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Intelligentmaterial recognition in traditional Chinese painting images is vital for digital cultural heritage
preservation. However, existing methods struggle with limited samples and weak feature
representation. This paper proposes a new classification framework based on the prototypical
network with a ResNet18 backbone. To enhance sensitivity to fine-grained details, a cropping-based
augmentation strategy is introduced during inference. Additionally, a multitask learning scheme is
employed to improve generalization and enrich global representations, where the auxiliary task of
dynasty classification is trained jointly with the main task of material classification. Furthermore, an
ensemble voting strategy is applied to refine the final predictions. Experiments on a self-constructed
dataset demonstrate the robustness of the entire strategy under few-shot scenarios, achieving 80%
accuracy with merely 30 samples and outperforming comparative methods. Moreover, this work
provides practical value for the development of intelligent tools to support the digital preservation of
traditional Chinese art.

Artworks constitute a significant component of cultural heritage,
embodying thewisdomand creativity of human civilization. In recent years,
with the rapid advancement of digital technology, research focusing on the
digitization and intelligent analysis of art collections has gradually emerged
as a popular area of study. This encompasses various research domains such
as digital artwork recognition1, style transfer2, AI-based creation3, and
technical authentication4. However, in certain specialized areas, the recog-
nition of digital art images still lacks efficient and practical solutions. For
instance, research on the materials and techniques of traditional Chinese
painting images remains insufficient, posing significant challenges to the
preservation and presentation of related digital content. Therefore, this
paper focuses on the methodology for material classification of traditional
Chinese painting images.

Traditional Chinese paintings are typically created on delicate mate-
rials such as paper, silk, and silk fabric, necessitating strict environmental
controls, including precise regulation of humidity and temperature5. Pro-
longed exposure during display can lead to deterioration, such as thinning
and brittleness, resulting in irreversible damage. As a result, the digital
preservation of traditional Chinese paintings and the development of cor-
responding digital art galleries have become urgent priorities. However, this
transition introduces technical challenges. Traditional image classification
methods depend on specialized appraisers for manual identification,

complicating the digital archiving process. With the ongoing integration of
culture and technology, applying artificial intelligence (AI) and machine
learning to the intelligent identification of traditional Chinese painting
images has emerged as a key area of research6–8. Studies in this field hold the
potential to improve retrieval and recognition technologies, facilitate the
digital dissemination and preservation of traditional Chinese culture, and
enhance the artistic experience for a broader audience. Research onChinese
painting image classification predominantly focuses on content
recognition9–11 and artist attribution12–14, with comparatively fewer studies
addressing material classification. The materials used in these paintings,
which serve as both foundation and medium, profoundly affect the
appearance of ink and pigments, making material classification essential to
understanding and appreciating traditional Chinese painting. Therefore,
this paper investigates the classification of materials in traditional Chinese
painting images, aiming to provide a systematic framework for digital art
collection, exhibition, and appreciation.

Research on the classification of traditional Chinese painting images is
divided into two main categories: traditional feature extraction combined
withmachine learning classificationmethods and deep learning techniques.
While the application of classification technologies specific to traditional
Chinese painting remains relatively limited, recent developments in general
image classification methods, such as Convolutional Neural Networks
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(CNNs)15, Transfer Learning16, and Few-Shot Learning17, have provided
valuable technical tools and inspired new approaches in this domain.
However, due to the unique characteristics of traditional Chinese paintings
—including fine brushwork, diverse material substrates (e.g., paper, silk),
and embedded cultural symbolism—direct application of these general
methods often results in suboptimal performance. These models tend to
struggle with capturing domain-specific features, especially in low-data
settings or when material classification is required. Therefore, further
adaptation is needed to bridge this gap and develop classification methods
tailored to the distinct artistic andmaterial properties of Chinese paintings.

Early image classification methods in computer vision typically
employed feature extraction combined with machine learning techniques.
The commonly used bottom-level features for the classification of Chinese
painting images include texture features18,19, shape features20, and so on.
Jiang et al.6 enhanced edge histogram extraction by using the Sobel operator
and combining it with autocorrelation texture features, successfully distin-
guishing between Gongbi (traditional Chinese realistic painting) and Xieyi
(freehand style) using a Support Vector Machine (SVM). Wang et al.21

employed a supervised sparse feature selection method to identify key fea-
tures that distinguish the painting styles of different artists, thereby estab-
lishing a connection between artistic styles and the underlying features of
Chinese paintings. Sheng et al.22 utilized a three-layer wavelet transform to
extract texture features and employed decision trees, traditional fully-
connected neural networks trained via backpropagation (BP), and SVM to
automatically classify artists. Sheng et al.23 further improved classification
accuracy by incorporating both local and global features through edge
detection algorithms and window functions, as well as optimizing a BP
neural network via windowing and entropy balancing. Sun et al.12 extracted
the painting strokes and calculated stroke length, curvature, and density as
the stroke feature. They further refined stroke, color, and texture features
using a Monte Carlo convex hull model, achieving 95% precision and 93%
recall with an SVM classifier.

