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Mural inpainting via two-stage generative
adversarial network
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The digital restoration of Dunhuang murals is of extremely high value for the research and
dissemination of mural culture and art. However, a large number of murals have been damaged to
varying degrees. In this paper, we propose a two-stage coarse-to-fine digital mural restoration
framework to solve the large area of irregular shape damage on the mural. The first stage is used to
achieve coarse-grained semantic reconstruction, and the second stage is used to achieve fine-
grained feature reconstruction. To improve the repair quality, we also designed a new building block
(STMA) that integrates the Swin transformer module (SwinT) and the multi-scale dilated convolution
attention module (MSDA). Meanwhile, the proposed loss function is to further empower the proposed
model to repair damaged murals. Extensive comparative experiments show that the proposed model
can effectively restore the missing content of the mural and exceed the comparative methods in both
quantitative and qualitative evaluation.

Dunhuang murals, with their unique artistic style, exquisite painting skills,
and profound cultural connotation, have become one of the most precious
heritages in thehistory of humancivilization. Somemural images are shown
in Fig. 1. In the longhistory, due to climate change, sand erosion,man-made
destruction, and other factors, a large number ofmurals have been damaged
to varying degrees, such as paint shedding, fading, peeling, cracking, and so
on1. These factors have seriously restricted the cultural exchange between
the East and the West in murals, and have limited the exploration of the
historical changes, artistic characteristics, and cultural connotations of
Dunhuang murals. Therefore, it is of great significance to explore an
effective mural restoration method with the concept of “minimal inter-
vention principle” for the study of mural culture and the development and
breakthrough of other painting art categories.

Manual restoration methods play an important role in the con-
servation of murals. Through observation, we found that the manual
restoration of murals can be simply described as a two-step process. The
first step is to outline the contours and lines of the missing areas of the
murals by highly skilled painters, and the second step is to color the
missing areas according to the lines and the surrounding colors. The first
step requires the painter to draw the structural information of the
missing mural based on personal experience, which requires the painter
to be very familiar with the painting style of the mural. The second step
requires coloring the missing areas according to the style of the mural
based on structural information. These two steps are relatively high
technical requirements for mural restorers. Moreover, the manual
restoration method is irreversible and tends to restore directly on the

mural, which is prone to cause secondary damage to themural2. Inspired
by medicine, the protection staff of cultural relics in many countries and
areas apply the protection concept of “minimal intervention” to the
restoration task of murals and tend to use digital image restoration
methods to complete the restoration of murals.

With the continuous development of computer vision technology,
many scholars have proposed image restoration technologies using dif-
ferent strategies in recent years, making digital image restoration tech-
nology has made great progress in solving the problem of repairing
natural images3–7. Although these methods achieve good performance in
solving natural image restoration problems, they are not suitable for the
task of mural restoration. The main reasons are: (1) The styles of murals
and natural images are very different. Although transfer learning can
integrate the prior information in natural images into the restoration task
of murals, the unique style displayed by murals is obviously different
from natural images. This limits the effectiveness of transfer learning
methods. (2) The lines in the mural are uneven, the colors are rich and
diverse, and the patterns are complex and changeable. Moreover, the
existing feedforward neural network method based on simple convolu-
tion cannot capture the rich high-frequency texture information and
low-frequency color patch information contained in the mural, which
affects the recovery performance of the model.

