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Karez, an ancient engineering marvel, utilizes gravity to transport underground water to the surface
without external power. Typically, a karez comprises numerous shafts (vertical wells), and traditional
mapping methods are both time-consuming and labor-intensive. To address these challenges, this
study developed an integrated detection-screening framework for karez mapping. The karez shafts
were detected by using high spatial resolution satellite imagery and deep learning architectures
(Faster-RCNN, SSD, YoloV3, and MMDetection). Subsequently, a directed fan-shaped buffering
method, combined with hierarchical clustering, was introduced to filter out misidentified shaft-like
structures. Results showed that the MMDetection outperformed other models, achieving a mean
average precision (mAP50-95) of 0.833. Field validation confirmed that the screening methods
eliminated 90.20% of false shaft detections. This study has obtained the largest number of karez
shafts to date in the study area, while providing a transferable technical framework for global
applications in cultural heritage documentation and arid land water management.

A karez is an underground tunnel with a gentle gradient that leads
groundwater from the higher terrain to the lower-lying fields solely through
the force of gravity without any biological ormechanical assistance1 (Fig. 1).
It is a traditional earthen water management system that many scholars
believe originated in ancient Persia (modern-day Iran)2,3, and can be found
in many countries around the world, stretching from Japan, across Central
Asia, Europe, North Africa, and further into Central and South America4.
The karez is known by various names, including qanat or kariz in Iran,
Afghanistan, and Pakistan5, khettara in Morocco4,6–8, galeria in Mexico9,
falaj/aflaj in the United Arab Emirates and Oman10–12, foggara/fujihara in
NorthAfrica and theLevant13–15, puquios inPeru16, surangam in India17, and
karez or kanerjing in China5. As seen in Fig. 1, this traditional hydraulic
infrastructure typically comprises five key components, namely the vertical
shafts, underground channels, an outlet, open channels, and a pool. Karez
are being conserved very well in many countries and offering stable sources

of water for irrigation and various other purposes. Iran, for instance, has the
world’s largest karez network, with approximately 32,164 active systems
discharging a total of about 9 billion cubic meters annually18. As a typical
example of human-environment interaction in arid zones, the karez system
embodies both an exceptional hydraulic engineering legacy and, more
profoundly, a living cultural heritage that encodes centuries of indigenous
ecological knowledge. Serving as a fertile oasis and a pivotal trade hub along
thenorthern SilkRoad, Turpan farmers inChina also rely on karezwater for
their agricultural and daily activities. However, escalating water demands
and the introduction of more efficient water acquisition technologies, such
as electric pumping wells, have posed significant challenges to the main-
tenance of karez systems, leading to their decline in many countries19,20.

Even though facing the threat of abandonment, as an eco-friendly
technology, the karez showed invaluable historical, cultural, and social
significance in various aspects of modern society21. Therefore, it is
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imperative to thoroughly study the environmental and social impacts of
karez systems in recent years by employing state-of-the-art techniques.
Among these methods, geoengineering approaches, particularly the inte-
gration of remote sensing and geographic information system (GIS) tech-
niques, have shown remarkable potential for assessing environmental
impacts and developing plans for the restoration and safety of karez
systems5. For instance, Megdiche-Kharrat et al. conducted a study on land
use and the dynamics of vegetation cover in Wilayat Nizwa, Oman, using
remote sensing images, and explained the utilization patterns of karez
systems in the region to a certain extent22. The investigation of land use and
land cover (LULC) changes on karez systems remains an active research
frontier, as demonstrated by Al-Kindi et al., who assessed the impact of
LULC changes on karez systems in northern Oman over a span of 36 years,
yielding newunderstanding about the cascading effects of LULCchangeson
groundwater resources while establishing an evidence base for sustainable
land management decisions in arid regions23. Equally concerning findings
emerged from recent studies in Iran’s Mashhad plain, where researchers
documented an alarming 94.41% loss of karez shafts over just six decades,
primarily driven by uncontrolled agricultural expansion and urban devel-
opment, highlighting the urgent need for innovative conservation
approaches20. On the methodological front, Barbaix et al. made significant
contributions by developing a comprehensive framework for analyzing
diverse historical sources specific to karez landscapes in Turpan, system-
atically cataloging various archival materials along with detailed explana-
tions of their processing methodologies24. Furthermore, Lou et al.
quantitatively reevaluated the function of karez using remote sensing
technology, concluding that the decline in karez usage weakens ecological
stability and increases the ecosystem’s vulnerability to external factors25. In
another study, Al-Kindi and Janizadeh leveraged LiDAR, Sentinel-2, and
GIS data to derive variables related to LULC, as well as hydrological,
topographical, and geological factors26. They employed various machine
learning methods to model groundwater potential and emphasized the
critical importance of evaluating existing groundwater datasets, facilities,
and spatial datasets in designing systems capable ofmapping karez based on
geospatial and machine learning techniques. Together, these significant
scientific advancements powerfully underscore the necessity for continued
interdisciplinary research and the innovative application of modern tech-
nologies to effectively preserve and revitalize these ancient yet increasingly
vulnerable water management systems.

Despite recent efforts and regulations introduced in many countries
aimed at water conservation, groundwater table levels have been steadily
declining and have recently reached historic lows27,28. This trend has led to a
rapid decline in the functionality and number of karez systems21. The sys-
tematic identification and quantification of karez are crucial for prioritizing
and validatingmitigationmeasures, aswell as for establishing accurate karez
inventories. Governments and organizations often rely on limited infor-
mation to implement remedial actions due to significant shortcomings in
current detection methods and inventory systems. With advancements in
remote sensing technology, spaceborne sensors have achieved sub-meter
level spatial resolution in recent decades, resulting in image quality com-
parable to that of airborne images29. Satellite-based karez detection generally

relies on identifying shape features of karez on the ground surface using
visible band RGB images. However, manual detection of karez shafts from
satellite images is a time-consumingand labor-intensive taskdue to the large
number of shafts within each karez system.

