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The accurate recording of high-quality underwater cultural heritage images is crucial for archeological
research. However, underwater images frequently suffer from color distortion and reduced clarity,
which compromises image quality. Existing underwater image enhancement methods often lead to
either over-enhancement or under-enhancement, thereby obscuring artifact details and hindering
archeological research. This study proposes a method for enhancing quality and restoring color in
underwater cultural heritage images, based on an underwater physical imaging model. First, a different
background light estimation algorithm based on brightness segmentation (DBE-BS) is developed to
enable adaptive multi-region background light estimation, thereby mitigating the impact of uneven
lighting on the image. Next, the depth-saturation fusion transmission (DSFT) map estimation algorithm
integrates depth information with the inverse saturation map, improving transmission map accuracy.
Finally, the Depth-integrated Color Compensation Model (DICC) is introduced to optimize color
correction using image depth data, enhancing the image’s visual quality.

To protect valuable underwater cultural heritage, the use of digital imaging
technology to document underwater artifacts and sites is essential. High-
quality image records not only preserve detailed site information but also
enable the analysis of material composition, degradation products, and
alteration markers of cultural artifacts, thus supporting non-invasive
research methods such as 3D visualization. However, due to light attenua-
tion and scattering during underwater propagation, captured images often
suffer from severe color distortion and poor visibility, which significantly
hinders further analysis and identification of cultural heritage. As a result,
numerous scholars have conducted extensive research in color correction
and image clarity enhancement, employing various approaches.
Non-physical underwater image enhancement methods typically
adjust pixel values to improve degraded images, without considering the
underlying principles of underwater image formation. Common techniques
include color channel compensation and white balance. Ancuti et al.
restored lost colors by subtracting local means from each color channel',
while Berman et al. addressed color distortion by estimating the attenuation
ratio between blue-red and blue-green channels’. These methods can
recover color but struggle with complex underwater environments, where

varying depth and structures may cause over-correction or distortion.
Building on the limitations of the previous method, the ERH approach was
proposed to improve color, sharpness, and contrast, while reducing
brightness discrepancies in overlapping areas’. In addition, other methods
enhance contrast using dual-histogram thresholding and multi-scale fusion
strategies, followed by sharpening’. While these techniques are effective for
global adjustments, they may overlook small details in rich-texture artifacts,
limiting the restoration of true characteristics. The ACCE method intro-
duces adaptive color contrast enhancement to suppress high-frequency
noise while enhancing low-frequency contrast’. Similarly, many methods
also combine multi-technique fusion to improve image quality by inte-
grating multiple enhancements®’. However, all these methods rely on fixed
enhancement approaches, making them less adaptable to diverse under-
water environments, where variations in depth or sediment composition
can affect color and texture accuracy.

Additionally, Retinex, a widely used non-physical model for under-
water image enhancement in recent years, is based on the principles of the
human visual system and aims to simulate how the human eye perceives
illumination and color. Researchers have conducted numerous studies
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based on this theory. There is a method that combines the Retinex model
with Gradient Domain Guided Image Filtering (GGF) to enhance image
structure while reducing noise and other artificial artifacts®. There is also a
CCMSR-Net network designed based on Retinex to improve the quality of
underwater imagesq. However, the Retinex method is better suited to rela-
tively uniform image structures and often struggles with the complex tex-
tures and fine structures present in underwater cultural heritage sites. This
limitation arises because Retinex lacks specificity in local color and bright-
ness enhancement, which can lead to blurring of texture and structural
details, thereby weakening the restoration of site details. Additionally, the
shadow removal process in Retinex may cause the loss of heritage details,
compromising the precise recognition of artifact surface features.

Existing non-physical underwater model image enhancement meth-
ods are generally simple and computationally efficient. However, they lack
the flexibility to handle complex underwater scenes effectively, often relying
on scene simplicity and specific assumptions. This can result in over-
enhancement or under-enhancement issues, and these limitations are
especially pronounced in processing underwater cultural heritage images.
Underwater cultural heritage environments are often complex and variable,
with differing levels of water turbidity, uneven lighting, and depth changes
—all of which impact image clarity and color accuracy. Non-physical model
methods struggle to adapt to subtle variations in the surface structures of
heritage sites, leading to a loss of image detail and compromising the
accurate identification of artifact morphology and characteristics.