To alleviate these problems, we propose a new mural restoration
framework based on generative adversarial networks (GAN) to solve the
large area of irregular shape damage on the mural. The proposed fra-
mework adopts the strategy of first contour structure and then texture
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coloring, which is inspired by themethod ofmanually inpaintingmurals.
This strategy is significantly different from the inpainting strategy for
natural images. The framework contains two generative networks to
model the two steps in the manual mural restoration method. The first is
a coarse-grained network, which is mainly used to reconstruct the
semantic information of the lines and contours of the damaged mural.
The coarse-grained network simulates the modeling of mural contour
and structure restoration during manual restoration. The second is a
fine-grained network, which is mainly used to reconstruct fine-grained
features to repair texture details and color correction of damagedmurals.
Thefine-grained network simulates themodeling ofmural texture details
and colorization restoration during manual inpainting. Moreover, the
Swin transformer module (SwinT)8,9 can model long-range dependency
with the shifted window scheme. The capture of multi-scale features
helps to extract information at different granularities10,11. Since different
image reconstruction methods have complementary image prior mod-
eling capabilities12,13, we propose a new building block (STMA) that fuses
the SwinT module with the multi-scale dilated convolution attention
module. To better improve the performance of the network, we also
design a new joint loss function to impose guidance on the two-stage
training process of the model from multiple dimensions. Experiments
show that our proposed mural repair method has better performance. In
summary, the main contributions of this paper are summarized as fol-
lows: (1) We propose a two-stage GAN mural inpainting framework to
solve the large area of irregular shape damage on the mural, which
models the manual mural inpainting process and can achieve coarse-to-
fine mural inpainting. (2) A novel building block (STMA) is proposed to
effectively extract rich contextual information. It combines a Swin
transformer module and a multi-scale dilated convolution attention
module. (3) The joint loss function designed based on multiple dimen-
sions can not only stabilize the training process of the model but also
improve the mural restoration performance of the model.

Methods
Preliminaries: generative adversarial network
Inspired by game theory,Goodfellow et al.14first proposedGAN. It contains
a generative network G and a discriminative networkD. The two networks
learn the distribution of data through adversarial training. In the game
process between the generative network G and the discriminative network
D, the generative networkG generates realistic samples asmuch as possible,
and the discriminative network D tries to judge the authenticity of the
sample.To realize theprocess of the game, the following loss function is used

when training the GAN,

min
G

max
D

VðD;GÞ ¼ Ex�PdataðxÞ
logD xð Þ� �þ Ez�PðzÞ

logð1� D GðzÞð ÞÞ� �
ð1Þ

where x � PdataðxÞ, PdataðxÞ represents the real data distribution. z represents
the random noise z � PðzÞ, PðzÞ represents random distribution, such as
Gaussian distribution.

At present, GAN have been widely used in image inpainting tasks. To
generate multiple image inpainting results, a probabilistic diverse GAN
(PD-GAN)15 is proposed. PD-GAN is built upon a vanilla GAN that gen-
erates images based on randomnoise. Nazeri et al.16 proposed EdgeConnect
bydecomposing image restoration tasks into structure prediction and image
completion. This method alleviates the problem of image completion when
significant portions of the image are missing. By combining the advantages
of convolutional neural networks (CNN) and transformers, Wan et al.17

proposed a high-fidelity pluralistic image completion method based on
GAN. This method utilizes a transformer to restore coarse textures and
enhances local texture details using CNN under the guidance of mask
images.

Related work on mural inpainting
As a research hotspot in the field of image restoration, the digital
restoration of murals has attracted more and more attention. Several
scholars have proposed mural restoration schemes employing different
strategies, including the partial differential equation method18–20, texture
synthesis method21,22, sparse representation method23–25, and deep learn-
ingmethod26–31. Chen et al.19 proposed an adaptive inpainting method for
Dunhuangmurals based on the improved curvature-drivenmodel, which
solved the defects of the CDD algorithm and shortened the inpainting
time. To solve the problem of repairing murals that have fallen off and
eroded by diseases, Cao et al.21 proposed a virtual restoration method of
murals based on an adaptive local search of sample patches, which makes
the composition characteristics of repairedmuralsmore reasonable. Chen
et al.25 proposed a mural inpainting method based on Gabor transform
and group sparse representation, which alleviates the problems of blurred
structure and discontinuous lines in the inpaintedmurals. Although these
traditional methods have achieved good mural inpainting performance,
due to the excellent performance of deep learning methods in the field of
image reconstruction in recent years, many mural inpainting methods
based on deep learning have also emerged. To effectively repair ancient