In contrast to traditional machine learning methods, which rely on
handcrafted feature extraction, deep learning approaches typically operate
directly on rawpixels, eliminating theneed formanual feature engineering24.
By learning high-level features from the data, deep learning models, espe-
cially CNNs, have significantly improved performance in tasks such as
image classification, object detection, and semantic segmentation. Sunet al.25

introduced a mixed-sparsity CNN method to automatically extract stroke
features from Chinese ink wash paintings for author classification. On a
dataset of 180 traditional paintings by six renowned Chinese artists, their
methodachieved aprecisionof 95%anda recall of 93%. Sheng et al.26 applied
superpixel segmentation to divide traditional Chinese painting images into
stable artistic units, then used a CNN model to extract high-level semantic
features, combining them with SVM to identify ten painters. Zhou27

enhanced a basic CNN architecture by integrating Inception modules to
extractmulti-scale features and adding residual connections to leverage low-
level features, along with batch normalization and overlapping pooling to
prevent overfitting, ultimately improving classification accuracy by 2.6%
compared to the basic CNN architecture. Yu et al.28 proposed a novel
method for artist attribution in digital painting classification, utilizing a
multi-scale pyramid representation to incorporate both global and local
features, with a CNN model trained to classify at each pyramid level.

Due to traditional Chinese painting image classification belonging to a
specialized field, the availability of accurately labeled samples is limited.
Few-shot learning, which can achieve high performance by learning from a
small number of samples in new tasks, provides a viable solution for data-
scarce scenarios29. Xiao30 improved classification performance by using
transfer learning, pre-training the model on natural images similar to
painting categories, and applying semi-supervised learning to leverage both
labeled and unlabeled data. Chen31 adopted a meta-learning relational
network model, pre-trained on mini-ImageNet, and tested its adaptability
on the Dunhuang mural dataset with only 5% of the original samples,
achieving results comparable to those obtained using the full training
dataset. Li et al.32 proposed a graph neural network (GNN)-based method

for Dongba paintings, constructing a multi-resolution spatial pyramid to
capture key details and combining edge-labeled graphs with attention
mechanisms to enhance node connections. Xu et al.33 further advanced
Dongba painting classification by integrating spatial information and dis-
tribution relationships using a bidirectional GNN, improving accuracy by
optimizing feature associations between support and query sets. Ding et al.34

proposed a semi-supervised learning (SSL) method for traditional Chinese
painting image classification, utilizing the self-attention-based MobileVit
model as the backbone and introducing a data augmentation technique,
Random Brushwork Augment to incorporate brushwork patterns, achiev-
ing an accuracy of 88.27% on the test dataset, even with only 10 labels, each
representing a single class.

Multitask Learning is a machine learning approach that aims to
enhance the performance of multiple related tasks by utilizing shared
information across them35. This method has been effectively applied in
various domains, including cultural heritage image classification.
Dorozynski36 proposed a multitask learning method for silk fabric classifi-
cation in cultural heritage images using a CNN-based classifier (SilkNet)
with a ResNet-152 backbone. It predicts attributes like time period and
origin, addressing class imbalance with a focal loss function and auxiliary
feature clustering. Bianco et al.37 proposed adeepmultibranch andmultitask
neural network for the classification of artist, style, and genre in paintings.
This approach uniquely leverages both coarse and fine-grained structural
features of paintings by utilizing intelligently extracted painting crops at
different resolutions, which are selected through a Spatial Transformer
Network (STN).

Traditional feature extraction combined with machine learning
requires complex feature engineering, and due to the significant differences
between traditional Chinese paintings and natural images, existing feature
extraction methods struggle to effectively capture the complex and unique
material characteristics of these artworks.While deep learningmethods can
automatically learn high-level features, they typically require large amounts
of training data. However, precise labeling of materials in traditional Chi-
nese paintings demands specialized expertise, and the rarity of certain
materials results in small datasetswith imbalanced class distributions. These
challenges make current methods insufficient for capturing the intricate
material features of traditionalChinese paintings, highlighting theneed for a
new approach that can address the limitations of data scarcity, while
effectively capturing the unique material properties inherent to these
artworks.

While several recent studies have explored Chinese painting classifi-
cation using CNN-based models25–28 and semi-supervised learning
methods32–34, the majority of these works primarily target content recog-
nition (e.g., subject matter) or artist attribution, rather than addressing
material classification, which is essential for conservation and digital
archiving.

For example, Sheng et al.26 applied superpixel segmentation and a
CNN-SVM pipeline to classify painters based on stylistic regions. Zhou27

enhanced CNN architectures to improve artist attribution accuracy. How-
ever, bothmethods rely on global image features anddonot explicitlymodel
substrate materials such as paper, silk, or silk fabric, which are critical for
material-level differentiation.

GNN-based approaches32,33, though innovative, were developed for
Dongba or symbolic paintings that differ significantly from traditional
Chinese paintings in visual structure and material usage. Ding et al.34 pro-
posed a semi-supervised model with brushwork-focused data augmenta-
tion, yet their emphasis remains on stroke characteristics rather than
underlying materials.