Image enhancement methods based on physical underwater models
simulate the propagation and attenuation of light in underwater environ-
ments, offering more accurate color restoration and contrast enhancement.
These methods leverage an understanding of optical properties like scat-
tering and absorption to address common color distortions and blurring in
underwater images. Ge et al. used an adaptive attention-based method to
calculate transmission rates for key channels'’, while Song et al. employed a
new underwater dark channel prior to refine transmission maps''. However,
these methods often assume a uniform environment, limiting their effec-
tiveness in the complex and variable lighting conditions of underwater
cultural heritage sites. For transmission maps, some methods perform
dehazing using dual transmission maps, while others refine transmission
maps through grayscale morphological closing and a new light attenuation
prior'*"’. While these methods improve color restoration, they struggle to
fully capture subtle color gradations in heritage images due to their focus on
enhancing specific channels. Some methods use depth and illumination
maps to improve image restoration, but depth estimation errors and static
priors can lead to inaccuracies in complex environments with multiple light
sources and uneven depth layers'*"”. Adaptive strategies are also used to
address light source effects and enhance texture details'®"”. However, global
contrast adjustments may overlook small-scale variations in texture and
detail, particularly in heritage sites. These methods face challenges in
underwater cultural heritage environments due to complex depth layers,
multi-angle lighting, and interference from sediment and microbial parti-
cles. These factors can introduce noise, leading to inaccuracies in depth
estimation and diminishing the restoration of fine details.

In recent years, deep learning methods have demonstrated impressive
performance in underwater image enhancement, primarily due to their
powerful feature learning capabilities. Several of these methods also consider
the unique characteristics of underwater imaging. The enhanced Swin-
Convs transformer block (RSCTB) strengthens local attention and spatial
processing to better handle image degradation caused by uneven medium
distribution'®. Cong et al. proposed a two-stream interactive enhancement
subnetwork (TSIE-subnet), using CNN-based methods to learn physical
parameters and enhance images end-to-end". Peng et al. developed the
U-shape Transformer, combining multi-scale feature fusion and global
feature modeling to enhance underwater image quality”’. The CycleGAN
model integrates a physical model to enhance the generalization of tradi-
tional GANS in real-world underwater environments'. Gao et al. decom-
posed the restoration process into global restoration and local
compensation, correcting color deviations and improving contrast while

preserving details”. Huang et al. applied contrastive semi-supervised
learning to enhance unlabeled data, improving restoration accuracy and
generalization. Chen et al. proposed a wavelet and diffusion model (WF-
Diff) that enhances detail and visual quality through frequency domain
information interaction**. While these deep learning methods excel in color
correction and global contrast enhancement, they often struggle to restore
complex textures and fine details due to their reliance on specific training
data. Their adaptability to the diverse optical characteristics of underwater
cultural heritage sites remains limited, posing challenges for archeological
research that demands accurate color preservation and stable detail
restoration for cultural relics.

Physical model-based methods can more accurately address color cast
and contrast issues by simulating the physical processes of underwater light
propagation and scattering. However, they are often computationally inten-
sive and highly sensitive to environmental parameters, necessitating precise
environmental information for effective image restoration. Deep learning
methods leverage their powerful data-driven capabilities to extract effective
features in complex and variable environments, significantly enhancing
image quality. However, these models require substantial training data,
demand high computational resources, and face challenges in generalization
and interpretability. This study employs a brightness segmentation-based
background light estimation algorithm and a depth-saturation fusion trans-
mission map estimation algorithm to yield more accurate background light
values and transmission maps. Furthermore, a color compensation model
that incorporates depth information is applied to achieve effective color
correction. This method resolves issues related to uneven lighting, color
distortion, and blurred details, thereby enhancing the image’s clarity, contrast,
and color accuracy. These optimizations result in a more realistic and natural
visual effect, making the approach particularly well-suited for the doc-
umentation and restoration of underwater cultural heritage.