Fig. 1 | Some mural images.
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murals, Cao et al.26 proposed a consistency-enhanced GAN to repair
missing murals. To utilize the auxiliary information provided by the line
drawing, Li et al.27 proposed a line drawing-guided mural restoration
method,which decomposed themural restoration process into two stages:
structure reconstruction and color correction. In the structural recon-
struction stage, line drawings are used to ensure the authenticity of the
large-scale restoration content and the stability of the structure. In the
color correction stage, the missing pixels are corrected and the local color
is adjusted. The two-stage restoration strategy effectively improves the
quality of mural restoration. Considering the problems of insufficient
feature extraction and loss of detail reconstruction, Chen et al.28 proposed
a GAN mural restoration method based on multi-scale features
and attention fusion. From the perspective of attention and loss function,
Li et al.29 proposed an approach for inpainting damaged areas of Dun-
huang murals based on a recurrent feature reasoning network. To exploit
multi-scale information and mask features, Wang et al.30 proposed a
Thanka mural inpainting method based on multi-scale adaptive partial
convolution and stroke-like masks.

STMA-GAN Network
Inspired by themanual restorationmural scheme, we proposed the STMA-
GAN model, as shown in Fig. 2. STMA-GAN is built up on a GAN. By
modeling the manual restoration process, STMA-GAN is designed as a
model that contains two generators and a discriminator. Note that the same
discriminator structure is used during the two-stage training process.
Among the two generators, one is a coarse-grained network GC , which is
used tomodel the first step of themanual restoration process to reconstruct
the lines and contours of themissing content of themural, and the other is a
fine-grained network GF , which is used to refine the texture and details of
the image reconstructed by the coarse-grained network. Let xL and xM be
the line drawing and mask image. xL and xM are the inputs to the coarse-
grained network. xC is the output of the coarse-grained network. It can be
represented as:

xC ¼ GCðxL; xMÞ ð2Þ

The coarse-grained network consists of an encoder, a stack of STMA
blocks, and a decoder. The encoder consists of four convolution-batch
channel normalization-ReLU layers (Conv-BCN-ReLU), BCN32 can adap-
tively combine the information of channel and batch dimension to improve

the generalization of the model. The role of the encoder is to encode the
input xL and xM to extract the key features FC

ei
,

FC
ei
¼

GC
ei�1

xL; xM
� �

i ¼ 1

GC
ei�1

FC
ei�1

� �
i 2 f2; 3; 4g

8<
: ð3Þ

where GC
ei
is the i-th layer function operation of the encoder. Four stacked

STMAblocks form thebackbone of the coarse-grainednetwork.Thiswayof
stacking building blocks enables the network to extract richer image
contextual information. It can be expressed as:

FC
sj
¼

GC
sj�1

ðFC
e4
Þ j ¼ 1

GC
sj�1

ðFC
sj�1

Þ j 2 f2; 3; 4g

(
ð4Þ

where GC
sj
is the j-th function operation of the STMA block. Then, four

upsampling-convolution-BCN-ReLU (Up-Conv-BCN-ReLU) layers are
used to decode the features fromSTMAblocks to the initial inpainted image
as the output result of the coarse-grained network. Because the deep
network structure will make the features disappear in the transmission
process from the shallow layer to the deep layer, which weakens the
performance of the model to reconstruct the image33,34. To alleviate this
issue, skip connections are applied between the encoder and the decoder.

FC
dk
¼

GC
dk�1

ðFC
s4
þ FC

e4
Þ k ¼ 1

GC
dk�1

FC
dk�1

� �
þ FC

e4�kþ1
k 2 f2; 3; 4g

8<
: ð5Þ

where GC
dk
is the k-th layer function operation of the decoder. Finally, the

output of the coarse-grained network is reconstructed by a convolutional
layer GC

cov,

xC ¼ GC
covðFC

d4
Þ ð6Þ

Similar to the coarse-grained networkGC , the architecture of the fine-
grained networkGF adopts the same design idea. Let xm be the binarymask
image, thefine-grainednetwork receives xm and xC as input and outputs the

Fig. 2 | The overall pipeline of our proposed STMA-GAN.
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result ŷ as the final repaired mural by the model. It can be represented as:

ŷ ¼ GFðxm; xCÞ ð7Þ

However, to achieve the refinement of mural texture and detail
restoration, a two-staged training strategy and different loss functions are
used during training, see the loss function subsection for details.

