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Automatic generation of Chinese mural
line drawings via enhanced edge
detection and CycleGAN-based denoising
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Murals are a vital form of traditional Chinese art, rich in historical and cultural content. Line drawing, as
acoretechnique, is widely used but still depends on manual tracing. This paper proposes an automatic
method for generating mural line drawings by integrating edge enhancement, neural edge detection,
and denoising. Enhance edges using image processing techniques, followed by a neural network
(MLineNet) for line extraction. A cycle-consistent generative adversarial network (CycleGAN) refines
the output by removing noise while preserving structural clarity. The model was evaluated using four
metrics: structural similarity index (SSIM), texture complexity (TC), line connectivity index (LCI), and a
comprehensive score (Q). On Dunhuang murals, it achieved scores of 89.54%, 93.77%, 88.14%, and
90.48%, respectively, and showed generalization to Baisha murals (Q = 89.29%). Results
demonstrate the method’s reliability in producing complete, clean, and continuous mural line

drawings.

Murals, as an essential form of traditional Chinese painting, contain rich
historical, cultural, and artistic information, vividly recording the social
customs and folk beliefs of multiple ethnic groups across different
dynasties'”. As illustrated in Fig. 1d, mural creation typically starts with
outlining shapes through line drawing, followed by color rendering and
further artistic refinement. Mural line drawings, characterized by their
simple ink lines without embellishment or color rendering, utilize var-
iations in line length, connectivity, and smoothness to express the tex-
ture and spirit of depicted subjects, thus forming distinct visual rhythms
and becoming an independent artistic form. Therefore, line drawings
serve as a critical representational technique in Chinese painting,
indispensable in Chinese traditional painting, mural art, and folk
painting®’. Currently, line drawings of murals are primarily produced by
manual tracing. Artists usually perform field mapping with simple tools
under limited lighting conditions, which is time-consuming and
requires extensive training. Although the introduction of digital tech-
nologies such as 3D laser scanning and digital orthophotography ima-
gery has improved efficiency, the drawing process still largely depends
on manual work by skilled professionals. Despite gains in productivity,
substantial labor and time investments remain necessary. Furthermore,
variations in artistic perception and technical skills among artists result
in inconsistent drawing quality, and the limited number of qualified
professionals further constrains productivity. Therefore, there is an

urgent need for advanced technological solutions to significantly
enhance the efficiency and consistency of mural line drawing generation.

Line drawing generation involves extracting line information from
color murals to generate black-and-white images composed solely of lines
and blank spaces. Mathematically, line drawing generation can be for-
mulated as a pixel-level classification problem®, where each pixel of a two-
dimensional image is classified according to its probability of belonging to
line structures. Similar to edge images, mural line drawings depict object
contours through black-and-white pixels, emphasizing line and shape
representation. However, unlike traditional edge detection tasks’™’, which
typically focus on high-contrast edges in natural images and consequently
lack detailed line features, mural line drawing generation emphasizes the
details of lines and textures. Therefore, there is a significant difference
between mural line drawing generation and natural image edge detection.
Edge detection in natural images relies heavily on large public datasets for
training and mainly captures object contours. In contrast, mural data are
scarce, and the extraction of mural line drawings requires capturing richer
structural features and artistic details, such as intricate clothing patterns
(garments, headwear, etc.) and detailed facial expressions (eyebrows, eyes,
etc.). Particularly, mural line drawing generation demands more precise and
expressive lines aligned with traditional artistic styles. As depicted in Fig.
la—c, deep learning-based edge detection methods can be categorized into
three types: (1) general edge detection'®", (2) object contour detection'>",
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Fig. 1 | Edge detection and mural line drawings based on deep learning. a General edge detection, b object contour detection, ¢ semantic edge detection, and d mural line

drawings.

and (3) semantic edge detection'*"”. The general edge detection is to identify
significant pixel-value changes in images, resulting in detection outputs that
contain considerable noise due to the inclusion of all edges. Object contour
detection typically simplifies results and excludes internal texture or detail.
Semantic edge detection yields concise edges by filtering out irrelevant
details. While edge detection in natural images emphasizes contour clarity
and object recognition, mural line drawings require finer, artistically
meaningful line generation, as demonstrated in Fig. 1d.

In recent years, edge detection techniques have significantly advanced in
the fields of computer vision and image processing. Traditional approaches,
such as Canny'® and Sobel”, remain widely used and have been optimized
across various applications'"”. With the rise of deep learning, CNN-based
edge detection methods have become mainstream®, considerably improving
accuracy and robustness”””. Recently, Transformer structures have also been
introduced into edge detection tasks, showing significant advantages over
CNN-based methods in capturing long-range dependencies”. Moreover,
edge detection methods based on generative adversarial networks (GANs)
have been developed to generate clearer edge maps and effectively suppress
background noise. Additionally, edge detection integrated with hardware
optimization has become an important trend, showing great practical value in
fields such as intelligent monitoring and autonomous driving™*.

For line drawing generation, early studies primarily relied on hand-
crafted features, interactive methods, and various edge detection operators’
% such as the Canny and Sobel operators, to identify adjacent regions in
images, forming continuous lines that outline the structural curves of
murals. Liu ] et al. ** focused on the Dunhuang Mogao Grotto murals and
employed computer-aided interactive techniques to first trace the mural
boundaries and then refine the line drawings using a virtual brush. Similarly,
He et al. ** also studied Dunhuang Mogao Grotto murals and adopted a
layered interactive approach to progressively generate stroke-based line
drawings. In the study by Sun et al. *', mural image data were sourced from
true-color mural images provided by the Dunhuang Academy and publicly
available mural artifact images, and 12 real line drawings were manually
created. Their method initially applied heuristic routing to detect stroke
outlines, followed by high-frequency enhancement filtering to extract
internal stroke details, and finally, cooperative representation to generate
complete strokes. Although these methods can produce line drawings that
meet certain artistic requirements, they heavily rely on manual interaction,
resulting in low efficiency and difficulty in handling large-scale data or
automated generation tasks.

