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Ancient mural super-resolution
reconstruction based on conditional
diffusion model for enhanced visual
information
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Ancientmurals are cultural treasureswith high research value, yet few arewell preserved. The intricate
textures within murals pose substantial challenges for super-resolution reconstruction. To address
issues such as detail loss, color shifts, and inadequate noise control in mural super-resolution
reconstruction, this study introduces amural conditional diffusionmodel (MCDM) for enhanced image
reconstruction. The model integrates three core modules: a residual feature distillation network for
feature encoding and detail extraction, a residual self-attention module to enhance global
consistency, and a Kolmogorov–Arnold-based implicit representation module for high-frequency
detail reconstruction. Furthermore, this study establishes three training schemes across twodatasets.
Experiments show that MCDM performs best on the mixed dataset, with a PSNR of 23.3 dB and an
SSIM of 0.8399. Tests across scenarios show that MCDM ensures smooth images while preserving
details. Transfer learning further enhances performance by reducing noise and restoring fine features,
providing guidance for future work.

Ancient Chinese murals, with their long history and rich artistic heritage,
reflect the religious beliefs, social conditions, and advanced painting tech-
niques of their time.However, over time, environmental and human factors
have caused various forms of deterioration in murals, including surface
peeling, pigment loss, dust accumulation, and scratches, which result in
blurred patterns and loss of fine textures, posing a serious threat to their
artistic and historical value1–3. The digital preservation and transmission of
mural images face multiple challenges, including lighting conditions,
camera angles, capture device resolution, and image compression algo-
rithms. These factors can result in blurred details, increased noise, and color
distortion, further compromising image quality and hampering effective
display and cultural dissemination.

To enhance the visual quality and detail presentation of mural images,
image reconstruction techniques are particularly important. In recent years,
single image super-resolution (SISR) has found extensive applications in
diverse computer vision tasks. SISR focuses on recovering high-resolution
(HR) images from low-resolution (LR) inputs. However, SISR is inherently
an ill-posed problem, where a single LR image can correspond to multiple
plausible HR solutions. SISR approaches are broadly classified into three

categories: interpolation-based methods, reconstruction-based methods4,5,
and learning-basedmethods6–8. The first two types of methods, constrained
by their simplicity, are inadequate for addressing the diversity and com-
plexity of mural images and lack the capability to learn contextual rela-
tionships and intricate patterns from large-scale data, thus limiting their
practical applications. Recently, research has increasingly focused on
learning-based methods9, which capitalize on data-driven techniques to
effectivelyhandle the complexity ofmural images and fulfill thedemands for
detail restoration.

Learning-based approaches primarily comprise convolutional neural
networks (CNN), generative adversarial networks (GAN), and flow-based
models.MostCNN-based single image super-resolutionmodels commonly
employ mean squared error (MSE) or mean absolute error (MAE) as loss
functions. While effective in optimizing peak signal-to-noise ratio (PSNR),
these pixel-level losses often produce overly smoothed reconstructions,
limiting the recovery of high-frequency details and intricate textures10,11. To
overcome these drawbacks, research efforts have progressively focused on
incorporating advanced network architectures and loss functions. In 2015,
Dong et al.12 introduced the first three-layer CNN model, SRCNN, for
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super-resolution reconstruction, whichmarked the beginning of a research
surge in learning-based super-resolution methods. Subsequently,
researchers leveraged residual networks, channel attention modules, and
other innovations to develop deeper CNN models, enabling the extraction
of richer image features while mitigating training challenges. To enhance
efficiency, ESPCN13 introduced small filters, EDSR14 incorporated residual
blocks with skip connections, and CARN15 implemented a recursive net-
work architecture, all of which demonstrated excellent reconstruction
performance. Building on the successful application of CNNs in traditional
image tasks, Xu et al.16 introduced a multi-scale residual attention network
for mural image super-resolution, effectively reconstructing texture-rich
mural images.