The discriminator, its role is to determine whether the repair results
are good or bad. To stabilize the training of the discriminator, spectral
normalization35 is introduced into the discriminator. Spectral normal-
ization can constrain the spectral norm of each layer of the discriminator
so that the discriminator satisfies Lipschitz continuity36, which can
reduce the blurring effect of the mural repair results and enhance
realism5. We use a stack of five convolution-spectral normalization-
Leaky ReLU (Conv-SN-LReLU) layers to form the backbone of the
discriminator, a single sigmoid function is used for the output of the
discriminator.

STMA block
STMA block fuses the Swin transformer module (SwinT) and the multi-
scale dilated convolution attention module (MSDA) by the strategy of the
split-transformation-merge37.

Splitting: Inspired by ref.13, the feature tensor Xin is fed into a 1 × 1
convolution and split into two sub-feature tensors equally. It can be
expressed as:

x1; x2 ¼ SplitðConv1× 1ðXinÞÞ ð8Þ

Following the weight fusion strategy, we obtain the fusion weights by

w1;w2 ¼ SplitðFuseðXinÞÞ ð9Þ

where Fuse :ð Þ ¼ SoftmaxðMLPðGAPð:ÞÞÞ, GAP represents the global
average pooling, MLP represents the multi-layer perceptron. We use the
weights w1 and w2 to fuse x1 and x2 via X1 ¼ w1x1 and X2 ¼ w2x2.

Transforming: The two sub-feature tensors X1 and X2 are fed into the
SwinT module and MSDA module to perform different transformations,

respectively.

Xs;Xm ¼ SwinT X1

� �
;MSDAðX2Þ ð10Þ

Specifically, the SwinT module is a Transformer block, which
includes a multi-head self-attention mechanism based on a shifted
window (SW_MSA) and amulti-layer perceptron (MLP). SW_MSA can
use the interactive information between local attention and shift window
to better model the long-distance dependency, and it is also beneficial to
MLP for further feature transformation38. A LayerNorm layer is added
before SW_MSA and MLP, and the residual connection is used to
facilitate the transfer of information, see Fig. 3. The SwinT module is
computed as:

X0
1 ¼ SW MSA LN X1

� �� �þ X1

Xs ¼ MLP LN X0
1

� �� �þ X0
1

ð11Þ

where Xs is the output of the SwinT module. The MSDA module is a
multi-scale dilated convolution attention module, which contains
convolution operations with different dilation rates. Dilated convolution
can systematically aggregate multi-scale contextual information without
losing resolution4,39,40. Inspired by this, we use convolutions with
different dilation rates to implement multi-scale feature transformation
on the input tensor to capture rich contextual information. Convolution
operations with larger dilation rates have larger receptive fields, which
help extract more semantic information. Convolution operations with
smaller dilation rates have smaller receptive fields, which is beneficial in
paying more attention to local patterns. The input feature tensor X2 is
evenly divided into four sub-feature tensors xisub; i 2 f1; 2; 3; 4g along the
channel dimension. Each sub-feature tensor xisub is fed separately to the
convolution with different dilation rates d 2 f1; 2; 4; 8g. We combine
convolution operations with different dilation rates in a parallel manner
and then concatenated contextual features of different scales from the
channel dimension. A standard convolution is used to fuse features at
different scales. It can be expressed as:

X0
m ¼ Conv3× 3ðConcatðReLUðDconvd3× 3ðxisubÞÞ; � � � ; ÞÞ ð12Þ

Fig. 3 | The structure of the STMA block. a STMA.
bMSDA. c SwinT.
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where d; ið Þ 2 f 1; 1ð Þ; 2; 2ð Þ; 4; 3ð Þ; 8; 4ð Þg. Spatially-variant features are
calculated by a simple gating mechanism41. The output of the MSDA
module can be obtained by weighted feature operation and collaborative
attention42.