Methods

Methods outline

This paper presents an underwater image enhancement model consisting of
three components: the Difference Background Light Estimation Algorithm
based on Brightness Segmentation (DBE-BS), the Depth-Saturation Fusion
Transmission (DSFT) Map Estimation Algorithm, and the Depth-
Integrated Color Compensation Model (DICC). The DBE-BS and DSFT
Map Estimation components are first applied to generate a preliminary
enhanced image, followed by the application of the DICC component to
produce the final enhanced image. The detailed process is shown in Fig. 1.
First, the image is segmented based on brightness, and background light
estimation is performed on each segmented region using a difference
method. Then, the DSFT Map Estimation Algorithm integrates depth
information with the inverse saturation map, generating a more accurate
transmission map based on the relationship between depth and transmis-
sion rate. Finally, the DICC is applied during color channel compensation,
using image depth data to optimize color correction and enhance the
image’s visual quality.

Underwater image formation model

The underwater image formation model decomposes underwater images
into three main components: direct, forward scattering, and backward
scattering, as shown in Eq. (1):

Er =E;+E +E, (1)
where E; represents the total irradiance, E, is the direct irradiance, Ej is the

forward scattering irradiance, and E,, is the backward scattering irradiance.
The direct irradiance can be expressed by Eq. (2):

Eq(x) = J(0)t(x) ()]

where E(x) is the direct irradiance at a point x on the image plane, J(x) is
the radiance of the object, and #(x) is the transmission rate, representing the
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Fig. 1 | The flowchart of integrating the partitioned background light estimation algorithm and the deep fusion model.
attenuation of light as it propagates through the underwater medium. #(x) is:
can be expressed by Eq. (3):
I(x) = J(x)t(x) + Boo (x)(1 — t(x)) (6)

1(x) = ¢4 (3)

where d(x) is the distance between the camera’s photosensitive element and
the object, and # is the attenuation coefficient, indicating the underwater
medium’s capacity to absorb light.

The backward scattering irradiance (backward scattering) can be
expressed as in Eq. (4):

Ey(x) = By (x) (1 — ™) 4

where E;(x) is the backward scattering irradiance and B, (x) is the color
vector of the backward scattering light.

Scattering irradiance (forward scattering) can be expressed as in
Eq. (5) **:

Ef(x) = Eq(x) * g(x, 1) ©)

where Ef(x) is the forward scattering irradiance, and * denotes the con-
volution with the point spread function g(x;, 7).

Because the distance between the camera and the target is relatively
short, forward scattering is ignored, while backscattering remains the pri-
mary cause of haze and blurring. The resulting underwater imaging model

where I(x) is the final imaging model, including direct irradiance and
backward scattering irradiance.

As shown in Eq. (6), the transmission rate #(x) and the background
light value B (x) are the key parameters for determining J(x). The DBE-BS
method is used to calculate the background light value B (x), and the DSFT
method is used to calculate the transmission rate #(x).

Difference background light estimation algorithm based on
brightness segmentation

The Difference Background Light Estimation Method Based on Brightness
Segmentation (DBE-BS) dynamically determines brightness intervals
through histogram analysis, followed by difference-based background light
estimation for each interval. The image’s grayscale histogram and cumu-
lative distribution function (CDF) are calculated, and the brightness seg-
mentation threshold H is determined using the CDF. The segmentation
threshold is defined by Eq. (7):

H:{CDF’I(k),Lke{0,%,%,...,1}} 7)

where CDF is the cumulative distribution function, representing the
cumulative number of pixels with grayscale values less than or equal to a
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certain value. k is a set of ratios ranging from 0 to 1, representing various
percentile positions in the cumulative distribution. 3; denotes the proportion
of the segmented region. By selecting a range of proportional values k from 0
to 1, the corresponding grayscale values are identified through reverse
lookup in the CDF, thereby determining the brightness segmentation
threshold H. This percentile-based approach enables flexible determination
of different brightness intervals, adapting to varying lighting conditions in
the image and providing an accurate segmentation basis for the subsequent
background light estimation.

After completing the image segmentation, the background light for
each segmented part is estimated using the difference algorithm, as shown in
Eq. (8).

The number of segments N is adaptively adjusted according to the
complexity of the image brightness distribution. The number of segments is
determined by the brightness standard deviation o}, as represented in
Eq. (8):

N =N, + ao;, (®)

where N, ;. denotes the minimum number of segments, « is the adaptive
factor, and o, represents the standard deviation of brightness.

After completing the image segmentation, background light estimation
is performed on each segmented region using the difference method, as
illustrated in Eq. (9).