With their exceptional ability to generate high-quality reconstructed
images, generative adversarial networks (GANs) have gradually established
themselves as the dominant framework and backbone for image super-
resolution reconstruction. GAN-basedmodels integrate content losses (e.g.,
L1 or L2) with adversarial losses to generate HR images with enhanced
perceptual quality, effectively addressing the issue of over-smoothing17,18.
Nevertheless, these models are susceptible to mode collapse and frequently
encounter challenges in achieving stable convergence during training19. In
comparison,flow-basedmethods address the training instability inherent in
GAN models through explicit distribution modeling, invertibility, and
likelihood maximization techniques. However, these methods are often
constrained by high memory requirements and significant computational
costs, stemming from thenecessity of rigorousmodel designs, such asmulti-
layer bidirectional transformations or block-structured architectures20. In
the domain of mural super-resolution, Cao et al.21 introduced a self-
attention GAN-based reconstruction method to mitigate texture blurring
and detail loss. This approach utilizes self-attention modules for feature
extraction and sub-pixel convolution layers to generate HR images.
Experimental results demonstrated significant improvements in PSNR and
(structural similarity index) (SSIM), successfully restoring mural textures
and meeting public visual quality expectations. Xiao et al.9 introduced AM-
ESRGAN, combining attention mechanisms with multi-level residual net-
works to achieve enhanced visual fidelity and improved detail restoration.
To overcome challenges such as incomplete detail restoration and image
distortion, Ren et al.22 developed aGANmodel that integrates parallel dual-
convolution feature extraction and a ternary heterogeneous discriminator,
delivering high-quality mural image restoration.

In recent years, diffusion models have found extensive applications in
various fields, including speech synthesis23 and image synthesis24. Diffusion
models, as probabilistic generative models leveraging Markov chains,
employ forward diffusion to incrementally add noise and map data to a
Gaussian distribution, while reverse diffusion progressively removes noise
to recover the original data distribution. By optimizing the variational lower
bound (or its simplified version), diffusion models enable a stable training
process, explicitly capturing data distributions and producing high-quality,
diverse outputs. In comparison to GANs, diffusion models effectively
mitigate the mode collapse issue associated with adversarial training,
offering superior stability and enhanced detail recovery. Building on this
foundation, researchers have introduced several variants, including diffu-
sion probabilistic models25, conditional score models26, and denoising dif-
fusion probabilistic models27. Among these, conditional diffusion models
integrate conditional information into the generation process, allowing the
model to produce samples tailored to specific conditions. SRDiff 28 pio-
neered the application of diffusionmodels in single-image super-resolution
tasks, achieving diverse and realistic predictions on facial and natural image
datasets while effectively addressing challenges like over-smoothing and
mode collapse. SR329 advanced this approach by leveraging bicubically
interpolated LR images as conditional inputs and utilizing stochastic
denoising within diffusion models, producing more realistic image results
on facial and natural image datasets, outperforming GAN-based methods.
Li et al.30 introduced a dual-conditional diffusion model-based fusion net-
work for producing HR hyperspectral images, effectively addressing blur
effects commonly observed in deep learning methods. Drawing inspiration

from these advancements, we propose an enhanced diffusion model
designed to more effectively recover the intricate details and structures
present in murals. Li et al.28 introduced SRDiff, a diffusion model-based
super-resolution approach that pioneered the application of diffusion
models to super-resolution tasks, achieving remarkable detail restoration on
facial and natural image datasets. Dong et al.31 developed the ISPDiffmodel,
which combines diffusion models to tackle the challenges of hyperspectral
images, including their physical properties and inference efficiency, result-
ing in substantial improvements in spectral fidelity and detail quality.
Moreover, diffusion models have been utilized in medical image enhance-
ment, particularly in the super-resolution reconstruction of ultrasound and
magnetic resonance imaging (MRI), producing high-quality images with
well-defined structures and intricate textures, while demonstrating superior
performance on metrics like PSNR and SSIM32,33.

In conclusion, to address the challenges of over-smoothing and mode
collapse in traditional SISRmodels, while capitalizing on the superior detail
restoration capabilities of diffusion models, this study pioneers the appli-
cation of diffusion models in mural image super-resolution reconstruction.
The aim is to effectively preserve and restore the intricate details and colors
ofmural images, offering technological support for their digital preservation
and cultural heritage.

In summary, the main contributions of this paper are as follows:
(1) This paper proposes a mural images super-resolution network based

on the diffusion model. By leveraging features extracted from LR
images as conditional guidance, the network accurately predicts the
noise distribution, thereby reconstructing high-fidelity mural images
with rich details from noisy inputs.