Xm ¼ CoorAtt X2 � 1� Gate X2

� �� �þ X0
m � Gate X2

� �� � ð13Þ

Aggregating: the featuremapsXs andXm from the SwinTmodule and
MSDAmodule are finally concatenated as the input of a 1 × 1 convolution
which has a residual connection with the input tensor Xin. Through the
split-transformation-merge strategy, the final outputXout of STMAblock is
expressed as:

Xout ¼ Conv1× 1 Concat Xs;Xm

� �� �þ Xin ð14Þ

Loss function
It is very meaningful to reconstruct the fine-grained texture of the
missing area of mural painting. However, there are multiple possible
outcomes for reconstructed missing areas. To generate harmonious
reconstruction results, we adopt different loss functions at different
stages to guide the training of themodel.Wefirst train the coarse-grained
network separately in an adversarial manner to generate seemingly
complete images, and the discriminator also has preliminary dis-
criminative capabilities during this training process. The objective
function in this case is:

minGC maxD Lad GC;D
� �þ α1L1ðGCÞ þ α2gLmsssimðGCÞ þ α3LmaskðGCÞ

ð15Þ
where L1ðGCÞ ¼ jjy � GCðxL; xMÞjj1, g is the Gaussian filtering para-
meter. Lmsssim GC

� � ¼ 1�MSSSIMðGC xL; xM
� �

; yÞ. α1 is a weight factor
for L1. α2 is a weight factor for Lmsssim: α3 is a weight factor for Lmask. The
combination of L1 and Lmsssim can ensure the initial quality of the
inpainted image43, but it cannot solve the problem of color change and
context consistency. To alleviate this issue, we proposed a simple but
effective mask loss Lmask, it defined as:

LmaskðGCÞ ¼
X

i
jjVGGi y

� � � xm � VGGi G
CðxL; xMÞ

� � � xmjj1 ð16Þ

whereVGGi denotes the output of the i-th layer of the pre-trained VGG-19
network. We adopted the corresponding activation output from the
ReLU1_1, ReLU2_1, ReLU3_1, ReLU4_1, and ReLU5_1 layers.

After the initial training, the fine-grained network is also introduced
into the training of the model. Moreover, to reconstruct more refined tex-
ture details and colorization, we introduce a histogram loss Lhist

44 based on
Eq. (15), which is beneficial to guide the pixel distribution of the inpainted
image to maintain the original variance and standard deviation.
Lhist ¼

P
iτjjy � hðŷÞjj, where hð:Þ is the histogrammatching operation, τ

is the control factor. Therefore, the objective function is given by

minGC ;GF maxD Lad GC;GF ;D
� �þ α1L1 þ α2gLmsssim þ α3Lmask þ α4Lhist

ð17Þ
where α4 is a weight factor for Lhist .

Results
Experimental environment and setting
The proposed STMA-GAN is implementedwith the Pytorch framework and
runs on a platformwith aNvidia ®Tesla V100 SXM2. Part of the datasets for
model training and testing were taken from ref. 27 We also obtained 2000
murals through web crawling technology and scanning from the mural
album.Finally, thedatasetused formodel trainingaftermanual screeningwas
3500 murals. 50 murals were used for model testing. For mask images, we

adopted the irregularmask dataset publicly available byNvidia45. This dataset
contains a large number of irregular masks with randomized shapes, sizes,
and positions. The diversity and complexity of mask images can simulate
large areas of random-shaped defects on the mural, such as falling-off blocks
and mud stains. We multiply the mural with the binary mask image to
simulate the damaged mural. To generate the edges of the mural, we first
preprocess the mural using bilateral filtering to smooth out the noise, and
then use DexiNed46 to obtain the fine edges of the mural. Figure 4 illustrates
some of the murals, line drawings, and binary mask images in the dataset.

A two-stage training strategy is employed during the training pro-
cess. However, the multi-stage training strategy can cause the problem of
cumulative error in the training process of the model. This is because the
results generated by the model during the previous stage of training are
used as inputs to the model in the later stage. The output of the model in
the previous stage is highly randomized, which can feed bad results into
the next stage eventually leading to cumulative errors. To alleviate this
issue, we only trained the coarse-grained network in the first stage. After
40,000 epochs, the training process of the coarse-grained network and
the discriminator became stable, and the coarse-grained network could
generate murals with better structure. Then, the second stage of training
is carried out, where the fine-grained network is introduced into the
model to train together. Since the coarse-grained network can already
generate good results and the discriminator is also well-trained, the fine-
grained network also converges faster under their guidance. The pro-
posed model was trained for a total of 1e5 epochs with a mini-batch size
of 2. The chosen number of epochs was based on the observation that
validation accuracy plateaued after approximately 1e5 epochs, and fur-
ther training did not significantly improve performance. The Adam
optimizer (β1 = 0.0, β2 = 0.9) was used for model training with a learning
rate of 1e-3. The weight factor α1 of L1 is set to 1, the weight factor α2 of
Lmsssim is set to 10, the weight factor α3 of Lmask is set to 0.1, the weight
factor α4 of Lhist is set to 0.0005. The loss term weights were determined
by performing a hyperparameter search on 20 validation murals. In the
STMA block, MSDA contains four parallel dilated convolutions with the
dilation rates d set to 1, 2, 4, and 8, respectively. The SwinT module
adopts the default parameter of the Swin Transformer.