Benefiting from the powerful feature representation capabilities of deep
learning, recent research has focused on designing sophisticated network

architectures to learn high-level semantic representations’ . Deng et al. **
proposed a deep structural contour detection framework that integrates
edge location and orientation information into a novel loss function,
achieving improved accuracy in extracting structural contours from images.
In the study by Wang et al. 7, the research focused on Thangka murals,
where an edge detection model trained on the natural image BIPED dataset
was directly applied to generate Thangka line drawings. Similarly, Wang
et al. ** focused on Dunhuang murals and generated mural line drawings
using an edge detection model trained on the BIPED dataset. Their
approach introduced a focal Tversky loss function to suppress background
pixels near edge pixels and incorporated dilated convolution and spatial
attention modules to enhance hierarchical features and enrich scale infor-
mation. Liu et al. * also studied Dunhuang murals, using an edge detection
model trained on a natural image dataset to generate mural line drawings.
Their approach proposed a residual self-attention and convolution hybrid
module to integrate local and global features, thereby improving the
extraction of mural line drawings. Peng et al. *’ focused on cultural heritage
murals and used deep learning models for line drawing extraction. Their
approach introduced a detail-aware bidirectional cascaded network com-
bined with a multi-scale U-Net framework to enhance feature extraction
capabilities. In the study by Yu et al. *', simulated mural samples were
created using real mural production techniques to generate realistic line
drawings. Their method enhanced mural images and employed Laplacian
edge detection combined with a fine noise removal module to extract
optimized line drawings. It is evident that due to the lack of publicly available
datasets for mural line drawings, most current studies on mural line drawing
generation rely on models trained and evaluated using natural image
datasets. While this approach is feasible, it has inherent limitations in
capturing the rich structural details and artistic features of murals. Mural
line drawings require careful consideration of the smoothness and detailed
representation of each stroke, imposing higher demands on line extraction
and expression. Most existing edge detection methods are not specifically
designed for mural line drawing generation, making them insufficient to
fully capture mural-specific details and artistic styles. Therefore, effectively
adapting existing methods for mural line drawing generation remains a
pressing challenge that needs to be addressed.

To address the above challenges, this study proposes an automatic
mural line drawing generation method, incorporating edge enhancement,
line drawing extraction, and denoising technologies, enabling efficient and
accurate extraction of mural lines. Specifically, this method first enhances
the mural images’ edge information using contrast-limited adaptive histo-
gram equalization (CLAHE) and bilateral filtering (BF), providing high-
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quality inputs for subsequent line extraction. Secondly, a neural network for
mural line drawings (MLineNet) is employed to extract mural edge features.
Finally, a cycle-consistent generative adversarial network (CycleGAN) is
introduced to refine and denoise the extracted lines, resulting in high-quality
line drawings with clear, natural appearance and rich structural details.
Using Dunhuang murals as a primary research subject, a mural line-
drawing generation model was constructed based on the proposed method.
The reliability and effectiveness of this model were quantitatively verified
using multiple evaluation indicators, including structural similarity index
(SSIM), texture complexity (TC), line connectivity index (LCI), and a
comprehensive score (Q). The final results demonstrate that the proposed
method achieves balanced performance in structural similarity, cleanliness,
and connectivity of the image, showing good overall effectiveness.

The structure of this paper is as follows: The “Methods” section
introduces the overall process of mural line drawing generation and details
three key components, including mural edge enhancement, line drawing
extraction, and line drawing denoising. The “Results” section presents the
generation outcomes of Dunhuang murals, analyzes the performance of
different structures, compares the proposed method with other methods,
and evaluates our method’s generalization capability through line drawing
generation from Baisha murals. Finally, the “Discussion” section sum-
marizes the findings and limitations of this study.

Methods

Overview

The Dunhuang Mogao Grottoes*”*, located in Dunhuang, Gansu Province,
China, are one of the largest and best-preserved repositories of Buddhist art
in the world. Established in the 4th century Anno Domini, they have
undergone continuous development over a millennium and currently
consist of 492 caves, with mural paintings covering an area of over
50,000 square meters. The murals encompass a wide range of themes,
including Buddhist figure paintings, transformation paintings, narrative
paintings, and donor portraits, reflecting not only the spread and evolution
of Buddhist beliefs but also the social and artistic styles of different historical
periods. Buddhist figure paintings depict various representations of Bud-
dhas, Bodhisattvas, and celestial kings, characterized by smooth lines and
vibrant colors, showcasing artistic features unique to each dynasty. Trans-
formation paintings illustrate Buddhist scriptures in visual form, making the
teachings more accessible and easier to disseminate. Narrative paintings
depict stories from the Buddha’s past lives and karmic tales, promoting
Buddhist doctrines and moral principles. Donor portraits portray the
patrons who financed the construction of the caves, providing insight into
the social structure and clothing culture of the time. These murals are not
only treasures of religious art but also serve as invaluable historical, cultural,
and social records, holding immense artistic and academic significance.
DhMurals1714* is a dataset specifically designed for the study of Dunhuang

Mogao Grottoes murals. It comprises 1714 images along with incompletely
annotated reference line drawings, aiming to address the limitation of
available data caused by natural weathering and human-induced damage to
the murals.

This paper proposes an automated method for generating mural line
drawings, integrating mural edge enhancement, deep learning-based line
extraction, and generative adversarial network-based denoising techniques
to efficiently and accurately generate mural line drawings. Based on the
DhMurals1714 dataset, this method seeks to mitigate issues of detail loss and
blurring in reference line drawings of Dunhuang murals, enabling precise
and high-quality extraction of mural line features. As shown in Fig. 2, the
proposed approach consists of three key steps: mural edge enhancement,
line drawing extraction, and line drawing denoising. First, to improve the
quality of mural image edges, CLAHE and BF are applied”, enhancing edge
details in the initial images and providing high-quality inputs for subsequent
line drawing extraction. Then, in the line drawing extraction stage, the deep
learning network MLineNet is employed to extract mural line drawings.
This network adopts an encoder-decoder structure, incorporating multi-
scale feature fusion and edge-aware optimization strategies to capture lines
at various scales while preventing excessive sharpening or information loss.
MLineNet generated line drawings effectively reproduce the primary line
drawings of murals; however, due to annotation errors and the incomple-
teness of reference line drawings, noise and false edges still exist, affecting the
artistic quality and usability of the extracted lines. To further refine the line
quality, this method introduces CycleGAN for unsupervised denoising and
correction®. Given the lack of complete and precisely paired ground-truth
line drawings, CycleGAN effectively removes noise and restores line
smoothness and integrity through unsupervised learning, using only noisy
line drawings and incomplete reference line drawings as input. As a result,
the CycleGAN refined line drawings not only preserve the structural
information of complete lines but also eliminate redundant noise and false
edges, making the generated lines more detailed, clear, and natural, aligning
with the esthetic standards of mural artwork.

Mural edge enhancement

Although the reference line drawings in the Dunhuang dataset display the
edge structures of images, they suffer from partial detail loss or blurring due
to inaccurate annotations. To address this issue, this study applies CLAHE
and BF for edge enhancement before line drawing extraction, as shown in
Fig. 3. CLAHE and BF are important image enhancement techniques widely
used in tasks that improve image details and edge features. In mural image
processing, the combination of CLAHE and BF achieves superior edge
enhancement effects. CLAHE enhances local brightness differences to make
edges more prominent, while BF smooths noise and removes artifacts
introduced during enhancement, while preserving the edge features
enhanced by CLAHE. The synergy of these techniques demonstrates
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Fig. 3 | Visualization of mural edge enhancement.

outstanding performance in mural image edge enhancement, providing a
solid foundation for subsequent line drawing extraction.