(2) This study introduces a novel implicit neural representation module
grounded in the Kolmogorov–Arnold network (KAN), designed to
replace the conventional multilayer perceptron module. Leveraging a
limited set of basis functions, this module efficiently approximates
complex high-dimensional data mappings, aiding in the capture of
nonlinear image features and preventing excessive smoothing, thus
improving detail reconstruction.

(3) This study introduces a dynamic feature weighting module based on
residual connections and self-attention mechanisms (RSAM), which
adaptively adjusts feature weights during downsampling, leveraging
self-attention to capture long-range dependencies andmaintain global
structural consistency. RSAM accentuates critical features, suppresses
irrelevant information, effectively alleviates the vanishing gradient
problem, and strengthens information propagation within deep
networks.

(4) This study incorporates a residual feature distillation network (RFDN)
to efficiently capture and refine both local details and global structural
features in mural images. The RFDN incrementally distills crucial
features, extracting essential texture and color information from LR
images to enhance the restoration of intricate details, thereby
improving the quality of HR mural image reconstruction.

Methods
Overall structure
The overall network architecture proposed in this study is shown in Fig. 1.
Since the diffusion model employs an iterative solution process, the output
of MCDM is used as input for the next step at each iteration, continuing
until a predetermined number of steps is completed. MCDM takes as input
anLRdigitalmural image and the randomnoise from theprevious iteration.
Specifically, the LR image is first fed into the condition-embedding layer,
where it undergoes feature encoding and refinement via the embedded
RFDN to extract detailed conditional features. Subsequently, these features
are passed to the DN-Module on the left, which is built upon the StyleGAN
module from StyleGAN234 to further extract and refine image features.

During feature extraction, the encoded features are concatenated with
random noise and fed into the DNS-Module, composed of the RSAM, to
capture long-range dependencies in the image. Both the DN-Module and
DNS-Module propagate gradients during the encoding phase, passing
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intermediate results to the subsequentmn layer. Eachmn layer is composed
of RSAM, with the encoded results utilized during the up-sampling phase
for recovering image details and gradients propagated downward during
encoding.

In a distinctive design of the encoding process, the noise and the
encoded output from the first DNS-Module are simultaneously fed into the
KAN layer, accompanied by a scale parameter. TheKAN layer processes the
input features further and passes the resulting output to the final layer of the
mn layer, enhancing themodel’s capability to represent fine details in image
reconstruction. Subsequently, these processed features are passed to the up-
sampling module for further enhancement.

During the up-sampling stage, features from each mn layer are
sequentially fed into the UN-Module. Comprising the fundamental com-
ponents of StyleGAN2, the UN-Module alternates with the KAN layer to
perform up-sampling steps, gradually reconstructing an HR image.

Conditional diffusion model
The conditional diffusion model comprises two primary stages: a forward
noise addition (diffusion) process and a reverse denoising process. By
incrementally addingGaussiannoise to the original image and subsequently
removing it during the reverse phase.

During the forward diffusion phase, the model defines a forward
Markov diffusion process q, incrementally addingGaussian noise to theHR
original image x0, gradually transforming the image into a pure noise dis-
tribution. This process adds noise incrementally overT time steps, forming
a Markov chain, with its conditional probability can be expressed as

qðx1:T jx0Þ ¼
YT
t¼1

qðxt jxt�1Þ ð1Þ

qðxtjxt�1Þ ¼ Nðxt ;
ffiffiffiffi
αt

p
xt�1; ð1� αtÞIÞ ð2Þ

The hyperparameter αt controls the noise intensity added at each
iteration, where 0 < αt < 1 and I is the identity matrix. Since standard
Gaussian noise is added at each step, this process can be considered a
Markov process. Leveraging this property, the noisy image xt at any arbi-
trary time step can be directly computed from the original HR image x0
using the following equation:

xt ¼
ffiffiffi
γ

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffi
1� γ

p
ϵ ð3Þ

where γ ¼ Qt
i¼1 αi; ϵ is a noise term drawn from a standard normal dis-

tribution. This formulation enables direct computation of the noisy image at
any given time step, bypassing the need for iterative calculations at each step.