Comparison experiment
Tovalidate themural restorationperformanceof themodel, itwas evaluated
both quantitatively and qualitatively. We compared the proposed model
with Edge Connect16, CTSDG47, AOT-GAN4, ref. 27, and MAT48.

For quantitative assessment, PSNR49, SSIM49, and MSE50 metrics were
used to evaluate the restored murals from the perspective of image quality.
Generally speaking, thehigher the values of thePSNRandSSIMmetrics and
the smaller the value of the MSE metric, the better the quality of the
recovered image. FID51 and LIPS52 metrics to assess the characteristics of
restored murals from the perspective of data distribution. The smaller the
values of these two metrics, the more similar the restored mural feature
distribution is to that of the real mural image. Table 1 lists the results of the
quantitative comparison of the relevant methods.

As can be seen from Table 1, our proposed method achieves better
results both in terms of distribution-based evaluation metrics and image-
based evaluation metrics.

For the qualitative assessment, Figs. 5 and 6 show the results of the
restoration of the damagedmurals by the relevant methods. As can be seen
from Fig. 5, Edge Connect blurs the content of the restored mural, CTSDG
causes artifacts in the restored mural, and AOT-GAN do not refine the
texture of the restored mural. The ref. 27 method is more effective in the
overall restoration of murals. MAT does not restore the color and texture
details of themural well. STMA-GANachieves better results in the detailing
of restored murals. As can be seen from Fig. 6, although Edge Connect,
CTSDG, and ref. 27 realize the restoration of the mural, the hanging
ornaments next to the figures are not restored.MATmethod resulted in the
appearance of misplaced image content in the restored murals. AOT-GAN
also restored only a small part of the hanging. STMA-GAN not only
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achieves the restoration of the mural but also the complete recovery of the
missing hangings.

Ablation study
To better understand the impact of STMAblocks on the performance of the
proposedmethod, we performed ablation experiments.We trained amodel
without the STMAblock (denoted as STMA1-GAN), a model with only the
MSDAmodule in the STMAblock (denoted as STMA2-GAN), and amodel
with only the SwinTmodule in the STMAblock (denoted as STMA3-GAN).
Table 2 shows the comparison results of the performance of different
models. It can be seen from Table 2 that the performance of the model
decreases when the STMA module is removed, no matter from the per-
spective of data distribution or image quality. The performance of STMA2-
GAN and STMA3-GAN is better than STMA1-GAN, which implies that
using only a single component of STMA does help to improve the perfor-
mance of the model, and the SwinT module improves the model perfor-
mance more. The performance of the STMA-GAN model is the best, the

main reason is that SwinT can capture global context information, and
MSDA is good at extracting local features. Combining the two canmake full
use of their respective advantages and capture global and local information
at the same time, to improve the performance of the model.

Avisual effect comparisonresult of ablationexperiments is shown inFig.
7. From the overall visual effect, allmodels have better completed the repair of
the damaged mural. However, it can be seen from Fig. 7d that the murals
repaired by STMA1-GAN have color deviations. The restored area showed
more green color. The color deviation of STMA2-GAN and STMA3-GAN is
not very obvious, but the effect of texture detail restoration is not good.
STMA-GAN achieves the best visualization results, which suggests that
combining SwinT and MSDA can fully utilize their respective advantages.
STMA is beneficial to improve the performance ofmodels in color correction
and detail restoration. This demonstrates that the STMA block can not only
improve the learning ability and feature representationability of theproposed
model but also correct the color of the inpainted mural to some extent.

