any
masks throughout the whole process (solve challenge 4).

Methods
Diffusion model
Ancientmural images usually contain intricate structures, rich textures, and
diverse color information, which place high demands on the generative
capabilities of restorationmodels, especiallywhendealingwith large areas of
damage. Existing research25 has demonstrated that diffusion models have
surpassed GANs, becoming the leading models for high-quality image
synthesis. Therefore, we introduce diffusion model and propose a lossless
image-guided algorithm to better address the challenges of mural
restoration tasks.

The diffusion model is a generative model that, like other generative
models, learns the distribution of the training set and generates similar
samples. However, unlike other generative models, the training of a diffu-
sionmodel is not an end-to-end process. Instead, it progressively adds noise
to the origin images until they become pure noise, while a neural network is
trained to learn this noising process. During sampling, this noise process is
reversed—i.e., denoising—allowing the model to generate a target sample
from random noise. The framework of the model is illustrated in Fig. 1.

Let the original image be represented as x0, the image at step t as xt, and
the image at the final step as xT. In the training of DDPM26, the diffusion
process converts the image x0 intoGaussian white noise xT � N ð0; 1Þ over
T steps. Each step is defined as

qðxt jxt�1Þ � N ðxt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
xt�1; βtIÞ ð1Þ

That is, xt is obtained by scaling xt−1 by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
and then

addingGaussian noisewithmean0 and varianceβtI. Here,βt is a predefined
hyperparameter, and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
decreases as t increases.

By the Markov assumption, the joint probability of all the latent
variables can be factorized as a product of conditional probabilities over all
the steps. This allows us to rewrite the forward diffusion process as

qðxt jx0Þ � N ðxt ;
ffiffiffiffi
�αt

p
x0; ð1� �αtÞIÞ ð2Þ

where αt= 1− βt and �αt ¼
Qt

i¼1 αi. Equation (2) shows that we can sample
xt at any timestep t directly from x0 without going step by step, effectively
scaling and adding noise in one shot.

Using a neural network to obtain themean μθ(xt, t) and varianceΣθ(xt,
t), we can define the reverse denoising process, which generates an image by
progressively removing noise. The reverse process is modeled as a
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parameterized Gaussian distribution:

pθðxt�1jxtÞ � N ðxt�1; μθðxt ; tÞ;Σθðxt; tÞÞ ð3Þ

where μθ(xt, t) and Σθ(xt, t) are the mean and variance obtained from the
neural network, conditioned on the noisy image xt and the timestep t.

Combining the forward process defined by Equation (2) and the
reverse process definedbyEquation (3), themeanμθ(xt, t) canbeobtained as

μθðxt ; tÞ ¼
1ffiffiffiffi
αt

p xt �
βtffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
� �

ϵθðxt ; tÞ ð4Þ

where ϵθ(xt, t) is the noise predicted by the neural network for timestep t.
To train the target network, we need to derive the optimization

objective based on theVariational Lower Bound (VLB) of the log-likelihood
of the data:

E½� log pθðx0Þ�≤Eq � log pθðx0:T Þ
qðx1:T jx0Þ

h i
¼ Eq½DKLðqðxT jx0ÞkpðxT ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LT

þP
t>1

DKLðqðxt�1jxt ; x0Þkpθðxt�1jxtÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lt�1

� log pθðx0jx1Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
L0

�

¼ LVLB

ð5Þ

By simplifying the Lt−1 term, we can derive the final optimization
objective for training the diffusion model:

Lsimple ¼ Et;x0;ϵ
ðϵ� ϵθðxt ; tÞÞ

�� ��2h i
ð6Þ

The resulting simplified objective is the mean squared error (MSE)
between the true noise ϵ and the noise predicted by the neural network
ϵθ(xt, t).