In mural image processing, CLAHE enhances edge features, making
edge information clearer while preventing excessive enhancement in high-
contrast areas. CLAHE is an improved version of the traditional histogram
equalization method, addressing the issue where HE may introduce
excessive enhancement and artifacts in high-contrast regions. The key
feature of CLAHE is its localized approach, dividing the image into small
contextual regions (sub-blocks) for histogram equalization while applying a
contrast threshold to each region’s pixels. This prevents the unevenness that
global enhancement may introduce. Its formula is as follows:

Ej max(H(j) — T,0)
N

H'(i) = min(H(i), T) + 1)

where H'(i) represents the adjusted pixel value distribution in the histo-
gram, T is the contrast threshold, and N is the total number of pixels.

BF preserves edge structures while smoothing image noise by inte-
grating geometric distance and pixel intensity similarity, preventing the edge
blurring often caused by traditional linear filtering methods. As a nonlinear
filtering technique, BF combines information from the spatial domain and
the intensity domain to smooth images while effectively preserving edge
features. The core idea is to compute a weighted average of each pixel and its
neighboring pixels, where the weight is determined by both spatial distance
and intensity differences. The mathematical formulation of bilateral filtering
is as follows:

2 yert Gl x =y IDG(I(x) = I(y)DI(y)
> yero Gl x =y DG(I(x) — I(y)])

where I(x) is the pixel intensity at location x in the input image, ./ (x)
represents the neighborhood of x, G,(|| x — y ||) is the Gaussian function in
the spatial domain, which measures geometric distance between pixels, and
G,([I(x) — I(y)]) is the range filter, which evaluates intensity or color
similarity between pixels. This ensures that neighboring pixels with similar
intensities have a greater influence on the central pixel, while regions with
significant intensity differences have less influence, thereby preserving edge
information.

I'(x) = 2

Line drawing extraction

This study employs MLineNet (as shown in Fig. 4) as the deep learning
network for mural line drawing extraction, aiming to automatically produce
high-quality line drawings to support cultural heritage digitization, artistic

style transfer, computer-assisted painting, and heritage preservation appli-
cations. Mural line drawings are not only a form of artistic representation
but also essential data for mural restoration, analysis, and research. Existing
deep learning-based edge detection models'***"” have demonstrated good
performance in general edge detection tasks for natural images. These
methods often rely on global context modeling, denoising processes based
on generative models, uncertainty modeling, or high-precision operator
design to improve accuracy and robustness in edge detection. However,
these models are mainly designed for general object boundary detection
tasks, with a focus on edge localization accuracy and model robustness.
Compared with existing deep learning-based line drawing extraction
methods” ™, MLineNet is designed with the specific characteristics of mural
line drawing tasks. It uses an encoder-decoder architecture combined with a
multi-scale branch design (H;, H,, H;) and feature fusion to separately
extract coarse contours, local details, and global structural features. MLi-
neNet places more emphasis on the clean, connectivity, and structural
integrity of lines, rather than solely on edge detection accuracy.

Specifically, MLineNet includes three feature extraction stages within
the encoder-decoder architecture, each responsible for capturing coarse
contours, enhancing local details, and optimizing overall structural integrity.
Itincorporates a multi-scale feature fusion strategy to enhance the network’s
capacity to represent details at different scales. The network takes an input
mural image of size 720 x 720 x 3 and processes it through three stages to
progressively extract features at different scales. In the feature extraction
phase, the input first passes through two 3 x 3 convolution layers to extract
local features and capture the basic edge structure of the mural. Max pooling
(3 x 3) is then used to gradually reduce the spatial resolution of the feature
maps and capture higher-level global features. For instance, the first stage
increases the number of channels to 16 and reduces the feature map size to
360 x 360, while deeper layers further reduce the size to 180 x 180 with an
increase in channels, ensuring the model can learn line information at
different scales. Since mural line drawings contain rich fine details, such as
facial features, clothing patterns, and decorative backgrounds, simple
pooling operations may lead to a loss of detail. Therefore, 1 x 1 convolutions
are introduced in certain layers for channel compression to preserve detailed
features while controlling computational cost. In addition, residual con-
nections are used within the encoder—decoder structure to establish infor-
mation pathways, allowing lower-level features to be directly transmitted to
subsequent layers. This helps mitigate feature loss in deep networks and
enhances the retention of detailed lines.

In the decoding phase, MLineNet employs upsampling layers
(UpConv) to gradually restore the feature maps to the original input reso-
lution (720 x 720), ensuring that the output line drawing aligns spatially
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Fig. 4 | The architecture of the mural line drawing extraction network, named MLineNet.

with the input image and retains as much detail as possible. However, simple
upsampling is not sufficient to produce high-quality line drawings. To
further enhance line quality, MLineNet introduces a feature fusion module
during decoding. This module concatenates the feature maps from the
different scale branches (H1, H2, H3) as input, where H1 captures coarse
contours, H2 enhances local details, and H3 specifically optimizes overall
structural integrity, supplementing global framework information and
reducing line discontinuities and local deviations. The fusion module
consists of depthwise separable convolutions (DWConv, 3 x 3), Smish
activation, and PixelShuffle operations. DWConv performs per-channel
convolutions to extract local features with low computational cost, while
PixelShuffle increases resolution and rearranges the feature structure to
preserve detail distribution. Finally, these three features are integrated
through a fusion layer to ensure that the generated line drawing maintains
global coherence while preserving local detail. The fusion layer is defined as
follows:

X = Concatenate(H,, H, H;) 3)
X' = PS(Wy * Smith(X)) 4)
Y = X' + PS(W, * Smith(X")) (5)

where X represents the concatenated result, H,,H, H; are features
extracted at different scales, W denotes the depthwise separable convolu-
tion kernel, Smish is the activation function, and PS represents PixelShuffle,
which performs pixel rearrangement. X’ is the preliminary processed fea-
ture map, and Y is the final fused feature map.

Line drawing denoising

In the automatic generation of mural line drawings, the reference line
drawings often exhibit missing or incomplete lines in certain areas. Directly
relying on these incomplete annotations for training may lead to a decline in
the quality of the generated line drawings, affecting their final visual effect
and subsequent applications. To address this issue, we first employed image
enhancement techniques and MLineNet during training to extract pre-
liminary line drawings that compensate for the missing information in the
reference data. However, although MLineNet can extract relatively complete
line structures using deep learning techniques, the imperfections in the
reference line drawings may still introduce noise during the extraction
process. This can lead to blurred lines in some areas, discontinuous edges, or
excessive pseudo-edges in the background. The presence of noise not only
affects the overall clarity of the line drawings but may also interfere with
subsequent mural studies, artistic style analysis, or digital archiving,

Therefore, to further optimize the quality of the generated line drawings, this
paper introduces the CycleGAN model to denoise and refine the initially
generated noisy line drawings, producing clearer, smoother, and structurally
complete mural line drawings.