Moreover, approaches such as transfer learning30 and semi-supervised
learning31,34 have been introduced to alleviate the challenge of limited labeled
data. However, these methods typically assume global representations and
are tuned for style- or category-based classification, making them less
effective in capturing fine-grained, local texture differences needed for
material classification—particularly in the presence of data imbalance or
rare material types.
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To address these challenges, two key enhancements to the Prototypical
Network38 are proposed with the aim of improving model performance in
material classification of traditional Chinese paintingswith limited samples.
Prototypical Network is a metric-based few-shot learning method that
classifies query samples by computing their distances to class prototypes
derived from the support set. Compared to conventional CNN classifiers or
fully supervised methods used in previous works25–28,30, it is particularly
suited for data-scarce scenarios, as it reduces overfitting by leveraging class-
level representations instead of training high-capacity classifiers. Prior
studies have demonstrated the superior performance of Prototypical Net-
works in low-resource settings, such as inpaleontological fossil recognition39,
and in medical image classification40. These advantages align with our
problem setting, where material distinctions are subtle and labeled data is
limited. These improvements focus on enhancing input diversity through
image transformations such as cropping and scaling, and on adapting the
classification algorithm to the unique characteristics of the material of tra-
ditional Chinese paintings.
(1) Cropping enhancement: to comprehensively capture the intricate

details of traditional Chinese paintings, we apply a cropping enhance-
ment strategy to both support set and query images. Each image is
partitioned into multiple non-overlapping or partially overlapping
regions of size 224 × 224 pixels. This design allows the model to focus
on fine-grained local features, such as brushstroke textures and paper/
silk details, which are often difficult to learn from global images alone.
For each region, a ResNet41 is subsequently employed to extract feature
vectors. The prototype vectors of each material class are calculated by
averaging the feature embeddings of cropped support samples. During
inference, the cropped query patches are compared to these prototypes
using Euclidean distance. The predictions of all patches from a query
image are then aggregated using a majority voting strategy, yielding the
final classification result. Notably, only cropped image patches are used
for training and inference, without incorporating global full-resolution
images. This design ensures consistency between training and testing
phases, and encourages the model to fully leverage local visual cues for
classification.

(2) Multitask learning optimization: a multitask learning (MTL)
approach, which jointly trains the material classification task
with an auxiliary task, is introduced to enhance the model’s
performance in a data-scarce setting. MTL enables the network
to learn more generalized and transferable representations by
leveraging related supervisory signals42,43. In this work, we considered
three potential auxiliary tasks: dynasty classification, content
classification, and technique classification. After comparative evalua-
tion, we selected dynasty classification as the only auxiliary task. This
decision was based on three factors: (1) the label quality and class
balance of dynasty labels are superior to the other two tasks; (2)
dynastic periods strongly correlate with material usage in traditional
Chinese painting (e.g., the prevalence of silk in earlier dynasties); and
(3) using multiple auxiliary tasks simultaneously introduced noise and
gradient conflicts, degrading model performance. The overall loss is
computed as a weighted sum of the material and auxiliary task losses,
with a higher weight assigned to the primary task to ensure focused
optimization. This design allows the auxiliary task to guide feature
learning without dominating the training process.

Methods
The proposed method is designed to classify traditional Chinese painting
images based on theirmaterial type, utilizing amultitask learning approach.
The inputs to the algorithm consist of traditional Chinese painting images,
each labeled with both a main task (material classification) label and an
auxiliary task label. The output of themethod is thematerial classification of
each image. The algorithm involves two tasks: the main task of material
classification and an auxiliary task (one of the dynasty, content, or technique
classification task). The approach employs a prototypical network with a
ResNet18 backbone for feature extraction and utilizes both cropping and

zooming modules to enhance the input data and increase the number of
training samples. A weighted joint loss function is used to optimize the
model’s performance by balancing the contributions from both the main
and auxiliary tasks.

The proposed method consists of three components: the cropping
enhancement module, the prototypical feature extraction module, and the
multitask module.