Proposed lossless image-guided sampling algorithm
The original diffusion model generates samples directly from noise. To
apply it to image inpainting or restoration tasks, we need to introduce
control conditions. Dhariwal et al.25 modified the model’s sampling process
to achieve classifier-guided generation. Liu et al.27 further expanded the
classifier to various guiding forms, such as text guidance and image gui-
dance. With the introduction of control conditions, the forward process
remains unaffected and is still defined by Eq. (1), while the reverse process is
defined as

pθðxt�1jxt ; yÞ � N ðxt�1; μθðxt ; tÞ þ γΣθðxt; tÞ∇xt
Fðxt ; y; tÞ;Σθðxt; tÞÞ

ð7Þ
where y represents the condition, F(xt, y, t) is a similarity measure that
quantifies the relationship between the sample xt and the condition y.
Equation (7) can be interpreted as using the gradient of F(xt, y, t) to adjust
themean μθ(xt, t) (including both known and unknown regions), causing it

to shift towards areas with higher values of F(xt, y, t). The coefficient γ
controls how much the gradient influences the mean.

The specific similarity measure F(xt, y, t) depends on the task. For
example, in their image content guidance task, Liu et al.27 passed xt and y
through a pre-trained image encoder for noisy images to obtain feature
embeddings, then calculated the distance between these feature embed-
dings. But here is an important issue regarding image inpainting: when
using an image to guide the restoration, the lossy compression process
during feature embedding can result in a significant difference between the
details of the known regions in the original image and the output of the
model. To address this problem, we propose a new method for calculating
the similarity measure F(xt, y, t). By examining Equation (2), we find that
reversing it yields

x0ðxt ; tÞ ¼
1ffiffiffiffi
�αt

p ðxt �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
ϵθðxt ; tÞÞ ð8Þ

In other words, at each step of the sampling process, we can obtain a
rough estimate of x0(xt, t). Therefore, we define F(xt, y, t) as the distance
between x0(xt, t) and y. Letm donate themask, y the conditional image, and
the known region as (1 − m) ⊙ y, the function F(xt, y, t) we define can be
expressed as

Fðxt ; y; tÞ ¼ ðð1�mÞ � x0ðxt; tÞ � ð1�mÞ � yÞ
�� ��2 ð9Þ

Since we directly use y for calculations without any lossy compression,
the generated results can achieve a high level of detail consistency with the
reference image in the known regions. Our algorithm is outlined in Fig. 2
and Algorithm 1.

Algorithm 1. Proposed Lossless Image-Guided Sampling Algorithm
1: xT � N ð0; 1Þ
2: for t = T,…, 1 do
3: x0ðxt ; tÞ ¼ 1ffiffiffi

�αt
p ðxt �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
ϵθðxt ; tÞÞ

4: ∇xt
Fðxt ; y; tÞ ¼ ∇xt

ð1�mÞ � x0ðxt; tÞ � ð1�mÞ � y
�� ��2

5: ϵ � N ð0; 1Þ
6: μθðxt ; tÞ ¼ 1ffiffiffi

αt
p ðxt � βtffiffiffiffiffiffiffiffi

1��αt
p Þϵθðxt ; tÞ

7: xt�1ðxt ; tÞ ¼ μθðxt; tÞ þ γΣθðxt ; tÞ∇xt
Fðxt ; y; tÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σθðxt ; tÞ

p
ϵ

8: end for
9: x = (1 −m) ⊙ y +m ⊙ x0(x1, t)
10: return x

Results
Dataset
Wecollect a numberof ancientmural imageswithminimal or nodamage to
construct a mural dataset. The sources of these murals are the Dunhuang
murals fromGansu and the Baishamurals fromYunnan, which encompass
different periods, styles, and subjects. The Dunhuang murals span a long
period, beginning in the NorthernWei dynasty (386–534) and lasting until
the Qing dynasty (1644–1911), with each period exhibiting its own distinct

Fig. 1 | The framework of diffusion model. The
forward process q(xt∣xt−1), the model training stage,
progressively adds noise to the original image. The
reverse process pθ(xt−1∣xt), the model prediction
stage, removes the noise step by step.
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style. The Baisha murals are from the Ming (1368–1644) and Qing
(1644–1911) dynasties, representing a fusion of various religious cultures,
including Taoism, Tibetan Buddhism, Han Buddhism, and Dongbaism.
The original images are cropped into small sub-images with minimal
overlap and augmented to produce 10,314 images of size 256 × 256, with
8251 images used for training and 2063 for simulated damage testing.
Additionally, we selected some images from severely damaged murals that
cannot be used for training or simulated testing. These images are cropped
into 105 sub-images of size 256 × 256, which are used for a real damage
restoration experiment.