The advantage of CycleGAN lies in its ability to learn the mapping
between domains through unsupervised learning from unpaired data.
Traditional image denoising methods typically rely on strictly paired
datasets, where each noisy image must correspond to a clean target image for
the model to learn the denoising mapping. However, in the task of gen-
erating mural line drawings, due to the complexity and uniqueness of his-
torical artifacts, it is often nearly impossible to obtain perfectly matched,
clean line drawings as supervision signals, making paired data nearly
infeasible. Against this backdrop, CycleGAN introduces a cycle consistency
loss, constructing a closed-loop structure that maps from the noisy domain
to the clean domain and then back again, ensuring that the input image can
be as close as possible to the original after two mappings. This mechanism
allows the model to effectively learn denoising and structural restoration
capabilities even in the absence of paired supervision, making it particularly
suitable for practical applications like mural line drawings, where obtaining
ideal training data is challenging. Specifically, as shown in Fig. 5, CycleGAN
consists of two generators and two discriminators. The input noisy line
drawing (source domain X) and the reference line drawing (target domain
Y) are not strictly paired. The generator G maps the source domain X to the
target domain Y, while the inverse generator F maps the generated target
domain Y back to the original source domain X. The training objectives for
generators and discriminators are defined by adversarial loss, where
L;an(G, Dy) represents the adversarial loss between generator G and
discriminator Dy measuring the realism of the generated image G(x).
Similarly, £ ,n(F, Dy) represents the adversarial loss between the inverse
generator F and discriminator Dy, evaluating the authenticity of the gen-
erated image F(y). The adversarial loss function is defined as follows:

Lean(G,Dy) = Ey~pdm(y)[log Dy(y)] + Ex~pdm(x)[log(1 — Dy(G(x)))]
(6)

Lian(F,Dy) = Ex~pdm(x)[IOng(x)] + Ey~pm(y) [log(1 — Dx(F(y))]
@)

where x is the source domain image (noisy line drawing), y is the target
domain image (reference line drawing), and p,,.(x) represents the data
distribution of source domain images, and It is the expectation operator,
which denotes the expected loss over the images. I\, , ) represents the
expectation calculation over samples x drawn from the probability

npj Heritage Science| (2025)13:345


www.nature.com/npjheritagesci

https://doi.org/10.1038/s40494-025-01908-3

Article

CycleGAN

Source domain X

Fig. 5 | Line drawing denoising using CycleGAN.

distribution py,,(x), and £, ) follows the same principle. Dy is the
discriminator responsible for determining whether an image belongs to the
source domain X, and Dy serves the same function for the target domain Y.

To ensure a reasonable transformation from the source domain to the
target domain, CycleGAN introduces cycle consistency loss. This loss
ensures that the generated image maintains structural and content con-
sistency with the input image by mapping the transformed image back to its
original domain using the inverse generator F, then computing the differ-
ence between the original and reconstructed images. The cycle consistency
loss function is defined as follows:

[’cyc(Gv F) = Ex'wpdm(x)[” F(G(x)) - x“l] + E}"\’Pdam(}")[“ G(F()’)) - }’||1]
®)

where F(G(x)) represents the source domain image x mapped through
generator G and then back through inverse generator F, and G(F(y))
represents the target domain image y mapped through F and then back
through G. The Ly norm (|| - ||,) is used to calculate the pixel-wise difference
between images. The final loss function consists of both adversarial loss and
cycle consistency loss:

L(G7Fa DX7DY) = gGAN(G7DY) + gGAN(FaDX) + ycyc(Gv F) (9)

By leveraging CycleGAN, this study restores clear and complete mural
line drawings from noisy and incomplete images. Through adversarial
training and cycle consistency loss, the CycleGAN model effectively
removes noise while preserving the structural integrity of the images, ulti-
mately generating high-quality denoised and restored mural line drawings.

Results

In this part of the study, we conducted comprehensive experiments on the
DhMurals1714 dataset and further performed generalization validation on
the Baisha mural dataset to evaluate the reliability of the proposed auto-
mated mural line drawing generation method. The experiments include
both qualitative analysis and quantitative comparisons to thoroughly assess
the effectiveness of the approach. This section provides a description of
datasets, implementation details, and results analysis.

Datasets description

DhMurals1714 is a dataset specifically designed for the study of murals from
the Mogao Caves in Dunhuang. It contains a total of 1714 images, each with
a resolution of 720 x 720 pixels*. The dataset was created to address the
scarcity of usable mural data caused by natural weathering and human
damage. Following a random sampling strategy, the dataset was divided into
a 7:3 ratio for training and testing, with 1200 images used for training and
514 for testing.

The Baisha mural dataset originates from the Dading Pavilion murals
located in Baisha Town, Yulong Naxi Autonomous County, Lijiang City,
Yunnan Province***. These murals serve as an important source for the
study of religious art in Southwest China during the Ming and Qing
dynasties and have recently undergone digital preservation and scholarly
analysis. The original mural image has a resolution of 5251 x 7406 pixels. By
applying a sliding window of 720 pixels with a stride of 680, 70 sub-images of
size 720 x 720 pixels were extracted, all of which were used for testing

purposes.

Implementation details

The experiments were conducted using an NVIDIA A40 GPU, with
PyTorch as the deep learning framework. For training the MLineNet model,
we adopted the Adam optimizer to ensure training stability and con-
vergence efficiency. The initial learning rate was set to 0.005 and was
dynamically adjusted using a cosine annealing schedule, allowing the
learning rate to gradually decrease during training to accommodate multi-
scale feature optimization. To improve the model’s generalization ability on
the DhMurals1714 dataset, we designed a comprehensive data augmenta-
tion scheme. Each training image was augmented with three types of
rotation (90°, 180°, and 270°), three scaling factors (2.0, 1.2, and 0.4), and
two gamma correction values (0.3030 and 0.6060), resulting in 8 augmented
samples per original image. Based on 1200 training images, a total of
approximately 10,800 samples (720 x 720 pixels) were generated to simulate
the diverse styles of mural line drawings, thereby enhancing the model’s
adaptability to unseen data. The training process involved pretraining the
model on the BIPED dataset, followed by fine-tuning on the DhMurals1714
dataset to better capture the structural features of Dunhuang mural line art.
A batch size of 8 was used, with a total of 60 epochs. An early stopping
strategy was applied after 30 epochs to prevent overfitting.