Thealgorithmprocess is as follows: a support setS is createdbyrandomly
selecting K images from silk painting, paper painting, and murals in the
trainingset. Similarly,K images fromeachcategoryarerandomlychosen from
the remaining samples (i.e., the samples not selected for the support set) to
form the query setQ. The training samples are also labeled for auxiliary tasks,
and the selection of support and query sets ensures a relatively balanced
numberof samples in eachcategory for these tasks. Specifically,whenselecting
support set samples for the main task, we ensure that for each category, a
certainnumberof samples (e.g., 5) are chosen.These selected samples are then
roughly evenly distributed across the auxiliary tasks, ensuring a balanced
sample allocation across tasks, even when multiple tasks are trained simulta-
neously. The algorithm is then divided into two tasks: themain task, which is
material classification, and one auxiliary classification task. In the material
classification task, images are processed through a cropping module, where
each image is cropped inton local region images toextract local features. In the
auxiliary classification task, images are processed through a zoom module,
where each image isfirst randomly cropped to80%of its original size and then
resizedtomatchthemodel’s inputdimensions.Foreachoriginal image,n such
variants are generated and used for training, effectively increasing the number
of training examples by a factor of n. Both the material classification and
auxiliary classification tasks share a ResNet18 network as the backbone for
feature extraction. Although both tasks use images derived from the same
original input, theyemploydifferentaugmentationstrategies tobetter suit their
respective learning objectives. In the material classification task, support set
images are enhanced using a croppingmodule, which divides each image into
multiple fixed-size patches. This enables the model to focus on fine-grained
local features—such as brushstroke texture and substrate patterns—that are
critical for distinguishing between different paintingmaterials. Conversely, in
the auxiliary classification task (e.g., dynasty classification), support set images
are processed using a zoom module, which scales the image to preserve its
global layout and stylistic elements. This is because attributes like painting
composition,styleuniformity,andera-specificmotifsarebettercapturedinthe
full imagecontext. Inthetrainingphase,bothsupportsetandquerysetsamples
are involved in calculating classification loss. The support set is used to com-
pute theprototypevectors foreachclass,while thequeryset samplesareusedto
compute the loss based on the distance between the query sample’s features
and theprototype vectors.Query set samples undergo cropping and zooming,
and after feature extraction, the Euclidean distance between their features and
class prototypes is calculated. These distances are converted into probability
distributions using the softmax function and compared with true labels to
compute the cross-entropy loss. Both tasks generate individual loss values,
which are combined in aweightedmanner to form the total loss function. The
weights for the main task and auxiliary task are set manually such that their
sum is equal to 1, and these weights are tuned during the experiments to find
the optimal balance between the tasks. The feature extraction network is then
updated and optimized via backpropagation. In the testing phase, the test
imagesareprocessedthroughthecroppingmodule togeneratemultipleregion
images. Each region image is fed through the trained network to extract
features and calculate the Euclidean distance to each material category’s pro-
totype vector. The softmax function is then used to obtain the classification
result for each cropped region. Finally, the classification results of multiple
cropped regions are aggregatedusing amajority votingmechanism,where the
predicted classwith themost votes is selectedas thefinalmaterial classification
result. The network framework is shown in Fig. 1 below.

Prototypical network
In this work, we adopt the Prototypical Network as the baseline architecture
due to its effectiveness in few-shot learning tasks. In our implementation, a
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ResNet18 backbone is used to extract feature embeddings from input
images. For each classification episode, a support set is constructed, and the
prototype for each category is computed as the mean vector of the feature
embeddings of all support images belonging to that class. The classification
of each query sample is then performed by calculating its Euclidean distance
to each prototype in the embedding space, and assigning the label of the
nearest prototype. The final prediction for a query image is based on the
prototype closest to it in terms of Euclidean distance. The calculation for-
mula for the prototype Pc is as follows:

Pc ¼
1
N

X

ðxi;yiÞ2Sc
f θðxiÞ ð1Þ

where Sc represents the samples in the support set for the category c, Nc
represents the number of samples in Sc, xi represents the input images, yi
represents the class labels for the support set samples, and f θ represents the
feature extractionmodule thatmaps image features to the embedding space.

In the classification process, the model calculates the Euclidean dis-
tance between the query sample and each category prototype. The distance
calculation formula is as follows:

dðxquery; PcÞ ¼ kf θðxqueryÞ � Pck2 ð2Þ

where xquery represents a query sample, and f θðxqueryÞ represents the feature
representation of xquery. Ultimately, the query sample is classified as
belonging to the category with the smallest distance. The implementation
formula is as follows:

c* ¼ argmin
c

dðxquery; PcÞ ð3Þ

where c* represents the category with the smallest distance. Through this
process, the model effectively classifies data by learning meaningful class

prototypes—computed as the mean embeddings of support set samples—
and continuously updating the feature extraction network parameters
during training iterations. This enables the model to produce more dis-
criminative embeddings and improves classification accuracy even with
limited labeled data.

Cropping enhancement algorithm
The cropping enhancement algorithm is designed to capture detailed local
information from traditional Chinese painting images, which often contain
rich textures and intricate features. By sampling frommultiple regions of an
image, this algorithm improves the model’s ability to detect edges and fine
details that might be overlooked when analyzing only a single crop. The
input to thismodule is the original painting image, and the output is a set of
cropped patches that provide a more comprehensive representation of the
image’s local features.

The cropping enhancement algorithm proceeds as follows. First, the
cropping size is set to 224 pixels. The width and height of the original image
are then obtained. The number of cropped blocks along the width and
height directions is calculated as follows:

m ¼ W
cropping size

� �
þ 1 ð4Þ

n ¼ H
cropping size

� �
þ 1 ð5Þ

where croppingsize refers to the size of each cropped region,W represents
thewidthof theoriginal image,H represents theheightof theoriginal image,
m and n represents the number of cropped blocks in the width and height
directions, respectively. bc denotes the floor operation, ensuring that m and
n are natural numbers (i.e., positive integers). To prevent the loss of edge
information, an additional crop is applied to the last row and column along

Fig. 1 | Overview of the training phase in our network framework. The process
consists of support and query set creation, data enhancement via cropping (for the
material task) and zooming (for the auxiliary task), ResNet18-based feature
extraction, prototype representation calculation, and final classification through a

voting mechanism. The inference phase follows the same pipeline without auxiliary
supervision, where the final prediction is based on the distance between query
samples and learned prototypes.
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both the width and height directions. The total number of cropped blocks
can be calculated as follows:

s ¼ m�n ð6Þ

where s represents the total number of cropped blocks. When s is less than
the specified number ncrop, cropping size will be halved, and the previous
steps will be repeated until the s≥ ncrop is met. This ensures that sufficient
cropped patches are generated to capture the necessary details. After
determining the total number of cropped blocks, each block is sequentially
numbered from 1 to s, following a top-to-bottom, left-to-right order. Then,
ncrop numbers are randomly selected with replacement from this set,
denoted as fx1; x2; . . . ; xncropg, and the corresponding cropped blocks are
extracted from the original image. As a result, duplicate cropped blocksmay
appear in the sampled set. However, since the total number of cropped
blocks is relatively large, the probability of excessive repetition is low, and
this does not negatively affect training performance. If cropping size was
halved in the previous step, resulting in blocks that are not 224 × 224, these
blocks will be enlarged to ensure all input blocks have a consistent size of
224 × 224 before feeding them into the model.