Simulated data experiment
In this section, we present our experiments on simulated damaged data.We
compare our method with three advanced image restoration approaches—
AOT28, EdgeConnect29, and LaMa30—using the Structural Similarity Index
Measure (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS) as
quantitative evaluation metrics. In our method, the backbone network for
noise prediction is based on the network proposed by Dhariwal et al.25. Our
model is trained with 1000 diffusion steps, and the sampling steps are also
set to 1000 during restoration, with a guidance weight γ of 0.001 and a
learnable variance. For AOT, EdgeConnect, and LaMa, apart from resizing
the images to 256 × 256, we keep the default hyperparameters as defined in
their respective open-source implementations.

Our method, being unsupervised, does not rely on masks during
training. For LaMa, as its mask generation strategy is integral to its algo-
rithm, we use its proprietary mask generation strategy. For AOT and
EdgeConnect, we use irregular masks from Liu et al.31. To ensure fairness
and evaluate themodels’ generalization to differentmask types, we test with
stroke-like masks from Yu et al.32, which none of the models have
encountered during training.

Figure 3 shows a visual comparison of six examples from the four
methods, while Table 1 provides the objective evaluation metrics for the
images in Fig. 3. In Fig. 3, the first column shows the ground truth, the
second column the masked image, the third column AOT’s results, the
fourth column EdgeConnect’s results, the fifth column LaMa’s results, and
the sixth column our method’s results. In Table 1, the numbers in the first
column correspond to the image numbers in Fig. 3. Each row displays the
SSIM and LPIPS restoration results of our method and three comparison
approaches.

Real data experiment
In this subsection, we conduct restoration experiments on real damaged
murals. It should be noted that real damaged murals do not have a ground
truth for quantitative evaluation, and any feasible evaluation methods
inherently involve subjectivity. We evaluate the model’s performance
through voting and collect voting results from 100 volunteers on the

Internet. The voting process follows an exclusive voting system, where
participants are asked to select the one they consider the best in each group
of restoration results. Figure 4 shows visual comparisons of restoration
results for six real damaged murals, and Fig. 5 presents the corresponding
voting results.

Diverse outputs
In this subsection, we present a unique feature that previous methods lack:
non-deterministic restoration results. In existing approaches, once a model
is trained, the restoration outcome for a particular mural image is fixed; no
matter how many times the restoration process is repeated, the result
remains the same. This implies that if the restoration fails once, the model
inherently struggles with that image, and adjustments to the dataset and
training process, followed by retraining, are required—an expensive and
time-consuming task. Our method, however, can produce different
restoration results by simply setting different random seeds, without the
need for dataset adjustments or retraining. If one restoration attempt does
not achieve the desired outcome, multiple attempts can be made, and the
best result can be selected from these outputs. Additionally, the diverse
outputs generated by our method can offer restoration experts valuable
references and inspiration, thereby aiding in the manual restoration of
murals.

The idea behind this functionality is that, although our method is
applied to a restoration task, it essentially performs image synthesis. The
generated results remain consistent with the reference image in the known
(intact) regions, achieving restoration indirectly. However, in the unknown
(damaged) regions, no direct constraints are applied, resulting in varied
outcomes.

Figure 6 illustrates restoration results with two different random seeds
using our method. The first column shows the ground truth, the second
column shows themasked image, and the third and fourth columns display
restoration results with different random seeds. Table 2 presents the sta-
tistical information of the metrics for 100 restoration attempts corre-
sponding to the four examples shown in Fig. 6. The “Max” represents the
maximum value, the “Min” represents the minimum value, the “Avg”
denotes the average value, and the “Var” refers to the variance.