M(x) = avg(wG- S(x-DG) + wB- S(x . DB)) — wR- S(x-DR) 9)

where M(x) represents the intensity difference between the average of the
green channel S(x - D) and the blue channel S(x- D) and the red
channel S(x - Dy). S(x - Dy //p) denotes the intensity of the image in the
red, green, and blue channels, respectively. wG, wB, wR denote the weight
factors for each color channel. Based on the results from each underwater
archeological data collection, the average brightness for each channel is
calculated, and the weight factors are set proportionally.

The background light is estimated by averaging the most significant
intensity differences based on M(x), as shown in Eq. (10):

] o
B, = ?W;L(x,,) (10)

where B, represents the estimated background light intensity, S is the total
number of pixels, and y is the percentage parameter. L (x;) represents the
value of pixel x;. Based on the calculation results of M(x), a total pixel count
of S, is selected.

Depth-saturation fusion transmission map estimation algorithm
To effectively integrate the inverse saturation map with the depth map, this
paper adopts a method based on pixel weight adjustment, which utilizes
depth information to influence the saturation representation of the inverse
saturation map.

To obtain the transmission map, we use the inverse relationship
between the transmission map and the depth map, as shown in Eq. (11):

t(x, 1) = M) 1y
where #(x, A) represents the transmission rate at position x and wavelength
A, nis the attenuation coefficient, and d(x) is the distance from the camera to
the object.

Therefore, determining the accuracy of d(x) is crucial. To obtain an
accurate depth map of the image, this paper uses a monocular depth esti-
mation model for depth estimation™. This is accomplished through a two-
stage framework. In the first stage, a base model is trained using labeled data
to generate an initial depth estimate. The model is then used to generate
pseudo-depth labels for a large set of unlabeled images. In the second stage,

the labeled data and pseudo-labeled data are combined to train the opti-
mized target model, which produces the depth map. Using Eq. (14), the
transmission rate can be calculated.

The attenuation coefficient is used as an adjustable threshold to fine-
tune the transmission map. The resulting transmission map requires
smoothing, which is achieved using guided filtering. The standard form of
guided filtering is:

4 = al; + by (12)
where g, is the filtered transmission map, I; is the guidance map, and a; and
by are coefficients determined by minimizing the following energy function
within the window w; (Eq. 13):

E(ay, b,) = Z((akli + b — 1) + eay)

i€wy

(13)

where ¢, is the original transmission map value within the window, and e isa
smoothness parameter that controls the degree of overfitting. The coeffi-
cients a;, and by are typically solved as shown in Eqs. (14) and (15):

_ mz:iewk (Ii - Hk) (ti - Zk)

2
o, te

(14)

i

(15)

by =t — agy,

where y, and o7 are the mean and variance of the guidance image I within
the window w,, and 7, is the mean of the transmission map t within the
window. Through this approach, guided filtering not only smooths the
transmission map but also maintains the sharpness of key edges, which is
crucial for the final image restoration.

Additionally, to reduce the impact of artificial light sources on the
transmission rate estimation, the issue is addressed using the inverse
saturation map. The formula for calculating saturation is:

min (I . (x))

Sat(I(x)) =1 - max(I,(x))

(16)
where I (x) represents the intensity value of a pixel in the RGB color
channel c.

Due to the different attenuation rates of red, green, and blue light in
underwater scenes—where red light attenuates faster and blue and green
light attenuate less—the saturation is usually higher in underwater scenes
without artificial light sources. The inverse saturation map (RMS) is
introduced to identify areas affected by artificial light sources and is
defined as:

Sat,,(x)=1-— Sat(IC(x)) (17)

The inverse saturation map Sat,,,(x) is aligned with the depth map
D(x) at the pixel level and is of the same size. The weight w(x) is calculated

based on the depth value, assuming that the greater the depth, the smaller
the impact on the transmission rate. The weight can be defined as:

D(x)
max(D)

wx)=1—a«a

(18)

where « is an adjustment factor that regulates the sensitivity of depth
influence, and max(D) is the maximum value in the depth map, ensuring the
weight remains within a reasonable range. This weight is used to adjust the
values in the inverse saturation map, generating the fused image S ;,4(x):

Sﬁxsed(x) = W(X) . Satrev(x) A (19)
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Fig. 2 | Underwater archeological site images.

Image of the Jingyuan Shipwreck site

Image of the underwater trench in the Xisha Islands

where A is a coefficient between 0 and 1, used to adjust the intensity of the
inverse saturation map.