During the reverse denoisingphase, themodel gradually removesnoise
via a reverse Markov chain, ultimately yielding a high-quality image.
Starting from a high-noise state xt ,the model leverages the conditional
probability pðxt�1jxtÞ to iteratively recover a high-quality image that
approximates the original. At each time step t, themodel predicts the image
of the previous state xt�1, continuing until it generates a low-noise or noise-
free image x0. The reverse process is formulated as the following difference
equation:

xt�1 ¼ μθðxt; tÞ þ σt � ϵ ð4Þ

where μθðxt ; tÞ denotes the mean function estimated by the model, condi-
tioned on the current state xt and time step t,while σt represents the time-
dependent standard deviation.

Implicit neural representation based on KAN
Traditional implicit neural representations using multilayer perceptron
(MLP) are effective at capturing complex features, but high-dimensional
feature representation often demands extensive computational resources
and deeper network architectures, leading to increased computational
complexity. According to the Kolmogorov–Arnold theorem, any high-
dimensional nonlinear function can be approximated with appropriately
selected low-dimensional basis functions (e.g., polynomials or splines), thus
mitigating the computational complexity inherent in layer-by-layer
approximation used in traditional neural networks like MLP35,36.

Motivated by this insight, we propose an innovative implicit neural
representation module based on the Kolmogorov–Arnold network, inten-
ded to replace conventional MLP modules. This module leverages a mini-
mal number of basis functions to efficiently represent complex features in
mural images, reducing computational complexity and enhancing recon-
struction accuracy. In this work, spline functions are employed as basis
functions to construct an implicit neural representation module grounded
in the Kolmogorov–Arnold network. This module effectively captures
complex high-dimensional data mappings and integrates with the diffusion
model, forming a unified end-to-end framework. In the image decoding
phase, the diffusion model incrementally removes noise, leveraging the
feature representation capabilities of the implicit neural representation
module to reconstruct aHRmural image. The specific process resembles the
LIIF model37, where continuous coordinates of multi-resolution features
c = {c(1),c(2),…,c(N)} serve as references, with their values retrieved from
the noise network via a scaling factor. We input the current features sur-
rounding the coordinates to calculate the target features. Given the feature
hðiþ1Þ and its corresponding coordinates cðiþ1Þ, The implicit representation
process draws on the principles of the IDM framework38. the implicit

Fig. 1 | The overall structure of the MCDM. This
figure was created using Microsoft PowerPoint.
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representation process can be expressed as follows:

nðiÞ ¼ Ki ĥ
ðiþ1Þ

; cðiÞ � ĉðiþ1Þ
� �

ð5Þ

where c denotes the continuous coordinates of multi-scale images. In the
ðiþ 1Þ-th depth, ĥðiþ1Þ

and ĉðiþ1Þ are interpolated by computing the nearest
Euclidean distance from hðiþ1Þ and cðiþ1Þ, respectively. Ki refers to KAN

39.
The structure of KAN can be represented by the following equation:

f ðxÞ ¼
X2nþ1

q¼1

Φq

Xn
p¼1

φq;pðxpÞ
 !

ð6Þ

The function f ðxÞ is the output,with its input being amultidimensional
vector x ¼ ðx1; x2; . . . ; xnÞ,where x1; x2; . . . ; xn are distinct independent
variables.Φq represents a family of functions, each of which operates on the
result of an inner summation. The function Φq : R ! R can be under-
stoodas a transformationapplied to the result of each inner summation.The
index q ranges from 1 to 2nþ 1, indicating that there are 2nþ 1 such
transformation functions. φq;p is another family of functions, each of which
operates on a single independent variable xp. Each function φq;p : ½0; 1� !
R is a transformation function applied to the individual variable xp, yielding
a real-valued result. The index p ranges from 1 to n, indicating that there are
n input variables, with each input variable xp having a corresponding
transformation function.

Residual self-attention dynamic weighting module
The RSAM constitutes an essential component of the MCDM model,
incorporating two core elements: residual connections and self-attention
mechanism, as shown in Fig. 2.