The loss function also plays an important role in guiding model
training, and we performed ablation experiments on the loss function as
well. Since L1 and Lmsssim are common combinations, we only explore Lhist
and Lmask. A model without Lhist is denoted as STMA-GAN1 and a model
without Lmask is denoted as STMA-GAN2. As can be seen in Fig. 8, STMA-
GAN1 and STMA-GAN2 are weaker than the performance of STMA-GAN,
which indicates that the missing Lmask and Lhist reduces the performance of
the model. Lmask calculates the differences between mask feature maps,
whichhelps themodel tomore accurately localize the feature areas that need
to be repaired during training. It avoids causing unnecessary modifications
to undamaged areas. Lhist calculates the difference in the distribution of gray
levels of the murals, which is beneficial to guide the model to optimize the
contrast of the murals during training. It ensures that the restored mural is
consistent with the ground truth in the grayscale distribution, making the
restored mural more natural and realistic. Therefore, Lmask and Lhist are
beneficial to guide the training process of the model.

Fig. 4 | Murals, line drawings, and binary mask images.

Table 1 | the results of the quantitative comparison of the
related methods.

Method FID# LIPS# PSNR" SSIM" MSE#
Edge Connect 103.96 0.3813 17.21 0.5201 0.0188

CTSDG 93.23 0.3763 18.22 0.5475 0.0168

AOT-GAN 85.01 0.3237 18.29 0.5621 0.0167

Ref. 27 63.14 0.2439 20.38 0.6776 0.0110

MAT 94.21 0.3998 17.16 0.4198 0.0290

STMA-GAN 59.37 0.2136 21.31 0.7126 0.0085

Bold indicates the best metric.
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User perceptual study
We also conducted a user study to evaluate the restoration performance of
different methods for murals. We invited 20 users to evaluate 50 restored

murals restored by differentmethods. The user scores the restoredmural on
a scale from 1 to 5 (from worst to best) concerning the original mural
provided by us. The final average rating values are presented with two
decimal places. Figure 9 shows the user ratings of the restored murals from
the perspective of the overall visual effect and detailed textures. The visual
effect evaluation of mural restoration is mainly on the naturalness and
fidelityof the restored area. Fromanoverall visual perspective, our proposed
method received the highest ratings compared to the comparisonmethods,
indicating that the mural restoration results of our proposed method are
more acceptable to users. The evaluation of detail texture in mural
restoration ismainly to restore the details of the repaired area and realize the
smooth transition of the edge. As can be seen from Fig. 9, users also gave
high ratings to our proposed method in terms of mural detail restoration,

Fig. 6 | Qualitative comparisons of the related methods. a Ground truth. bMasked image. c Repair result of Edge Connect. d Repair result of CTSDG. e Repair result of
AOT-GAN. f Repair result of ref. [27]. g Repair result of MAT. h Repair result of the proposed method.

Fig. 5 | Qualitative comparisons of the related methods. a Ground truth. bMasked image. c Repair result of Edge Connect. d Repair result of CTSDG. e Repair result of
AOT-GAN. f Repair result of ref. [27]. g Repair result of MAT. h Repair result of the proposed method.

Table 2 | Comparative results of ablation experiments.

Method FID# LIPS# PSNR" SSIM" MSE#
STMA1-GAN 62.72 0.2182 21.06 0.7034 0.0090

STMA2-GAN 64.64 0.2165 21.44 0.7132 0.0097

STMA3-GAN 59.60 0.2143 21.17 0.7155 0.0088

STMA-GAN 59.37 0.2136 21.31 0.7126 0.0085

Bold indicates the best metric.
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Fig. 7 | Comparison results of ablation experiments on STMA blocks. aGround truth. bMasked image. cRepair result of STMA-GAN. d Repair result of STMA1-GAN. e
Repair result of STMA2-GAN. f Repair result of STMA3-GAN.

Fig. 8 | Comparative results of ablation experiments on loss function. a Com-
parison results of different models in PSNR. b Comparison results of different

models in SSIM. c Comparison results of different models in MSE. d Comparison
results of different models in FID. e Comparison results of different models in LIPS.