At this stage, the influence of the inverse saturation map is relatively
reduced in deeper regions, while it remains higher in shallower regions. By
calculating the transmission rate for each pixel, the transmission map is
obtained. Combining this with the method for obtaining background light, a
preliminary enhanced underwater cultural heritage image is achieved based
on the principles of underwater image formation.

Depth-integrated color compensation model

As light propagates through water, it undergoes attenuation due to
absorption and scattering effects, with the degree of attenuation varying
across different wavelengths. Shorter wavelengths attenuate more slowly,
while longer wavelengths experience faster attenuation. DICC integrates
depth information with color compensation methods, and this integration is
achieved through the design of a specific model. A model E(x) was devel-
oped to adjust the color compensation intensity based on the image’s depth
map, allowing it to meet the specific requirements of different regions within
the image.

1

Ex)=—F—
) 14+ e—k(D(X)—Dnuem)

(20)

where D(x) represents the depth value of pixel x. Dy, is the depth
threshold used to distinguish depth regions that require different levels of
compensation. k is a parameter that controls the slope of the function,
determining the sensitivity of the compensation intensity variation.

In DICG, the settings for the depth threshold Dy, .4, and the parameter
k are determined based on the specific application requirements and image
characteristics. The depth threshold Dy, .¢, is chosen according to the dis-
tribution of depth regions in the image. For example, it can be used to
distinguish the foreground from the background or to highlight specific
depth ranges. The appropriate threshold can be determined by analyzing the
image’s depth histogram or the scene’s needs. In a foreground-background
separation scenario, Dy, .., can be set as the depth that separates the fore-
ground from the background. For cases requiring emphasis on specific
depth ranges, the average depth value of the target region can be selected.
The parameter k governs the sensitivity of the compensation intensity to
changes in depth. Its selection depends on the desired smoothness of the
visual effect. For a more pronounced transition to emphasize depth contrast,
a larger k value is used, while a smaller k value is chosen for a smoother
compensation transition.

According to the CIELAB color model, a local mean is subtracted from
each opponent channel, estimated using a Gaussian filter with a large spatial
support. This is expressed by Eq. (21).

IZ*(JC) = Ia*(x) — K- E(x) : GIa*(x)

@D
I (%) = I (x) = A - E(x) - Gl (%)

where each pixel x calculates the compensated opponent color channels I,
and I, .Here, I, and I, represent the initial opponent color channels. GI,,,,
and GI,, are their Gaussian-filtered versions. x is the compensation
intensity parameter, which controls the degree of compensation. The
correction levels of the two opponent channels are adjusted using the
parameters x and A.

By processing the preliminarily enhanced image using the DICC
method, the color channels are compensated while optimizing color cor-
rection with image depth data. This improves the visual quality and restores
the original colors of the underwater image.

Results
Sources of archeological data
The primary data for this study comes from four sources, as shown in Fig. 2.
The first set of data is from the wreck site of the Jingyuan, an armored cruiser
of the Beiyang Fleet during the late Qing Dynasty, which sank on September
17, 1894. The wreck was discovered in 2014, and underwater archeological
work was conducted in 2018, during which numerous images were col-
lected, including those of the ship’s nameplate. The site is located in the
Yellow Sea near the coast, at an average depth of 10 meters. The seabed
consists of silty sand, which is easily disturbed, creating suspended particles
and increasing water turbidity, resulting in poor visibility at the bottom,
often less than 0.5 meters throughout the year. The second set of data comes
from images of an underwater trench in the Xisha Islands. The Xisha Islands
consist of 40 islands and reefs, covering a sea area of over 500,000 square
kilometers. There are currently 136 underwater cultural heritage sites
identified in the South China Sea, with over 110 concentrated in the Xisha
Islands. The images in this set were generally collected from shallow loca-
tions and exhibit color cast issues. The site of the ancient city of Junzhou is
located within the waters of the Danjiangkou Reservoir in Shiyan City,
Hubei Province. It was formerly the historical city of Junzhou. The existing
underwater remains include key architectural components such as the
foundation of Canglang Pavilion, stone inscriptions, and ancient bridges.
The water depth at the site ranges from 35 to 42 meters. The wreck site of the
Zhiyuan warship is located in the sea southwest of Dandong City, Liaoning
Province, at a depth of approximately 18 to 20 meters.