The residual connections module on the left side processes input fea-
tures via identity mapping, preserving the original data information while
directly passing error signals, thus effectively preventing gradient vanishing
during deep network training. Initially, input features are normalized using
the GroupNormmodule40. The normalized output is subsequently fed into
the Swish activation function, which helps prevent the gradient from
approaching zero during training, thereby mitigating saturation effects. A
Dropout layer is then applied to introduce model uncertainty and reduce
complexity, thereby enhancing generalization capacity. Finally, the output
passes through the last convolutional layer, is fed into a Linear layer, and
undergoes residual computation. The residual output is fed back into the
network, where the above processes are iterated.

The self-attentionmechanismmodule on the right dynamically adjusts
feature weights based on relationships among input features, emphasizing
themost representative and significant features while attenuating irrelevant
or noisy ones. This module, integrating residual connections with self-
attention, significantly improves the model’s capacity to understand input
data, enhancing generalization and accuracy on complex datasets. Upon

entering the self-attention module on the right, the data undergoes
GroupNorm normalization. Subsequently, after a convolution operation,
the features are divided into three tensor chunks using Torch’s built-in
Chunk function, representing the query (Q), key (K), and value (V). The
query (Q) and key (K) are utilized to compute the attention scores, The
equation can be expressed as follows:

A½b; n; h;w; y; x� ¼ 1ffiffi
c

p
Xc
j¼1

Q½b; n; j; h;w� � K½b; n; j; y; x� ð7Þ

where b denotes the batch index, n represents the attention head index, h
andw serve as spatial indices for the QueryMatrix, while y and x are spatial
indices for theKeyMatrix. The channel index c is applied to scale the results,
mitigating potential numerical instability or overflow in computations.

The module first computes the attention score A by performing a dot
product between thequery vectorQ at eachh;w positionand the key vectorK
at each y; x position, normalized by the square root of the channel dimension.
the attention score is then activated using Softmax function, yielding a
probability distribution that serves as weights. Subsequently, the weights are
applied to thevaluevectorV throughaweighted summation toobtain the self-
attention score. Finally, the self-attention scores pass through a convolutional
layer to further extract deep features, yielding the final attention output.

Residual feature distillation network
To improve feature representation efficiency and extract more effective
features for producing high-quality super-resolution images, this study
employs the residual feature distillation network (RFDN) for the mural
image super-resolution task41. The main structure of the network is shown
in Fig. 3. Unlike conventional methods that use a fixed 3 × 3 convolutional
kernel for channel compression, thedistillationmoduleon the left sideof the
model replaces the 3 × 3 kernel with a 1 × 1 convolutional kernel. This
design reduces the parameter countwhile enablingmore efficient extraction
of fine details, which is especially important for the rich and intricate tex-
tures of mural images.

To better account for the spatial contextual information in mural
images, the right main network replaces the original 3 × 3 convolutional
kernel with a refinement module composed of shallow residual blocks
(SRB), enhancing the network’s ability to extract fine details. This archi-
tectural choice enables RFDN to efficiently leverage spatial information,
enhance attention computation efficiency, and reduce network complexity,

Fig. 2 | The structure of the RSAM. This figure was created using Microsoft
PowerPoint.

Conv-1 SRB

Conv-1 SRB

Conv-1 SRB

Conv-3

Conv-1

CCA Layer
Conv-3

ReLU

SRB

Fig. 3 | The main structure of the RFDN. This figure was created using Microsoft
PowerPoint.
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thus achieving better reconstructionperformance inmural super-resolution
tasks with a lightweight structure.

Loss function
Given that diffusion models often generate complex and diverse data, and
L1 loss does not square errors, making it less sensitive to outliers, this study
utilizes L1 loss tomitigate the impact of extreme error values on the overall
loss, thereby stabilizing the training process. Additionally, L1 loss and L1
regularization have inherent sparsity properties, which are particularly
beneficial for tasks like image denoising and restoration. The use of L1 loss
encourages the model to produce a sparse error distribution, effectively
eliminating noise and restoring the original structure of the image. The L1
loss function applied in this study is defined as follows:

‘ðx; yÞ ¼ sumðLÞ ¼
XN
n¼1

jxn � ynj ð8Þ

where N denotes the batch size, x represents the pixel values of the target
image, and y denotes the pixel values of the generated image.