Multitask joint loss
Themultitask joint lossmodule combinesmultiple classification tasks into a
unified framework to enhance the performance of material classification. In
thismodule, the primary task ismaterial classification, while auxiliary task is
one of the dynasty classification, technique classification, and content clas-
sification. The input to the material classification task consists of local
regions extracted using the cropping enhancement method, while the aux-
iliary tasks use global features derived from the full image. A weighted joint
loss function is employed tobalance the contributions fromboth theprimary
and auxiliary tasks, with the weights tuned to achieve optimal performance.
Theoutput is the combined loss,Thefinal output is the combined loss,which
is used to train the backbonemodel of the PrototypicalNetwork (ResNet18).

In themultitask learning framework, both thematerial classificationand
auxiliary tasks use inputs derived from the same original image, but with
different augmentation strategies tailored to each task’s focus. Specifically, the
material classification task utilizes cropped regions to emphasize local tex-
tures, while the auxiliary task uses zoomed images to preserve global layout
and stylistic context.Toeffectively capturematerial information, local regions
of the image are extracted using a cropping enhancement method, which
serves as input for thematerial classification task. This approach emphasizes
fine-grained texture and brushstroke details, which are essential for distin-
guishing between differentmaterials. In contrast, the auxiliary tasks focus on
higher-level attributes such as stylistic consistency and historical period,
which dependmore on global context. Therefore, ncrop images are randomly
cropped, each covering 80% of the original painting, and the cropped images
are resized to 224 × 224 pixels to serve as input for these tasks.

Both thematerial classification task and the auxiliary task use the cross-
entropy loss function. The expression formula is as follows:

L ¼ � 1
N

XN

i¼1

XC

c¼1

yi;c logðŷi;cÞ ð7Þ

where L represents the loss value, N represents the number of samples, C
represents the number of classes, yi;c represents the indicator function for
the true label of sample i in class c, ŷi;c represents the predicted probability
that i belongs to class c. Aweighted joint loss function is employed tobalance
the influence between the primary task and the auxiliary task. The weight
parameter is used to control the relative importance between the material
classification loss and the auxiliary task losses. The multitask joint loss is
calculated as follows:

Ltotal ¼ w× Lmaterial þ ð1� wÞ× Lauxiliary ð8Þ

where w represents the weight parameter of the material classification task,
Ltotal represents the joint loss of themultitask, Lmaterial represents the loss for
the material classification task, and Lauxiliary represents the loss for the
auxiliary task. The parameterw 2 ½1; 0� is used to adjust theweight between
the material task and the auxiliary tasks. When w is close to 1, the model
focusesmore on thematerial classification task, with less influence from the
auxiliary task losses. The final joint loss is used to optimize the ResNet18
networkparameters duringbackpropagation.By adjusting the value ofw, an
appropriate balance can be found between the material task and the aux-
iliary tasks to enhance the accuracyofmaterial classificationwhile effectively
utilizing the information from auxiliary tasks.

Results and discussion
Data source
This experiment collected a total of 3132 images of Chinese traditional
paintings, categorized into three types based on their materials: silk paint-
ings, paper paintings, and murals. For model training and evaluation, the
datasetwas divided into a training set and a test set. The training set contains
150 images for each category. Additionally, for themultitask learning setup,
each image in the training set was annotated with additional labels,
including the content, technique, and dynasty. Specifically, for the dynasty
classification task, the training set includes 30 images per class (5 classes), for
the content classification task, it includes 50 images per class (3 classes), and
for the painting technique task, it includes 75 images per class (2 classes).
The test set consists of 912 silk paintings, 864 paper paintings, and 906
murals, with only material classification labels provided for evaluation. The
specific details of the dataset and its class distributions are presented in the
following three tables.

Experimental environment
To verify the effectiveness of the proposed method, tests on the dataset of
traditional Chinese paintings were conducted. The experiments were car-
ried out on a system equipped with a 12th Gen Intel(R) Core(TM) i7-
12700H @2.30 GHz processor. The software environment included the
PyCharm compiler, running on a Windows 11 system. The software was
written in Python 3.9, and PyTorch was used as the framework for model
training and evaluation.

Training strategy
All parameters of the ResNet18 backbone are trained from scratch with
random initialization, without using any pre-trained weights. The model is
optimized using the Adam optimizer with a learning rate of 0.001, and the
training proceeded for a maximum of 200 epochs.