This experiment processed a total of 382 images from both groups. For
uniform processing and ease of analysis, all images were resized to a reso-
lution of 1024x1024 before subsequent data processing.

Experimental design
To validate the contribution of each module in the proposed underwater
image enhancement method to the final image quality, an ablation
experiment was conducted. This experiment combined the DBE-BS, DSFT,
and DICC modules to assess each module’s contribution to the image
enhancement effects, thereby demonstrating the effectiveness of the pro-
posed method.

The performance evaluation experiment involves a qualitative and
quantitative comparison of the resulting images under different
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environments. Four methods were selected for comparison with the pro-
posed method: Retinex”, UW-CycleGAN*', UDCP*, and UWCNN?. This
comparison visually demonstrates the impact of different underwater image
processing algorithms on image quality.

At the same time, evaluation metrics are employed to objectively and
comprehensively assess the performance of the images. These evaluation
metrics include the Patch-based Contrast Quality Index (PCQI) is used to
measure the visual quality of underwater images in terms of contrast, color
richness, and haziness”’. The Underwater Color Image Quality Evaluation
Metric (UCIQE) is used to assess the overall visual quality of underwater
color images in terms of color, contrast, and brightness3 ' The Underwater
Image Quality Measure (UIQM) is used to evaluate the visual quality of
underwater images in terms of colorfulness, sharpness, and contrast’”. The
Average Gradient (AG) metric is used to evaluate the overall sharpness of an
image by measuring the intensity variation between adjacent pixels,
reflecting the level of detail and texture clarity. The specific formulas are as
follows:

PCQL = £,(AD) - £,(43) - £,(6) (22)
where f (AI) is a function based on the average intensity difference A,
f(As) is a function based on the signal strength variation As, and f (6) is a
function based on the angle 6 between the signal structures. By scoring local
blocks across the entire image and synthesizing these scores into an overall
quality score, the overall image quality can be evaluated. The advantage of
this method is that it not only provides an overall image quality score, but
also ensures that a higher score indicates better image quality.
UCIQE =¢, -0, + ¢, - con; + ¢5 - 4 (23)

In this equation, o, denotes the standard deviation of chroma, con,
represents the brightness contrast, 4 indicates the average saturation, and

€1, C,, ¢5 are the weighting coefficients. The quality of underwater images is
evaluated by calculating these three primary components. A higher UCIQE

Table 1 | Comparison of evaluation metrics for different
module combinations

Methods (V][]V} UCIQE PCQI

DBE-BS + DSFT + DICC 7.1645 30.2153 0.8921
DBE-BS + DSFT 6.8546 27.4525 0.8431
Imaging Model 6.5235 27.3545 0.8131
DICC 6.9868 27.3548 0.8202

value signifies improved restoration or enhancement of the image.

UIQM = ¢, - UICM + ¢, - UISM + ¢; - UIConM (24)
where ¢;, ¢, and ¢; are the weighting coefficients corresponding to each
component. Using UIQM, the quality of underwater images can be eval-
uated without a reference image. This method is particularly suitable for
underwater image processing scenarios where ideal images are usually
unattainable. It linearly combines the measurements of three underwater
image attributes: colorfulness (UICM), sharpness (UISM), and contrast
(UIConM). A higher UIQM value indicates better image quality.

Results of ablation experiments

The results of the ablation experiment, which present the average values of
UIQM, UCIQE, and PCQI for each module, are shown in Table 1. The
proposed method (DBE-BS + DSFT + DICC) achieved the best perfor-
mance across all metrics, indicating that the synergistic effect of the modules
enhanced the clarity, contrast, and color accuracy of the images. The
combination without DICC (DBE-BS + DSFT) closely approached the
complete method in terms of clarity and contrast but exhibited a decrease in
color naturalness, highlighting the critical role of the color compensation
module (DICC) in enhancing the color performance of the images. The
imaging model utilized a general dark channel method for image
enhancement. While it provided some improvements in clarity and con-
trast, its overall performance fell short compared to other combinations,
particularly in color naturalness. This indicates that the imaging model lacks
the fine-tuning achieved by DBE-BS and DSFT, as well as the color opti-
mization offered by DICC. The combination using only DICC demon-
strated some enhancement in color naturalness, but the effects on clarity and
contrast were limited. These results suggest that the DBE-BS, DSFT, and
DICC modules each emphasize different aspects and complement one
another. The superior performance of the complete method confirms the
effectiveness and necessity of the proposed approach. Figure 3 displays some
of the image processing results.