Datasets
In this study, we constructed a mural dataset consisting of 2281 real mural
images from the Han, Tang, and other dynasties, as well as reproductions
from ancientmural collections. The dataset spans different dynasties, styles,
and regions, ensuring both diversity and representativeness of the data. A
total of 2031 images were used for training, 100 for validation, and 150 for
testing. Additionally, the widely used DIV2K34 dataset was employed as a
benchmark for image super-resolution research. DIV2K comprises a
training set of 900 images and a validation set of 100 images, encompassing
diverse scenes such as people, natural landscapes, and urban environments.
This dataset is suitable for testing, benchmarking, and pre-training super-
resolution algorithms.

Experimental design
Thehardware configuration for the experiments includes 64 GBofRAM, an
Intel Core i9-12900KF CPU, and an NVIDIA GeForce 4090 GPU. The
software environmentwasbuilt on anUbuntuoperating systemrunning the
Linux kernel, with Python 3.9 as the programming language. Key libraries
used include PyTorch, Numpy, and OpenCV-Python.

In the data preprocessing stage, random noise and blur inherent to
mural imageswere simulatedby downsamplingHR images. Specifically, the
Lanczos algorithm42 was employed to downscale the images by a factor of 8,
creating LR samples. Both HR and LR images were then cropped to the
largest inscribed square,with the initial croppingposition randomly selected
to enhance sample diversity. The model was trained using the Adam opti-
mizer, with a learning rate of 1 × 10–4 and a total of 1 × 106 iterations.

In this study, two datasets were used, and three training schemes were
designed. In the first scheme, the mural dataset was used as the training set.
The second scheme combined the mural dataset with the DIV2K dataset to
create amixeddataset. In the third scheme, themodelwaspre-trainedon the
DIV2K dataset, and then the parameters were transferred to the mural
dataset for fine-tuning.

To assess the effectiveness of the proposed mural image restoration
model, evaluations were conducted on a self-constructed test dataset. Both
quantitative and qualitative analyses were conducted to compare the pro-
posed model with existing super-resolution algorithms (EDSR19, SRGAN14,
CARN15, LKDN43, and SRCNN12), evaluating their performance in the
mural image restoration task.

Evaluation metrics
In the super-resolution reconstruction of digital mural images, the perfor-
mance is primarily assessed using two essential metrics: PSNR and SSIM.
These metrics are essential for analyzing and enhancing the restoration
quality of mural images, particularly focusing on detail preservation and
visual coherence. These metrics provide an effective means of comparing

different super-resolution algorithms, specifically in terms of improving
mural image clarity and detail fidelity.

PSNR isderived fromthemean squared error (MSE)metric.For anHR
image X and a SR image Y of dimensions m× n, MSE is defined as

MSE ¼ 1
mn

Xm�1

i¼0

Xn�1

j¼0

½Xði; jÞ � Yði; jÞ�2 ð9Þ

Derived from the MSE, PSNR can be calculated as follows, where
MAXImage represents the maximum gray value in the images.

PSNR ¼ 10 � log10
MAX2

Image

MSE

 !
ð10Þ

SSIM is commonly used to quantify the similarity between images
before and after distortion, providing a measure of the realism of model-
generated images. SSIM is defined as

SSIMðX;YÞ ¼ ð2μXμY þ c1Þð2σXY þ c2Þ
ðμ2X þ μ2Y þ c1Þðσ2X þ σ2Y þ c2Þ

ð11Þ

where μX and μY are the mean values of X and Y , respectively. σ2X and σ2Y
are the variances of X and Y , respectively. σXY is the covariance between X
and Y . c1 and c2 are small constants, proportional to the dynamic range of
the image, introduced to prevent division by zero.

Results
Comparative analysis of single dataset training using the mural
dataset
In this study, three representative digital mural reconstruction results were
selected, corresponding to single-character, multi-character, and complex
scenes (as shown in Fig. 4). The detailed analysis is as follows:

In the single-character scene (Scene 1), CARN, LKDN, SRCNN, and
our model effectively restore the mural’s overall color palette. However,
EDSR exhibits severe color shifts, SRGAN struggles with skin and back-
ground restoration, rendering a cyan tone, and ESPCN demonstrates
missing background details with a blue color bias. Although SRCNN
restored the color, it lacked sufficient detail in the outlines. CARN and
LKDNeffectively preserved the character’s contours butmissedfiner details
in the hands and exhibited more noise. In contrast, our model accurately
restored the character’s lines and colors.