Due to the limited size of available labeled data, we did not split an
explicit validation set. Instead, a portion of the training set was used for
internal monitoring of training convergence and selection of hyperpara-
meters (e.g., cropping size), while the final evaluation results are reported
only on the unseen test set. This strategy ensures a fair comparison across
modelswithout introducingoverfitting risksduring evaluation (Tables 1–3).

Experimental results and comparisons
To determine the optimal experimental parameters, we conducted a sys-
tematic hyperparameter tuning process. Initially, we replaced the feature

Table 1 | Material classification+ dynasty classification joint
training dataset

Material Dynasty Number of training
samples

Number of test
samples

Silk painting Tang et al. 150 912

Paper painting 150 864

Mural 150 906

https://doi.org/10.1038/s40494-025-01949-8 Article

npj Heritage Science |          (2025) 13:377 5

www.nature.com/npjheritagesci


extractionnetwork in the prototypical network, excluding both the auxiliary
task and croppingmodule, to identify the best-performing feature extractor.
Next, we adjusted the crop count and the number of support set samples to
determine the optimal values for both. Building on these adjustments, we
explored different crop sizes to identify the best crop size. With the optimal
feature extraction network, crop count, support set sample number, and
crop size in place,we then changed the auxiliary task categories and adjusted
the weight distribution between the main task and the auxiliary tasks. All
experiments were performed on the training set, with evaluation conducted
on the test set.

When the support set size K ¼ 5, the feature extraction network was
replaced with a 6-layer CNN (CNN6), ResNet18, ResNet34, and ResNet50
to compare their performance in the materials classification for traditional
Chinese paintings. The experimental results are shown in Table 4. The
prototype network with ResNet18 achieved the highest test accuracy of
69.01%, significantly outperforming the other networks. ResNet18 has a
deeper network structure, allowing for more effective capture of high-level
image features and providing stronger representational capacity. Compared
to CNN6, ResNet34, and ResNet50, ResNet18 strikes a better balance
between the number of parameters and model complexity, avoiding
excessive overfittingwhile still extracting rich feature information. Based on
these findings, ResNet18 was selected as the feature extraction network.

When the support set size K ¼ 5, experiments were conducted with
various crop counts: 0, 1, 3, 5, 7, and 10. For the crop count ncrop ¼ 0, no
cropping was performed, and the image was directly resized to 224 × 224
pixels. The experimental results are shown in Table 5. After incorporating
the cropping enhancement and ensemble classification strategy, themodel’s
performance improved significantly across various cropping counts com-
pared to the baseline without cropping. Specifically, when one crop was
used, the accuracy was nearly 10% higher than the baseline. Among the
various crop counts tested, the model achieved the highest accuracy of
81.76% when ncrop ¼ 5. As the crop count increased from 1 to 5, classifi-
cation accuracy improved, as themodelwas able to capture a greater variety
of local features. However, beyond five crops, the performance began to

decline.This suggests thatwhile increasing the crop counthelps in capturing
diverse local features, excessive cropping may introduce redundant infor-
mation.This redundancy can lead tooverfitting,where themodel focuses on
specific details that do not generalize well to new data, resulting in dimin-
ished performance. Thus, an optimal crop count of 5 was chosen for sub-
sequent experiments.

Based on the optimal crop count of 5, additional experiments were con-
ducted with varying numbers of support set samples, specifically setting the
support set size K to 3, 5, 7, and 10. The results of these experiments are
presented in Table 6. When the number of support set samples is 5, the
traditional Chinese painting material classification task achieves the best
performance.

With the support set sample size set to 5 and thenumber of crops set to 5,
we systematically adjusted the crop size, testing sizes of 128 × 128, 224 × 224,
256 × 256,and448 × 448.Theresultsarepresented inTable7, showing that the
best performance for the traditional Chinese painting material classification
task was achieved when the crop size was set to 224 × 224.

The auxiliary task types and their respective weights were then fine-
tuned within the multitask learning framework, using the optimal para-
meters identified earlier. The experiment tested the following combinations:
jointly training the material classification task with dynasty classification,
content classification, and technique classification. By adjusting the loss
weights between the main and auxiliary tasks, the impact of each auxiliary
task onmaterial classification performance was assessed, helping to identify
the optimal multitask learning strategy. The results, shown in Table 8,
indicate that jointly training the material classification task with dynasty
classification and setting themain taskweight to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
or 0.8 all improved performance compared to training the material task
alone. The model achieved its best performance with a main task weight of
0.8, reaching an accuracy of 86.69% on the test set. This suggests that
assigning a higherweight to thematerial task during joint training enhances
performance, likely due to a strong correlation between dynasty and

Table 3 | Material classification+ technique classification
joint training dataset

Material Technique Number of training
samples

Number of test
samples

Silk painting Gongbi and Xieyi 150 912

Paper
painting

150 864

Mural 150 906

Table 4 | Comparison of the performance of different feature
extraction networks

Model Accuracy(%) Precision(%) Recall(%) F1(%)

CNN6 33.1 32.8 33.1 31.3

ResNet18 69.0 73.0 69.0 68.6

RestNet34 38.6 34.8 38.6 31.6

RestNet50 40.9 42.9 40.9 38.8

Table 5 | Comparison of the performance of different crop
counts

n_crop Accuracy(%) Precision(%) Recall(%) F1(%)