In the training of the CycleGAN model, modeling was also based on the
aforementioned 1200 training images with a size of 720 x 720 pixels. To
clearly define the source domain (noisy domain) and the target domain
(clean domain), we consider the preliminary line drawings as the source
domain images (i.e., extracted line drawings with more noise, broken lines,
or redundant elements), and the reference line drawings as the target
domain images (i.e., reference line drawings) used to guide the generator in
learning the denoising mapping. In terms of network structure, the gen-
erator adopts a ResNet architecture, while the discriminator uses a Patch-
GAN network. For loss function design, CycleGAN incorporates both
adversarial loss and cycle consistency loss, with the adversarial loss weight
set to 1.0 and the cycle consistency loss weight set to 10.0. The optimizer is
Adam with an initial learning rate of 0.0002 and a batch size of 2. Training is
conducted over a total of 100 epochs, with the learning rate remaining
constant for the first 50 epochs and then linearly decaying to 0 over the
remaining 50 epochs, in order to stabilize the training process and improve
final performance.
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Evaluation metrics
To objectively and accurately evaluate the quality of the generated mural line
drawings, multiple quantitative evaluation metrics are selected in this study.
These metrics comprehensively assess various aspects of the image,
including structural similarity, texture complexity and line connectivity,
providing a strong basis for model optimization. Specifically, the selected
metrics include SSIM, TC, LCIL, and Q, which integrates all three indicators.
SSIM™ evaluates the fidelity of the generated image to the original
mural image in terms of luminance, contrast, and structural information,
reflecting the model’s accuracy in overall structural restoration. A higher
SSIM value indicates greater structural similarity and perceptual quality.
The SSIM is calculated as follows:

(zluxﬂy + Cl)(axy + C2)

SSIM(x, ) =
GV = a2 T e + ot 6y)

(10)

where p, and i, are the mean intensities of images x and y, g, and o, are
their standard deviations, and 0, is their covariance. Constants ¢, and c, are
used to avoid division by zero. SSIM values typically range from 0 to 1, with
values closer to 1 indicating higher structural and perceptual consistency.
TC evaluates the simplicity of line patterns in the image. This metric is
derived from the contrast feature of the gray-level co-occurrence matrix
(GLCM) proposed by Haralick et al. °'. Higher contrast indicates greater
gray-level variation and more complex textures. Figure 6 shows two 4 x 4
GLCM examples illustrating structural differences between high and low TC
cases. The high-TC matrix (left) is concentrated near the diagonal, indi-
cating smooth transitions and orderly structures, while the low-TC matrix
(right) shows more values far from the diagonal, reflecting abrupt gray
changes and noisy patterns. To ensure TC increases with visual simplicity,
we apply an inverse normalization to the contrast, making the TC value

positively correlated with cleanliness:

e 9 11
e 1 + Contrast x 100% (1)
Contrast = log(l + Z (i—)’PG, j)) (12)
ij

where P(i, j) represents the gray-level co-occurrence matrix, and i and j are
the grayscale values of the image pixels.

LCI measures the connectivity and completeness of lines in the image.
Based on the theory of connected regions in image processing, it assesses
whether the lines form a single or multiple complete structures™. The core
idea is to calculate the ratio of the largest connected line region to the total
number of line pixels. Figure 7 illustrates two examples of different LCI
levels: the high-LCI image has continuous lines forming one main con-
nected region with minimal gaps or noise; the low-LCI image contains
fragmented lines with multiple disconnected segments. To better capture
local structural consistency in large images, the image is divided intoa 9 x 9
grid and the local LCI is computed in each region, with the final LCI being
their average:

N,

connected

LCI =
N total

(13)

where N, teq 1S the number of pixels in the largest connected region and
N,y is the total number of line pixels. The LCI ranges from 0 to 1, with
higher values indicating better connectivity and clearer line structures.

Finally, the comprehensive evaluation Q is the average of the three
aforementioned metrics, providing an overall quality assessment. The closer
Qisto 1, the better the model’s overall performance across all indicators. The
calculation formula is as follows:

_ SSMI+TC + LCI

3 (14)

x 100%

Mural edge enhancement

This study applies edge enhancement processing to Dunhuang mural data
prior to line drawing extraction using CLAHE and BF, as shown in Fig. 8.
Specifically, (a) represents the original mural, while (b) is the corresponding
heatmap, where colors indicate the magnitude of gradient variations—red
regions denote higher gradient changes, while blue regions also indicate
lower gradient variations. (c) presents the heatmap after CLAHE processing,
which enhances local contrast and highlights edge details. (d) shows the
result of applying BF filtering after CLAHE, where bilateral filtering effec-
tively reduces texture noise, leading to smoother and more continuous edge
information. Finally, (e) is the enhanced mural, in which the primary
structural features become more distinct, and edge contrast is improved,
providing a more precise input for subsequent line drawing extraction tasks.
It is evident that the original heatmap (b) exhibits lower gradient edge
structures of the mural, particularly in finer details such as garment textures,
ornaments, and background patterns corresponding to hand gestures,
where gradient variations are weak, making edge extraction challenging.
After CLAHE processing (c), edge details are significantly enhanced, with
more pronounced gradient variations in clothing patterns and character
outlines, facilitating better feature distinction. Further integration of BF
filtering (d) reduces edge noise to some extent, while maintaining relatively
smooth and continuous contours, mitigating the texture interference caused
by excessive enhancement. The final enhanced mural (e) not only preserves
the original artistic characteristics of the mural but also effectively enhances
the representation of primary structural elements, making line features
more prominent and laying a solid foundation for high-precision line
drawing extraction.
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Fig. 8 | Comparison of mural edge enhancement
effects. a Original mural, b mural heatmap,

¢ heatmap after CLAHE, d heatmap after CLAHE
and BF, and, e enhanced mural.
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Fig. 9 | Intermediate feature layers and final fusion result of MLineNet. a Mural, b reference line drawings, ¢ H, heatmap, d H, heatmap, e H; heatmap, and f fusion result.