In the multi-character scene (Scene 2), EDSR exhibits a color shift,
resulting in an overall brownish tone. CARN, LKDN, and SRCNN restore
the sharpness of handheld objects effectively, while ESPCN and SRGAN
struggle to recover finer details. Ourmodel achieves accurate restoration for
most outlines, excluding the eyes and neck.

In the complex scene (Scene 3), involving characters with intricate
movements and additional animals, EDSR demonstrates significant color
distortion, while ESPCN suffers from poor edge restoration and noticeable
noise. Although CARN, LKDN, SRGAN, SRCNN, and our model suc-
cessfully restore the black snake in the image, none of themodels adequately
capture the facial and clothing details of the character.

As depicted in Fig. 5, we analyzed complex details from three scenes. In
Scene 1, all models except ours failed to reconstruct the contour lines and
showed noticeable noise. Although ourmodel achieves good sharpness along
the edges, its performance in restoring the eyedetails is suboptimal. InScene2,
the other models’ results contain significant noise, while our model better
restores certain contours. Nevertheless, it struggles with the accurate recon-
struction of small, elongated objects like prayer beads and flutes. In Scene 3,
ourmodel successfully restores the colors and contours of both the snake and
the character, although it underperforms in capturing finer facial details.
CARN, LKDN, and SRCNN also manage to reconstruct the snake’s colors
and contours effectively, but display high noise in the character’s details.
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Comparative analysis of mixed dataset training with mural and
DIV2K datasets
Figure 6 presents the training performance of differentmodels on theMixed
Dataset. EDSR, in particular, fails to accurately restore the overall color
acrossmultiple scenes, displaying a noticeable purple color shift. In Scene 1,
CARN and LKDN successfully reconstruct the character’s body contours

with minimal noise, whereas SRGAN and SRCNN exhibit a moderate level
of noise, and ESPCN produces the highest noise levels among all models.
Our model demonstrates superior noise control, accurately restoring the
contours of the character’s skin, clothing, and background details with
clarity. In Scene 2, CARN, LKDN, and our model achieve effective noise
reduction,whereas othermodels still exhibit noticeablenoise levels. In Scene

Fig. 4 | Results of various models on the mural dataset. The data in this image comes from the results generated by the model.
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3, SRCNN exhibits blurred edges in the restoration of branches, whereas all
models, with the exception of ESPCN and EDSR, achieve near-original
quality in reconstructing the ultra-low-resolution complex scene.

A magnified analysis of the details in Fig. 6 is presented in Fig. 7. In
Scene 1, CARN, LKDN, and our model accurately restored the facial con-
tours of the character. However, while CARN and LKDN produced
somewhat blurred eye details, our model achieved a more refined

restoration in this area. SRCNN and SRGAN achieved a certain level of
noise reduction, with SRGAN demonstrating smoother results than
SRCNN. Although ESPCN successfully restored the overall color tone, it
introduced noticeable noise in the facial area. In the multi-character com-
plex scene (Scene 2), CARN and LKDN achieved effective noise reduction
and accurately restored neck contours; however, the generated images
lacked high-frequency details, resulting in blurred color patches. Ourmodel

Fig. 5 | Detailed restoration results of various models on the mural dataset. The data in this image comes from the results generated by the model.
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accurately restored the contours of clothing and preserved high-frequency
details more effectively. Qualitatively, our model demonstrated superior
performance in restoring finer details, such as hand and necklace elements
of the characters, compared to other models. In Scene 3, CARN, LKDN,
SRGAN, and our model all effectively restored the shape and color of the
snake; however, our model additionally captured some facial details of the
character that were missed by other models.

Comparative analysis of transfer learning: pre-training on DIV2K
and fine-tuning on mural dataset
In this study, all models were first pretrained on the public DIV2K dataset,
followed by parameter transfer to the mural dataset for further fine-tuning,
as shown in Fig. 8. Compared to themixed dataset training results shown in
Fig. 6, the overall color differences are minimal. Although EDSR exhibits
higher sharpness in capturing high-frequency details, it still fails to

Fig. 6 | Performance of various models trained on the mixed dataset. The data in this image comes from the results generated by the model.
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accurately restore the overall color. CARN, LKDN, SRCNN, and our pro-
posedmodel demonstrate reduced noise compared to the results trained on
themixed dataset.While ESPCNachieves higher sharpness, it still exhibits a
considerable amount of noise.