0 65.1 68.7 65.1 64.6

1 75.0 76.5 75.0 75.0

3 77.5 77.7 77.5 77.5

5 81.8 82.4 81.8 81.9

7 78.7 80.8 78.7 78.9

10 75.8 77.6 75.8 76.0

Table 6 | Comparison of the performance of different numbers
of support set samples

K Accuracy(%) Precision(%) Recall(%) F1(%)

3 73.0 77.3 73.0 73.5

5 81.8 82.4 81.8 81.9

7 80.1 82.7 80.1 80.0

10 80.8 81.4 80.8 80.9

Table 7 | Comparison of the performance of different crop size

Crop_size Accuracy(%) Precision(%) Recall(%) F1(%)

128 × 128 73.2 78.2 73.2 73.5

224 × 224 81.8 82.4 81.8 81.9

256 × 256 78.6 79.4 78.6 78.7

448 × 448 78.2 81.5 78.2 78.4

Table 2 | Material classification+ content classification joint
training dataset

Material Content Number of training
samples

Number of test
samples

Silk painting Laplace
painting et al.

150 912

Paper painting 150 864

Mural 150 906
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material classification in Chinese paintings. A higherweight emphasizes the
material task, enabling the model to utilize the available data better and
improve accuracy. When the weight of the main task is set to less than 0.5,
regardless of the auxiliary taskwithwhich it is jointly trained, the accuracyof
Chinese painting material classification drops noticeably. However, when
themain task weight exceeded 0.8, performance declined, likely because the
model overly focused on thematerial task and neglected useful information
from the auxiliary task, negatively affecting overall performance. In
contrast, adjusting the material task weight during joint training with
content or technique classification tasks did not improve perfor-
mance, possibly due to weaker correlations between these tasks and
the material classification task, limiting the model’s ability to leverage
auxiliary information effectively.

To validate the effectiveness of the two proposed improvements, we
conducted a series of ablation experiments under the optimal parameters: a
support set sample size of 5, 5 crops per image, and a dynasty classification
task as the auxiliary task, with a main task weight of 0.8.
(1) Effectiveness of the cropping module: in the first ablation experiment,

we removed the cropping module and directly input the images into
the prototypical network to assess its impact on performance.

(2) Effectiveness of multitask learning: in the second ablation experiment,
we removed the multitask module and trained only the material
classification task to test the contribution of multitask learning.

The results of the ablation experiments are presented in Table 9.

As shown in Table 9, removing either the cropping or multitask
module results in a noticeable decline in the model’s performance, with
accuracy dropping to 78.6% and 81.8%, respectively. The performance
further decreases when bothmodules are removed, reaching an accuracy of
69.0%. This demonstrates that both the cropping and multitask modules
contribute significantly to improving themodel’s performance. Combining
these two enhancements achieves thebest results, showing that their synergy
is essential for optimizing the classification task.

To assess the stability of the ResNet model training and validate the
advantages of the proposed algorithm in few-shot scenarios, we conducted a
series of comparative experiments.Thenumber of training samplesper class
was varied (10, 20, 30, 50, 80, 100, 150, and 200), and the same test set was
used for evaluation.Eachexperimentwas repeatedfive times to ensure result
stability and evaluate the variability of the model’s performance. The
accuracymean and standard deviationwere computed for each sample size.
The results are presented in Table 10, which shows the mean accuracy and
standard deviation for different training sample sizes.

Comparison with traditional machine learning algorithms. To eval-
uate the effectiveness of the proposed algorithm, our network model was
compared with several machine learning models, including Random Forest
(RF)44, SVM45, Multilayer Perceptron (MLP)46, LightBoost47, XGBoost48, and
RusBoost49. Features extracted fromthepre-trainedCLIP50modelwere used as
inputs for all these algorithms. As shown in Fig. 2, the proposed algorithm
achieves nearly 80% classification accuracy with minimal training samples,
significantly outperforming the other models.

Comparison with advanced convolutional neural network algo-
rithms. The proposed algorithm was compared with state-of-the-art
CNN algorithms for Chinese painting classification, including
CNN201751, CNN201952, and CNN202127. As illustrated in Fig. 3, the
proposed algorithm consistently outperformed existing CNN-based
models across all sample sizes. This indicates that CNN-based algorithms
generally require larger datasets to achieve optimal performance, while
the proposed method demonstrates significant advantages under small-
sample conditions.