Qualitative comparison of enhancing image quality and color
restoration

Representative images from three sets of data were selected for display, as
shown in Figs. 4 and 5. The first set of data comes from the Jingyuan
Shipwreck site.

As shown in the original image in Fig. 4, the Jingyuan Shipwreck site
images reveal the characters “Jing” and “Yuan” on the ship. Due to the
turbidity of the underwater environment and the influence of artificial light
sources, light scattering has occurred, significantly reducing image details
and contrast. Colors are also noticeably affected. Overexposure is observed

Fig. 3 | Partial image processing results.
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Fig. 4 | Images enhancement results of the proposed method compared to other methods.
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Fig. 5 | Images enhancement results of the proposed method compared to other methods.

on both the left and right sides of the image, near the artificial light source.
After processing with various image enhancement methods, it was found
that the UWCNN method caused complete loss of image details. The
Retinex method performed poorly in the underwater environment, failing
to significantly improve image clarity. The UDCP method resulted in over-
enhancement of colors in some areas of the image. The UW-CycleGAN
method also exhibited issues of over-enhancement, leading to color dis-
tortion. In contrast, the method proposed in this paper effectively improves
the clarity of the text areas, enhances image details and contrast, and excels
in color restoration by specifically optimizing for the underwater environ-
ment, thus avoiding the issue of over-enhancement.

In Fig. 5, which shows images of the underwater trench in the Xisha
Islands, the characteristics of light absorption and scattering in the under-
water environment resulted in significant color cast issues, giving the images
a noticeable cyan-green tint. This color cast problem severely affected the
images’ true rendering and visibility. After processing with various image
enhancement methods, it was found that each method had its limitations.

The UWCNN method overcompensates for red, resulting in significant
oversaturation of red components in the image. The UDCP method over-
compensates for green, resulting in an excessive number of green compo-
nents. The Retinex method, while enhancing the image, over-enhances the
dark areas, causing underexposure and detail loss in these regions. The UW-
CycleGAN method has an issue of overexposing the bright areas, leading to
aloss of detail. In contrast, the method proposed in this paper performs well
in both enhancement and color cast correction, effectively addressing the
color cast issue in underwater images and improving their visual quality.
In Fig. 6, the original images are affected by factors such as turbidity,
uneven lighting, and spectral absorption of seawater, resulting in overall low
contrast, blurriness, and color casts toward green or yellow. Some areas even
exhibit significant lighting imbalance and information occlusion. The
Underwater Retinex method shows a noticeable improvement in brightness
but suffers from an overall grayish tone and insufficient detail enhancement.
The UDCP method improves image sharpness but causes over-saturation in
some regions, compromising visual realism. The UWCNN method results
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Fig. 6 | Images enhancement results of the proposed method compared to other methods.

Table 2| Performance of evaluation metrics for differentimage
processing methods

Images Methods uiaMm UCIQE PCal AG

1 Retinex 6.1255 23.6339 0.6591 5.5333
UDCP 4.9199 33.0993 0.6982 4.6659
UWCNN 0.2501 18.3895 0.5044 2.8985
UW-CycleGAN 3.5218 32.0842 0.6751 5.8565
Ours 5.9816 33.4073 0.8176 4.3141

2 Retinex 5.9535 23.1186 0.6980 6.3453
UDCP 2.8753 21.0071 0.6153 5.6378
UWCNN 0.3014 16.5755 0.5394 22927
UW-CycleGAN 3.3696 20.9361 0.6864 6.27
Ours 6.0250 23.9022 0.8097 6.7977

3 Retinex 6.2259 25.4986 0.6702 6.5213
UDCP 1.7813 32.3928 0.7165 2.1547
UWCNN 5.0134 15.3063 0.6047 2.5492
UW-CycleGAN 5.5859 31.0178 0.9193 4.2283
Ours 6.3410 32.4823 0.9317 6.0919

4 Retinex 6.0776 24.4333 0.7216 5.7903
UDCP 2.6527 24.3544 0.8017 2.9357
UWCNN 3.8009 14.6437 0.6691 2.1409
UW-CycleGAN 6.3226 25.1741 0.9637 6.3152
Ours 6.3825 24.4367 0.9704 4.5547