Unmarkable degradations
Murals exhibit not only continuous damage but also subtle, dense degra-
dation types that cannot be explicitly marked. Existing methods require
marking the damaged area to create a mask for restoration, which limits
their capability in unmarkable cases. Our method, however, can eliminate
this type of degradation without requiring any marking.

As described in Section “Proposed Lossless Image-Guided Sampling
Algorithm”, our approach allows obtaining a coarse x0(xt, t) at each step of
the restoration process. By interrupting the sampling process at an

Fig. 2 | Proposed lossless image-guided sampling
algorithm.
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intermediate step—rather than completing the full sampling procedure—
we can directly generate x0(xt, t) at this stage, achieving degradation
removal. The underlying idea is that x0(xt, t) is obtained by guiding the
known region. This guiding process first restores the overall outline and
then recovers the local details. By interrupting the process at an appropriate
step, we obtain a result with only partial guidance, discarding certain details.
For these degradedmural images, the details discarded by this interruption
are exactly those representing the degradation.

Figure 7 shows the effect of interrupting the sampling process at t =
249. In the figure, the first row displays the original images, while the
second row shows the modified outputs. The modified results appear
smoother and clearer than the original, with fewer irrelevant details,
highlighting our method’s capability to eliminate such degradation
without a mask.

Time consumption
Our method offers superior restoration quality as compared to existing
approaches, at the cost of higher time consumption. Unlike existing deep
learning approaches, our method is not an end-to-end restoration
process; it requires multiple iterations to produce the final result, leading
to higher computational costs. Moreover, for images with unsatisfactory
restoration results, our method can use different random seeds to gen-
erate multiple restorations. This will increase time consumption. We
attempt to reduce time consumption by decreasing the number of
sampling steps.However, this will lead to insufficient guidance and cause
the output inconsistent with the reference image in the known (intact)
regions. This is not an ideal solution. Table 3 presents the average time
cost per image for restoring 100 images of size 256 × 256 on an NVIDIA
RTX 3090.

Fig. 3 | Visual comparison of simulated data experiment.

Table 1 | SSIM and LPIPS of simulated data experiment

SSIM ↑ LPIPS ↓

Murals AOT EC LaMa Ours AOT EC LaMa Ours

1 0.93 0.94 0.94 0.94 0.0291 0.0220 0.0187 0.0192

2 0.96 0.96 0.97 0.97 0.0151 0.0116 0.0090 0.0089

3 0.92 0.93 0.93 0.94 0.0457 0.0433 0.0282 0.0217

4 0.86 0.86 0.88 0.89 0.0872 0.0799 0.0489 0.0444

5 0.85 0.85 0.85 0.87 0.0742 0.0723 0.0600 0.0375

6 0.84 0.85 0.85 0.85 0.0738 0.0777 0.0661 0.0658

Bold values indicate the best performance among all methods.
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Fig. 4 | Visual comparison of real data experiment.

Fig. 5 | Voting results of real data experiment.
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Discussion
In Fig. 3, rows 1 and 2 feature simple structures and smaller damaged areas.
In the first row, all four methods restore the left part of the rectangular
region, where color transitions are simple, effectively. However, in the
middle part of the two black curves on the right, AOT and EdgeConnect
encounter color and edge blurring issues, with AOT being particularly
affected. LaMa and our method restore this area well, reflected in superior
evaluation metrics. In the second row, all four models perform well in the
lower rectangular region, but AOT and EdgeConnect fail to recover the red
curve in the top rectangle, while LaMa and our method do so effectively.
Metrics in Table 1 also show LaMa and our method outperforming the

others. Rows 3 and 4 represent architectural images with complex lines and
extensive damage, the third row shows that AOT and EdgeConnect
approximate the outline of the damaged region but suffer from significant
blurring and detail loss. LaMa does not experience this level of blurring, but
its ability to recover detail is inferior to ours. Our method outperforms in
terms of the evaluation metrics as well. In the fourth row, AOT and
EdgeConnect fail entirely to restore a basic outline. LaMa restores a rough
outline but fails in reconstructing finer details, whereas our method suc-
cessfully restores fine details, again achieving superior performance on the
evaluation metrics. Rows 5 and 6 representing intricate structures with
complex curves and extensive damage; both AOT and EdgeConnect fail to

Fig. 6 | Results with different random seeds.