Fig. 9 | User evaluation. a Evaluation performed by
users on the restoration results of different methods
in terms of visual quality. b Evaluation of the
inpainting results of different methods by users in
terms of detail textures.
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which indicates that our proposed method ensures the clarity of the details
of the restored mural.

Discussion
Image inpainting is essentially an ill-posed inverse problem. Inpainting
images with large damaged areas is still a very difficult challenge. According
to the above experimental results, our proposedmethod achieves a relatively
ideal visual effect, but there are still some problems when inpainting the
more seriously damaged images. From Fig. 10, it can be seen that our
proposedmethod can only repair the general contour of the face and fails to
refine the texture details of the face (yellow-bordered area). Moreover, the
proposed method also fails to estimate the original image content well
(green-bordered area).

This means that our proposed model still has some limitations in the
image details of refined restoration and model reasoning ability. The
marked areas in Fig. 10 are areas where themural ismore severely damaged
or where the structural information is more complex. The large amount of
missing information leads to the fact that our proposed model cannot rely
on the contextual information of the image and the surrounding pixel
information to infer the content of themissing area. Although our proposed
model can generate restoration results that are consistent with the sur-
rounding area,when themissing area is large and contains complex textures
or objects, the model may not be able to generate textures and refined
structures that exactly match the surrounding area, resulting in unnatural
restoration results. In future work, image prior technology or advanced
network backbone can be introduced to further improve the degree of
refinement of the repaired image.

In addition, we use supervised learning to train the proposed model.
However, the ground truth of the mural is lacking in the actual scene.
Creating ground truth for murals is a labor-intensive and time-consuming
process that requires expertise in art history, archeology, andpossibly digital
restoration. This makes it difficult to scale the supervised learning approach
to a larger number ofmurals. Even if ground truthmurals are available, they
may not always be accurate or comprehensive due to human error,
incomplete information, or changes over time. Inaccuracy in labels can lead
to poormodel performance andmisleading results. Here are some potential
solutions: (1) Some prior information of the mural is integrated into the
training process of themodel, tobetter guide the repair process of themodel.
(2) Exploring unsupervised or semi-supervised learning methods can
mitigate the dependence on labeled data. (3)Utilizing transfer learning from
related domains (e.g., image semantic information in general art) can help
improve the model’s ability to generalize to complex mural restoration
problems. Pre-trained models can be fine-tuned on limited labeled mural
data to adapt to specific mural features. (4) Multi-modal or cross-modal
learning techniques can leverage information from multiple sources to
provide a more comprehensive understanding of murals.

The proposed method is mainly aimed at solving the large area of
irregular shape damage on the mural, such as falling-off blocks and mud
stains. This makes our method have certain limitations in the task of
repairing different types of damaged murals. Murals, as invaluable cultural
artifacts, face awide range of degradation issues, including cracking, peeling,
fading, and biological growth. These damages are often compounded by
historical factors such as thematerials used in their creation, environmental
conditions, and human activities. In future work, we will design masks for
different types of damaged murals and a unified restoration model for
different types of degraded murals.

Inspiredby theprocess ofmanualmural inpainting,wepropose anovel
two-stageGANformural inpainting.Themaingoal of thefirst stage is touse
a coarse-grained network to achieve a coarse-grained semantic recon-
struction of the damaged mural, to provide a basis for the subsequent finer
restoration. The second stage focuses on achieving fine-grained feature
reconstruction to restore local features and detailed information in the
mural. The proposed STMA block combines the advantages of the Swin
transformer module and the multi-scale dilated convolution attention
module to enhance the overall learning and restore ability of themodel. The
training process of the model is guided by introducing different loss func-
tions in the two-stage training strategy toensure the restoredperformanceof
the model. Abundant experiments show that our proposed method can
achieve a good restoration of murals.

In our future work, we will further improve the quality of mural
restoration in terms of a model learning approach, model training strategy,
andmultimodal information fusion to promote the digital preservation and
communication of cultural heritage. At the same time, to repair murals
subjected to different types of damage, we will also design new masks and
mural restoration models.

Data availability
The mural dataset in this study is available at https://1drv.ms/u/s!
AittnGm6vRKLzXorf1nkiDPRQB4D?e=Avv27i .
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