5 Retinex 3.3640 26.3809 0.6909 2.8819
UDCP 2.4895 24.7887 0.7186 6.1484
UWCNN 3.9542 15.9319 0.6307 2.2035
UW-CycleGAN 6.8939 30.2027 0.9085 2.3982
Ours 7.2728 29.9033 0.8966 6.6111

in severe loss of detail, with blurred salient target regions. The UW-
CycleGAN method introduces noticeable color distortion, rendering the
images overly reddish and dark, with inadequate contrast for target struc-
tures. In contrast, the method proposed in this study achieves performs well
in image sharpness, contrast, and color restoration.

Quantitative comparison of enhancing image quality and color
restoration

For evaluation metrics, the UIQM, UCIQE, PCQI and AG values were
calculated for five selected images. The results are shown in Table 2.

From the experimental results, it is evident that different image pro-
cessing methods show significant differences across various evaluation
metrics. For the first image’s evaluation metrics, the Retinex method per-
forms well in terms of Underwater Image Quality Measure (UIQM), indi-
cating its effectiveness in enhancing image details and overall quality.
However, it does not perform well in the Underwater Color Image Quality
Evaluation Metric (UCIQE) and the Perceptual Contrast Quality Index
(PCQI), indicating shortcomings in color restoration and contrast
enhancement. For the fourth and fifth images, the UW-CycleGAN method
performs well in UCIQE and PCQI, reflecting its advantages in color
enhancement and perceptual contrast. However, other metrics, such as
UIQM is poor, indicating significant limitations in overall image quality and
detail recovery, and it fails to comprehensively improve image quality. The
method proposed in this paper excels across all metrics.

Figure 7 presents the results of the significance analysis. The findings
reveal that other methods exhibit significant deficiencies across various
metrics, typically characterized by lower average values and greater varia-
bility, making it challenging to achieve consistent performance across dif-
ferent images. In contrast, the proposed method reached the highest average
values for all key metrics (UIQM, UCIQE, PCQI, AG), outperforming other
methods while demonstrating a smaller standard deviation, indicating
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greater stability. This indicates that the proposed method excels in image
quality enhancement, and color enhancement, enabling consistent and
high-quality underwater image enhancement across various images, thus
surpassing other methods in clarity and color restoration.

Discussion

Compared to existing image enhancement methods, the approach proposed
in this paper demonstrates more reliable performance in underwater
environments. Among the comparison methods, the UWCNN method can
enhance the image, but excessive enhancement in certain regions leads to a
loss of image details and fails to effectively restore the clarity of underwater
images. The Retinex method, due to the complexity of underwater lighting
conditions, does not significantly improve image clarity and still suffers
from insufficient exposure in darker areas. The UDCP method causes color
distortion due to over-enhancement in some regions and fails to effectively
restore the image’s natural color tone. The UW-CycleGAN method results
in overexposure in bright areas, leading to the loss of certain details.

In contrast, the method proposed in this paper optimizes the image
enhancement process by incorporating several key modules. The DBE-BS
and DSFT modules effectively mitigate the issue of excessive enhancement
in underwater images, preserving more image details. The DSFT algorithm,
which integrates depth information, prevents the over-enhancement
observed in the UWCNN method, improving image clarity. For color
restoration, the DICC algorithm addresses the potential distortion issues
during color enhancement in the UDCP method, ensuring the naturalness
and authenticity of the image’s color tone. Furthermore, by considering the
complex lighting conditions of the underwater environment, the proposed
method successfully avoids the underexposure and overexposure in bright
areas that are present in the Retinex and UW-CycleGAN methods, thus
further improving the overall image quality.

Despite this, the method proposed in this paper still faces some chal-
lenges and opportunities for improvement. The data were collected at
depths ranging from 0 to 42 meters. Within this depth range, light
attenuation is moderate, and water quality remains relatively stable. The
current results clearly demonstrate the method’s enhancement effects
within this depth range. Validation for deeper depths, more complex water
quality, and lighting conditions (such as low light and strong scattering) has
not been addressed in this study due to the lack of corresponding data. In
future work, we plan to expand the scope of data collection and include more
complex underwater environments to further validate and optimize the
method’s applicability and performance.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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