Line drawing extraction extracting mural line drawings is illustrated at different feature levels
To verify the effectiveness of MLineNet in the task of mural line drawing  (H1-H3), as well as the final fused output (Y), while Fig. 10 presents the
extraction, this study extracted line drawings based on the enhanced zoomed-in details. Through the encoder-decoder structure, the network
Dunhuang mural dataset. As shown in Fig. 9, MLineNet’s performance in ~ first extracts features from low to high levels, and then utilizes multi-scale
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Fig. 10 | Local comparison of Intermediate feature layers and final fusion result of MLineNet. a Mural, b reference line drawings, ¢ H, heatmap, d H, heatmap, e H;

heatmap, and f fusion result.

feature fusion to ensure that details at each scale are fully preserved. Each
feature layer corresponds to different image features and details, and after
fusion, it ensures a balance between the artistic expression and stability of
mural line drawings. Specifically, Fig. 10c presents low-level features, which
primarily capture rough outlines and shapes of the mural; Fig.10d reveals
more details, particularly in the finer parts of the mural’s lines; Fig. 10e
further enhances the overall contour clarity while retaining more detailed
information. By fusing these different scales, the final result in Fig. 10f
achieves a well-balanced representation of line detail and connectivity. The
experimental results show that MLineNet successfully realizes both fine
expression and smooth connectivity of lines. Through multi-scale feature
fusion, the model not only captures the delicate brushstrokes in murals but
also preserves the overall artistic contours of the image. Notably, with the
integration of the Fusion layer, the model effectively enhances the
hierarchical structure and stability of lines, ensuring that each stroke is
clearly presented within complex backgrounds. However, as observed from
the results, although details are well preserved, some regions still con-
tain noise.

Line drawing denoising

This study adopts CycleGAN to perform denoising tasks for mural line
drawings, aiming to recover images with clearer lines and more complete
structures from preliminary line drawings with noise. We use the noisy line
drawings extracted in the previous steps (Fig. 11c) as source domain images
and the reference line drawings (Fig. 11b) as target domain images, training
the model in an unsupervised learning manner to learn the mapping from
noisy to clean images, thereby achieving effective denoising and structural
restoration. Figure 11 presents a visual comparison of several methods,
including CycleGAN, as well as three image denoising methods: Non-Local
Means (NL-Means)>, Wiener filter**, and Pix2pix”". All methods operate on
the same preliminary line drawings, and the comparative results of different
denoising methods and local approaches are shown in Figs. 11 and 12.
Specifically, (b) shows the reference line drawings, which are handcrafted
line drawings extracted from murals, demonstrating the edge structure of

the images. However, due to the incomplete accuracy of the annotations in
the Dunhuang data, there are some missing or blurred details; (c) shows the
preliminary noisy line drawings extracted, containing substantial noise,
broken lines, and blurriness, which serve as the input source domain images
for the model; (d) presents the NL-Means denoising results, which achieve
denoising based on the similarity of image patches but lack in detail pre-
servation; (e) shows the Wiener filter denoising results, where frequency-
domain filtering smooths the noise but tends to blur the edges; (f) presents
the Pix2pix denoising results, which, as a supervised method based on
conditional Generative Adversarial Networks, depend on paired noisy and
clean images for training, and while they can remove some noise, the gen-
erated results are very close to the reference line drawings and lack detail
expression; (g) shows the CycleGAN denoising results, which, as an unsu-
pervised learning method, learn the mapping between the two domains
without relying on strictly paired samples, thereby better restoring the
structural features and edge information of the images, resulting in clearer
lines, smoother edges, and a significant improvement in overall visual
quality, especially in maintaining structural similarity, edge clarity, and line
connectivity.

Quantitative analysis of different stages

This study adopts multiple quantitative evaluation metrics to assess the
quality of mural line drawings generated by different models for Dunhuang
murals. These metrics include the SSIM, TC, LCI, and Q which integrates
the three. To systematically analyze the impact of each stage on the quality of
line drawing extraction, we conducted stepwise ablation experiments and
individually evaluated the contributions of CLAHE + BF, MLineNet, and
CycleGAN. These components were ultimately integrated into a complete
method (Ours). Specifically, CLAHE + BF serves as a preprocessing step to
enhance edge information; MLineNet is responsible for extracting pre-
liminary line structures; and CycleGAN further denoises and improves the
naturalness. Through these independent experiments, we analyzed the role
of each stage and verified their synergy in the full pipeline. Table 1 presents
the quantitative evaluation results for each stage in the Dunhuang mural line
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Fig. 12 | Local comparison of line drawings denoising. a Mural, b reference line drawings, ¢ noisy line drawings, d NL-Means, e Wiener, f Pix2pix, and g CycleGAN.

drawing task, and Fig. 13 illustrates the radar chart comparison across all
metrics.

As the base model, MLineNet demonstrated relatively stable perfor-
mance, achieving an SSIM of 86.58%, a TC of 92.84%, an LCI of 85.37%, and
a Q score of 88.26%, indicating its capability to extract complete and

coherent mural line drawings. Building upon this, we introduced data
augmentation (CLAHE + BF) for improvement, which resulted in an
increase in SSIM to 88.19%, LCI to 86.97%, and Q to 89.19%, suggesting that
enhanced input helps the model better preserve edge information and
improve line connectivity. However, TC slightly decreased to 92.42%,
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Fig. 13 | Radar chart comparison of various eva-
luation metrics for different stages in Dunhuang SSIM
mural line drawing generation. 95

| ___ MLineNet
——— CLAHE+BF+MLineNet

—— MLineNet+CycleGAN
LCI —— Ours

Fig. 14 | Comparison of different methods in Dunhuang mural line drawings generation. a Mural, b reference line drawings, ¢ Sobel, d Canny, e DiffusionNet, f TEED,
and g ours.
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indicating that the augmentation process may introduce pseudo edges and
increase texture complexity. After further incorporating CycleGAN, TC
improved from 92.84% to 94.21%, confirming its effectiveness in reducing
redundant textures. Finally, the complete method (Ours), combining data
augmentation and denoising, achieved strong performance across all four
metrics, with an SSIM of 89.54%, TC of 93.77%, LCI of 88.14%, and a Q
score of 90.48%, demonstrating the overall effectiveness and synergy of the
three-stage framework in generating complete, clean, and coherent mural
line drawings.

Comparative analysis with other methods

To comprehensively evaluate the performance of different methods in
generating Dunhuang mural line drawings, this study selects Sobel and
Canny as classical edge detection operators, and DiffusionNet (diffusion
probabilistic model for crisp edge detection)'® and TEED (tiny and efficient
model for edge detection generalization)'' as deep learning-based com-
parison methods. Like traditional algorithms, Sobel and Canny can extract
the main outlines of murals to some extent, while DiffusionNet and TEED,
being deep learning models, offer stronger adaptability in terms of stability

Table 1 | Quantitative evaluation results of different stages in
Dunhuang mural line drawings generation

Stage SSIM TC LCI Q
CLAHE + BF MLineNet CycleGAN
v 86.58 92.84 8537 88.26
v V 88.19 9242 8697 89.19
v N 86.89 9421 8539 88.83
Ours 89.54 9377 88.14 90.48

bold values indicate the maximum value for each metric.

and expressiveness in edge detection. The evaluation is conducted from
three perspectives: qualitative analysis, quantitative analysis, and human
perceptual assessment.