The detailed reconstruction results based on the pretrained model are
illustrated in Fig. 9. In Scene 1, CARN, LKDN, and our model all exhibit
good sharpness; however, our model provides superior clarity in restoring

clothing pattern details. In Scene 2, the pretrained model results display
slightly less detail in the hand region compared to themixed dataset training
results (Fig. 7). Furthermore, compared to the results of direct training on
the mural dataset (Fig. 5), all methods, except ESPCN, exhibited notable
noise reduction across the three scenes and achieved varying degrees of
enhancement in detail and color restoration, validating the effectiveness of
transfer learning in mural super-resolution tasks.

Fig. 7 | Detailed results of various models trained on the mixed dataset. The data in this image comes from the results generated by the model.
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Quantitative analysis
Table 1 presents the PSNR and SSIM performance of seven algorithms for
image reconstruction tasks across three different training configurations.
The MCDM model consistently achieves the highest scores in all training
conditions, surpassing the second-best model, LKDN, by 1.1, 0.12, and 0.16

in PSNR, respectively. Additionally, MCDMmaintains higher SSIM values,
demonstrating its superior ability to model mural image features and its
stronger generalization performance. In the mixed dataset training, CARN
and LKDN also show promising results; however, under the transfer
learning condition, MCDM continues to outperform other models,

Fig. 8 | Training results of various models based on the pre-trained models. The data in this image comes from the results generated by the model.
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highlighting its strong adaptability. Both SRCNN and LKDN exhibit com-
petitive performance under transfer learning as well. Overall, MCDM
demonstrates outstanding performance across various training scenarios,
with excellent stability and transferability,making it highly suitable formural
image super-resolution reconstruction in complex data environments.

Ablation experiment
Table 2 presents the ablation study results of individual modules in the
mural super-resolution task. Initially, substituting the KAN module with a
traditionalMLP network led to a 0.67 drop in PSNR and a 0.0679 reduction
in SSIM. Keeping the other modules unchanged, removing RFDN caused a

Fig. 9 | Detailed display of the training results of various models based on pre-trained models. The data in this image comes from the results generated by the model.
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0.28 decline in PSNR and a 0.0497 decrease in SSIM. Subsequently,
removing RSAM resulted in a 1.08 drop in PSNR and a 0.09 decrease in
SSIM. Experimental results demonstrate that RSAM has the most sub-
stantial influence on model performance, as it effectively captures global
information and long-range dependencies, contributing to improved detail
restoration and texture generation. In contrast, while replacing the KAN
module resulted in a performance decline, its impact was comparatively
minor, suggesting that its primary function lies in optimizing local details.
ReplacingRFDNhad the smallest effect onPSNRand SSIM, highlighting its
strength in feature extraction; however, its overall contribution was less
substantial compared to RSAM and KAN modules.

Discussion
In this study, we propose a mural image super-resolution reconstruction
network (MCDM) based on a conditional diffusion model. The MCDM
incorporates the KAN-based implicit neural representation, RFDN, and
RSAM to accurately restore complex textures and high-frequency details in
mural images. By utilizing a progressive detail refinement strategy, MCDM
effectively simulates the transformation from LR to HR images, exhibiting
notable noise reduction capabilities and superior detail preservation across
diverse scenarios.

The ablation study further validates the importance of each module in
enhancing reconstruction performance, with the RSAMmodule showing a
particularly prominent contribution in capturing long-range dependencies
and improving global structural coherence. Analysis of results across three
training schemes shows that MCDM achieves optimal performance on the
mixed dataset (PSNR 23.3 dB, SSIM 0.8399), further underscoring its
superiority in mural image restoration.

While the MCDMmethod demonstrates outstanding performance in
detail recovery, it still leaves room for improvement in reconstructing cer-
tain details within complex scenes. This study confirms the critical potential
of transfer learning in mural super-resolution tasks. Future research will
delve into dataset development, training strategy refinement, and model
parameter optimization to achieve further improvements in mural recon-
struction quality.

Data availability
The data presented in this study are available on request from the corre-
sponding author.
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