Comparison with small-sample Chinese painting classification
methods. The proposed algorithm was compared with several typical
small-sample Chinese painting classification algorithms, including AL53,
a semi-supervised learning method that leverages actively selected

Table 8 | Effect of auxiliary task types and loss weights on
material classification performance in multitask learning

Auxiliary task w Accuracy(%) Precision(%) Recall(%) F1(%)

Dynasty 0.1 67.0 68.2 67.0 67.1

0.2 63.8 64.7 63.8 63.7

0.3 69.2 70.8 69.2 69.2

0.4 73.3 75.0 73.3 73.3

0.5 79.8 79.8 79.8 79.8

0.6 82.3 82.4 82.3 82.1

0.7 82.4 82.7 82.4 82.3

0.8 86.7 87.1 86.7 86.5

0.9 80.9 83.0 80.9 80.9

Content 0.1 57.4 58.1 57.4 56.6

0.2 55.4 59.5 55.4 56.1

0.3 63.0 63.7 63.0 61.7

0.4 71.6 72.7 71.6 71.8

0.5 79.8 80.1 79.8 79.6

0.6 74.4 74.5 74.5 74.0

0.7 76.8 76.9 76.8 76.5

0.8 76.4 76.6 76.5 76.2

0.9 78.9 79.0 78.9 78.6

Technique 0.1 35.8 34.1 35.8 33.2

0.2 63.3 65.9 63.3 63.9

0.3 70.8 76.6 70.8 71.2

0.4 70.5 74.2 70.5 71.5

0.5 71.9 78.0 71.9 72.1

0.6 74.2 76.8 74.2 74.8

0.7 73.2 77.1 73.2 74.0

0.8 66.7 72.7 66.7 68.1

0.9 65.0 72.0 65.0 66.4

None 1.0 81.8 82.4 81.8 81.9

Table 10 | Results of the repeated experiments

Training sample size Mean accuracy(%) Standard deviation(%)

10 79.1 0.8

20 80.4 1.1

30 82.9 0.4

50 86.3 1.1

80 86.0 0.5

100 84.5 1.2

150 87.6 0.5

200 90.9 1.8

Table 9 | Ablation experiment results

Method Accuracy(%) Precision(%) Recall(%) F1(%)

Without both modules 69.0 73.0 69.0 68.6

Without cropping module 78.6 79.0 78.6 78.7

Without multitask module 81.8 82.4 81.8 81.9

Proposed method (ours) 86.7 87.1 86.7 86.5
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informative samples to address data scarcity, and the method proposed
by Xiao30. As shown in Fig. 4, the proposed algorithm significantly out-
performed other small-sample algorithms when the number of samples
per category was below 75. Even when the sample size exceeded 100, the
proposed algorithm still slightly outperformed the AL series algorithms.
These results demonstrate that the proposedmethod effectively improves
classification accuracy in scenarios with extremely limited samples and
continues to maintain high performance as the number of samples
increases, highlighting its advantages in small-sample Chinese painting
classification.

Discussion
This study presents a novel approach to tackling sample scarcity and limited
feature representation in the classificationofmaterials in traditionalChinese
painting images. Leveraging a prototypical network framework based on
ResNet18, the model integrates cropping enhancement, ensemble voting,
and auxiliary task joint training. Cropping and voting techniques aim to
capture intricate material details, refining the predictive process, while

auxiliary tasks offer additional contextual insights relevant to material
classification.

Experiments conducted on a self-constructed dataset validate the
effectiveness of the model, particularly when the auxiliary task is dynasty
classification and the loss weight for the material classification task is set to
0.8, resulting in optimal performance that surpasses existing advanced
methods. The main findings of the study are as follows:
(1) For the task of Chinese painting image classification with limited data,

the proposed prototypical network framework effectively leverages
CNN feature extraction to maximize the use of limited training sam-
ples, improving classification performance. By structuring support and
query sets, the method identifies optimal feature representations,
facilitating knowledge acquisition from the images.

(2) The cropping enhancement method is beneficial for the learning of
material-related detailed features from different regions of the picture.
These features are potentially hidden in the foreground or background
of the image. Therefore, the use of ensemble voting allows for a
comprehensive analysis of the prediction results from these regions,
resulting in optimal output.

(3) The distinct production techniques of various dynasties, which are
often reflected in painting images, provide an advantageous context for
material classification. The multitask learning approach capitalizes on
dynasty information to boost model performance, enhancing the
accuracy of material classification.

In summary, this research offers an effective solution for the
material classification of Chinese painting images under sample con-
straints, demonstrating the strong feature extraction capability of the
prototypical network. Additionally, this study provides a small-sample
learning framework that can be applied to other image classification
tasks related to Chinese paintings. Future efforts could focus on further
refining region-specific cropping and enhancing feature extraction
networks, along with incorporating auxiliary task designs to improve
both model accuracy and adaptability. This study is of significant
importance for the identification and preservation of cultural heritage,
providing technical support for the development of related digital
system tools.

Data availability
The datasets used during the current study are available from the corre-
sponding author on reasonable request.

Fig. 2 | Comparison of the proposed algorithm with machine learning models.
Comparison of classification accuracy between the proposed algorithm and several
machine learning models (Random Forest, SVM, MLP, LightGBM, XGBoost, and
RusBoost) using CLIP-extracted features as input. The accuracy is evaluated with
varying numbers of training samples.

Fig. 3 | Comparison of the proposed algorithmwith CNNmodels.Comparison of
the proposed algorithm with state-of-the-art CNN algorithms (CNN2017,
CNN2019, and CNN2021) for Chinese painting classification. The performance is
evaluated across varying sample sizes.

Fig. 4 | Comparison of the proposed algorithm with small-sample models.
Comparison of the proposed algorithm with typical small-sample Chinese painting
classification methods (AL and Xiao’s method). The performance is evaluated with
varying sample sizes per category.
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Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers on reasonable request from the corre-
sponding author.
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