First, we perform a qualitative analysis of the line drawing results.
Figure 14 shows the comparison of different methods on Dunhuang murals,
and Fig. 15 presents the corresponding enlarged local regions. From the
results, it can be observed that the Canny method performs relatively stably
in extracting the main contours. However, due to its reliance on fixed
gradient thresholds, it often results in the “double-edge problem,” where
both sides of a single line are detected as edges, producing redundant
double-line structures. The Sobel operator is more sensitive to gradient
changes and can capture strong edge signals, but its poor robustness to noise
leads to fragmented lines, compromising the overall connectivity of the
murals. In contrast, DiffusionNet applies a diffusion mechanism for edge
detection, which helps simplify the lines to some extent, though it still suffers
from detail loss in complex structures. TEED, as an efficient edge detection
model, produces relatively clear overall contours and retains the main edge
information well, but some disconnections still occur in fine line structures.
The method proposed in this paper demonstrates a balanced performance
in terms of structural similarity, simplicity, and connectivity, resulting in a
well-rounded overall quality.

Secondly, the performance of different methods in generating
Dunhuang mural line drawings was quantitatively compared, as
summarized in Table 2. Figure 16 presents radar charts of various
models across the evaluation metrics, providing a visual comparison of
their performance differences. The results indicate that different
methods show varying levels of effectiveness across the evaluated
indicators. Among traditional edge detection methods, Sobel exhibits
noticeable edge omissions in certain regions, leading to a relatively
high TC of 94.56%, but the lowest LCI of only 82.19%. Canny achieves
SSIM and LCI scores of 84.31% and 84.49%, respectively, yet suffers
from the “double-edge problem,” resulting in redundant lines and
reduced overall clarity. In contrast, deep learning-based methods
generally perform better across multiple indicators. DiffusionEdge, due

J AN

7

o)

N \\5/:

Fig. 15 | Local comparison of different methods in Dunhuang mural line drawings generation. a Mural, b reference line drawings, ¢ Sobel, d Canny, e DiffusionNet,
f TEED, and g ours.
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to its diffusion mechanism, excels in texture complexity with a TC of
96.55%, indicating cleaner lines with less noise. However, similar to
Sobel, it has lower SSIM and LCI values of 82.79% and 83.02%,
respectively, reflecting losses in detail and structural connectivity. The
TEED method shows balanced performance, with an SSIM of 86.13%,
TC of 93.37%, and LCI of 87.14%. The method proposed in this study
achieves strong overall performance across all metrics, including an
SSIM of 89.54%, TC of 93.77%, LCI of 88.14%, and a comprehensive
score (Q) of 90.48%. These results indicate that the proposed method
maintains a good balance between edge feature similarity, noise con-
trol and line connectivity.

Finally, to verify the effectiveness of the evaluation metrics (SSIM, TC,
LCI) used in the Dunhuang mural line drawing task, a subjective experiment
based on human perceptual judgment was conducted. Eight participants
were invited to evaluate the line drawings generated by each method in three
aspects: similarity, cleanliness, and connectivity, corresponding to SSIM,
TC, LCL A three-point scale was adopted (1 = poor, 2 = fair, 3 = good). The
median (MED) and interquartile range (IQR) of the scores for each method
were calculated to reflect the overall evaluation level and consistency of

Table 2| Quantitative evaluation results of different methods in

judgment. The subjective evaluation results are shown in Table 3. Addi-
tionally, the average of the three scores was computed as the overall per-
ceptual score (OPS).

Table 3 presents the detailed subjective evaluation outcomes. Among
traditional methods, Sobel received a similarity and connectivity score of 1
and a cleanliness score of 2, with an OPS of 1.17, the lowest among all
methods, indicating limited structure recovery and poor line connectivity.
Canny achieved a similarity and connectivity score of 2 and a cleanliness
score of 1, yielding an OPS of 1.71, slightly outperforming Sobel. Diffusio-
nEdge scored highest in cleanliness (MED = 3) but only 1 in similarity and
connectivity, also resulting in an OPS of 1.71. This suggests effective noise
removal but a lack of structural preservation and line connectivity. TEED
scored 2 in similarity and connectivity and 1 in cleanliness, with an OPS of
1.92, reflecting moderate and stable subjective acceptance. The proposed
method (Ours) achieved the highest OPS of 2.83, with a perfect score of 3 in
similarity and connectivity and 2 in cleanliness. These results indicate that
the method received consistent recognition from participants for preserving

Table 3| Subjective evaluation results (MED, IQR, and OPS) for
each method

Dunhuang Mural line drawing generation Methed Sl iz el e :‘z:;ec OPS
Method SSIM TC LCl Q MED QR MED IQR MED IQGR

Sobel 81.14 94.56 82.19 85.96 Sobel 1 0 2 025 1 0 1.17
Canny 84.31 89.43 84.49 86.08 Canny 2 0 1 025 2 0 1.71
DiffusionEdge 82.79 96.55 83.25 87.53 DiffusionEdge 1 0 3 025 1 0 1.71
Teed 86.13 93.37 87.14 88.88 Teed 3 025 1 025 2 0 213
Ours 89.54 93.77 88.14 90.48 Ours 3 0 2 025 3 0 2.83

bold values indicate the maximum value for each metric.

bold values indicate the maximum value for OPS.

Fig. 16 | Radar chart comparison of various eva-
luation metrics for different models in Dunhuang
mural line drawing generation.
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Fig. 17 | Comparative details of mural styles in
Dunhuang and Baisha murals. a Facial features,
b hand gestures, and ¢ background decorations.

Fig. 19 | Local comparison of different methods in Baisha mural line drawings generation. a Mural, b Sobel, ¢ Canny, d DiffusionNet, e TEED, and f ours.

structural details, suppressing noise, and maintaining line connectivity.
Furthermore, the subjective evaluation results align well with the objective
metrics (SSIM, TC, LCI), suggesting that the adopted evaluation system is
valid for assessing mural line drawing quality.