Table 2 | Statistical information of 100 restoration attempts

SSIM ↑ LPIPS ↓

Murals Min Max Avg Var Min Max Avg Var

1 0.920 0.952 0.935 4.60 × 10−5 0.0135 0.0519 0.0338 8.13 × 10−5

2 0.883 0.916 0.901 5.07 × 10−5 0.0209 0.0634 0.0385 1.06 × 10−4

3 0.910 0.921 0.916 6.78 × 10−6 0.0319 0.0683 0.0461 3.82 × 10−5

4 0.885 0.916 0.903 3.65 × 10−5 0.0325 0.0562 0.0414 2.53 × 10−5
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restore these examples. LaMa’s results display blurred edges, causing the
restored patterns to blend and lose definition, which compromises the finer
details. In contrast, our method achieves superior detail restoration, pre-
serving the complex structures without blurring or blending issues. Cor-
responding evaluation metrics also show that our method performs best.

In Fig. 4, rows 1 to 3 representing cases with smaller damaged areas. In
the first row, the damage consists of thin, elongated scratches. Visually, all
fourmethods performwell in restoration, but in the voting results shown in
Fig. 5, our method wins with 43 votes. The second and third rows represent
typical small-area damage. Both AOT and EdgeConnect exhibit color and
edge blurring, with EdgeConnect performing better. LaMa and ourmethod
produce more satisfactory restoration results. In the second row, our
method wins with 49 votes, while in the third row, LaMa slightly leads with
43 votes, compared to ourmethod’s 42 votes. Rows 4 to 6 representing cases
with larger damaged areas. In the fourth row, the damage consists of a large
crack. AOT and EdgeConnect do not exhibit blurring in this case, but
noticeable artifacts remain in the restored regions. LaMa and our method
produce better restoration results, with ourmethod leading the vote with 47
votes, while LaMa follows with 32 votes. The fifth and sixth rows show
common large-scale damage, where AOT and EdgeConnect fail to restore
the image, resulting in severe blurring of edges and colors. LaMa’s
restoration is also unsatisfactory, with noticeable artifacts. In the voting, our
method takes a clear lead, with 70 votes in the fifth row and 66 votes in
the sixth.

In Table 2, since the variance of SSIM is on the order of 10−5 to
10−6, and the variance of LPIPS is on the order of 10−4 to 10−5, the
stability of restoration outcomes using different random seeds is
acceptable. Note, the metrics used to evaluate the outcomes indicate
the restoration quality, but they are not directly related to the diversity.
Figure 6 also demonstrates that, even with a low variance, the
restoration results still exhibit diversity.

In Table 3, it can be seen that our method requires much more time
consumption compared to the other three approaches, with our method
requiring 162 s to restore an image, while the other three methods take less
than one second. Nonetheless, in a task of cultural heritage preservation,
restoration quality typically outweighs time constraints.

Overall, for simpler structures and smaller damaged areas, all models
achieve satisfactory restoration, with LaMa and our method performing
better than AOT and EdgeConnect. For more extensive and structurally
complex damage, AOT and EdgeConnect struggle to restore the image,
often failing entirely in highly detailed areas. LaMa performs better by

reconstructing basic shapes but falls short in fine details. Our method,
however, stands out by effectively recovering intricate details and structures,
leading to the best performance across these challenging cases. The
experimental results also show that the stability of the outputs is acceptable.
Although our method takes more time, quality outweighs time constraints
in a task of cultural heritage preservation, and the longer time spent is
acceptable.

Data availability
Thedatasets usedand/or analyzed in the current study are available fromthe
corresponding author by reasonable request.

Code availability
The code used and/or analyzed in the current study is available from the
corresponding author by reasonable request.
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