Line drawing generation and generalization verification for
Baisha murals

The Baisha murals***, located in Baisha, Yulong Naxi Autonomous County,
Lijiang, Yunnan Province, are an important cultural heritage of the Naxi
people, with the Dading Pavilion being one of the core temples. The Baisha

murals incorporate diverse cultural elements, including Tibetan Buddhism,
Taoism, and Han Buddhism. Their content depicts Buddhist figures, trans-
formation stories, and donor portraits, characterized by bold, flowing lines
and rich, vibrant colors. As shown in Fig. 17, compared to the Dunhuang
murals, the Baisha murals exhibit a more free and unrestrained overall style,
with greater variation in brushstroke thickness, stronger color contrasts, and
more intricate background decorations. These stylistic differences are
reflected not only in visual features, such as more expressive facial depictions,
simplified and dynamic hand gestures, and more complex decorative pat-
terns. The model needs to handle variations in brushstroke thickness and
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color layers, adapt to interference from intricate background decorations, and
ensure the integrity of multi-scale structural information. Therefore, the
Baisha murals serve as important historical materials for studying the reli-
gious art of southwestern China during the Ming and Qing dynasties, and in
recent years, they have been increasingly digitized and studied in depth.
First, a qualitative analysis was conducted on the performance of dif-
ferent methods in generating line drawings for Baisha murals. Figure 18
shows a comparison of different methods, and Fig. 19 presents zoomed-in
results. From the visual comparison, it can be observed that the Sobel and
Canny methods exhibit significant limitations in line extraction. The Canny
method, which is highly sensitive to local gradient variations, generates
noise in both bright and dark regions. It also suffers from the “double-edge
problem,” leading to blurred and ambiguous line contours. Although the
Sobel method captures the overall structure, it introduces considerable
noise, resulting in cluttered line drawings that affect mural clarity and
readability. Deep learning-based methods, such as DiffusionNet and TEED,
improve line connectivity and structural integrity to some extent. Diffu-
sionNet reduces background interference but lacks detail in fine line
extraction. TEED performs better in maintaining global coherence and
produces relatively stable lines. However, it still suffers from detail loss and

Table 4 | Quantitative evaluation results of different methods in
Baisha Mural line drawing generation

Method SSIM TC LCI Q

Sobel 80.66 88.81 84.77 84.75
Canny 81.78 89.01 85.72 85.50
DiffusionEdge 78.92 95.58 82.10 85.53
Teed 82.62 93.52 87.99 88.04
Ours 85.77 93.93 88.18 89.29

bold values indicate the maximum value for each metric.

broken lines in complex decorative regions. In contrast, the proposed
method demonstrates superior performance on the Baisha mural dataset by
effectively preserving line structures while suppressing noise.

In addition, this study conducted a quantitative analysis of the per-
formance of different methods in generating line drawings of Baisha murals.
The experimental results are summarized in Table 4. Figure 20 presents a
radar chart comparison of the models across various evaluation metrics,
visually illustrating their differences. According to the results, among tra-
ditional methods, Sobel achieved an SSIM of 80.66%, TC of 88.81%, LCI of
84.77%, and a Q of 84.75%. Canny performed slightly better, with an SSIM
of 81.78%, TC of 89.01%, LCI of 85.72%, and Q of 85.50%. Both methods
showed relatively lower performance in TC and LCI, indicating limitations
in texture simplification and line connectivity, though they retained some
capability in structural restoration. DiffusionEdge achieved the highest TC
at 95.58%, demonstrating strong suppression of redundant details. How-
ever, its SSIM and LCI were relatively lower among deep learning models—
78.92% and 82.10%, respectively—resulting in a Q score of 85.53%, indi-
cating overall performance inferior to other deep models. TEED maintained
relatively high scores across all metrics, with an SSIM of 82.62%, TC of
93.52%, LCI 0of 87.99%, and a Q of 88.04%, reflecting a well-balanced overall
performance. The proposed method achieved consistently high scores in all
four metrics: SSIM of 85.77%, TC of 93.93%, LCI of 88.18%, and Q of
89.29%. These results indicate a good balance between structural pre-
servation, denoising, and line connectivity. Although the model is trained on
Dunhuang mural data, it still demonstrates a certain degree of general-
ization ability when applied to Baisha murals. However, it is important to
note that the current model is not specifically designed to accommodate the
stylistic differences between different types of murals, such as variations in
brushstroke thickness, color complexity, and decorative background styles.
As a result, some decorative regions may exhibit issues such as local detail
loss or incomplete structural representation. Overall, the proposed method
achieved relatively stable results across all metrics, demonstrating strong
overall performance in mural line drawing generation.

Fig. 20 | Radar chart comparison of various eva-
luation metrics for different models in Baisha mural
line drawing generation.

SSIM
100

95
90
85

75

W TC

Sobel

Canny
DiffusionEdge
Teed

LCI Ours

npj Heritage Science | (2025)13:345

15


www.nature.com/npjheritagesci

https://doi.org/10.1038/s40494-025-01908-3

Article

Discussion

Line drawing is an essential form of artistic expression in Chinese painting,
including traditional ink paintings, murals, and folk art. This study proposes
an automated approach for generating mural line drawings by integrating
mural edge enhancement, line drawing extraction, and line drawing
denoising to achieve efficient and accurate line drawing generation. The main
conclusions of this paper are as follows: (1) We propose an automated mural
line drawing generation method that leverages CLAHE and BF for edge
enhancement, followed by a specially designed neural network for mural line
drawings, named MLineNet, for extracting mural line features. MLineNet
adopts an encoder-decoder architecture with multi-scale feature fusion to
effectively capture features across different scales. A CycleGAN is employed
for denoising based on line drawing extraction results, generating high-
quality line drawings that accurately capture rich structural details while
maintaining clarity and naturalness. (2) Using Dunhuang murals as research
subjects, a mural line drawing generation model was constructed based on the
proposed method. The reliability of this model was evaluated using SSIM, TC,
LCI, and Q. Experimental results showed that the proposed method achieved
SSIM, TC, LCI, and Q of 89.54%, 93.77%, 88.14%, and 90.48%, respectively,
demonstrating excellent performance in structural similarity, cleanliness, and
connectivity. (3) To further validate the robustness and effectiveness of the
proposed mural line drawing generation approach, we applied it to Baisha
murals, where it achieved a Q value of 89.29%, confirming its generalization
ability and adaptability to different mural datasets.

Although the experimental results demonstrate that the proposed
method has a certain degree of adaptability and robustness, several limita-
tions remain. First, the model training still relies on annotated line drawing
data, which limits its scalability to large-scale, unlabeled datasets. Future
work could explore the integration of semi-supervised or unsupervised
learning strategies to reduce the dependence on annotated data. Second, for
murals with diverse styles or complex structures, the model still encounters
issues such as broken lines or missing details in certain regions. Future
research could incorporate style-aware modules and adaptive feature
modeling methods to enhance the model’s ability to adapt to different mural
styles. Additionally, the current validation experiments primarily focus on
Dunhuang and Baisha murals, with a relatively limited range of data sources.
Future research will aim to extend evaluations to mural datasets with greater
geographical and historical diversity, such as the Yungang Grottoes and the
Longmen Grottoes, to comprehensively assess the generalization ability and
robustness of the method.

Data availability

The data that support the findings of this study are available from the Digital
Preservation Project of the Baisha Murals in Lijiang, but restrictions apply to
the availability of these data, which were used under licence for the current
study and are not publicly available. The data are, however, available from
the authors upon reasonable request and with the permission of Wuhan
University.

Code availability
The code will be available at https://github.com/Maris9990904/MLineNet-
CycleGAN.
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