Computer vision, a field that leverages machine learning techniques to
train computers to see, interpret and understand the world around them,
has demonstrated significant potential for automatic object detection30.
Recent advances in object detection have demonstrated significant potential
for cultural heritage preservation, such as identification and assessment of
structural damages on heritage sites31,32, recognition and classification of
architectural components33, as well as the extraction and analysis of sym-
bolic elements from rock art imagery34. For instance, leveraging high-
resolution imaging technology, Tang et al. conducted a detailed study on the
Shanhaiguan Ancient City Wall in Qinhuangdao City, China, successfully
identifying physical weathering patterns and visitor-induced scratches35.
This research not only contributed to the development of an intelligent
health monitoring tool for heritage buildings but also underscored the
practical utility of computer vision in preserving architectural heritage. In a
recent advancement, Shen et al. achieved a higher precision in detecting
elements of ancient murals through the implementation of a lightweight
multi-scale feature fusion network combinedwith a semantic enhancement
model36. Moreover, the integration of computer vision with remote sensing
data and advanced machine learning methods has emerged as a transfor-
mative approach in cultural heritage preservation, particularly in the
detection and documentation of heritage sites37,38. This interdisciplinary
fusion not only enhances the accuracy and efficiency of heritage preserva-
tion efforts but also opens new avenues for the systematic analysis and
protection of cultural artifacts and historical landscapes.

These technological advances are equally applicable to karez detection
using high spatial resolution satellite imagery and machine learning
methods. Previous studies have demonstrated this potential, including
Soroush et al., who employed CORONA images and deep convolutional
neural networks (CNNs) to detect karez shafts in the Kurdistan Region of
Iraq, achieving a precision of 0.6239, and Li et al. used Google Earth data to
train the YoloV5 model for extracting karez shafts in Turpan, China, and
identified 82,493 shafts after post-processing40. In their subsequent study, Li
et al. utilized CORONA images from 1970 to visually interpret the karez
system and compared it with the karez system in 2020 to analyze spatial
distribution variations and the impact of LULC changes on karez41. More
recently, Buławka et al. used the black and white HEXAGON (KH-9) high-
resolution spy satellite images from the 1970s and YoloV9 model to detect
karez in selected areas of Afghanistan, Iran and Morocco, and developed a
post-processing approach to eliminate most false detections with a higher
precision42.

Yet, therehasbeena growing interest indevelopingkarezdetectionand
screeningmethodswith broadfield verifications. Although the karez system
is widely distributed globally, numerous regions, including Turpan, which
boasts the highest number of karez in China, still lack a comprehensive
database of these ancient water systems. The mapping methods need to be
continuously improved due to the variations of karez distribution in dif-
ferent regions. Therefore, to address this issue in a more tractable manner,

Fig. 1 | Schematic view of karez systems.

https://doi.org/10.1038/s40494-025-01967-6 Article

npj Heritage Science |          (2025) 13:429 2

www.nature.com/npjheritagesci


this study focuses on the karez systems in China’s Turpan Basin. The study
endeavors to establish a detection-screeningworkflow,with the overarching
aim of constructing a comprehensive and detailed karez database. It delves
into an in-depth evaluation ofmultiple deep learning-basedobject detection
algorithms, meticulously comparing their performance to determine the
most effective approach for accurately detecting karez shafts. Subsequently,
a screening workflow is devised, integrating directed fan-shaped buffering
and clustering techniques. These innovative techniques are specifically
designed to filter out false positives (erroneously identified shafts), thereby
enhancing the precision and reliability of the detection process. The
workflow introduced in this study has the potential to be adapted for use in
other regions, fostering the creation of more robust local and global karez
databases.

Methods
The main workflow for karez mapping is illustrated in Fig. 2. Initially,
remote sensing data of the study area were downloaded and pre-processed.
Subsequently, a portion of the karez shafts was annotated for training deep
learning models, and the karez shafts in the whole area were detected by
using the bestmodel. Following this, the detected shafts undergo a screening
process employing various methods. After screening, the shafts were clus-
tered to identify those belonging to individual karez systems.Ultimately, the
shafts were sorted, and karez lines were generated.

Study area
In China, the karez is predominantly found in the Xinjiang Uyghur
Autonomous Region, particularly in the Turpan Basin, which lies at the
southern base of the Tianshan Mountain range (Fig. 3). Turpan is a
renowned closed basin characterized by an extremely arid climate. The
basin’s terrain exhibits substantial altitude variations, with the surrounding
mountains reaching a maximum height of 5445m at Tianshan Mountain
and the basin’s lowest point, Ayding Lake, sitting at 154m below sea level.
These altitude differences significantly influence the basin’s climate and
water distribution. Given the large elevation drop, the abundant meltwater
from the mountains, and the arid conditions, the excavation of karez

became essential for irrigation and other water needs. The historical record
of the karez extends back to the HanDynasty in China18. Notably, the karez
in Turpan were recognized as one of the World Heritage Irrigation Struc-
tures on September 3, 202443. According to Kobori19, there were 1237 karez
systems in Turpan in 1957, which declined to 829 in 1980, with a combined
length of approximately 2360 km. During the Third National Cultural
Heritage Survey conducted between 2007 and 2011, 1108 karez were
archived as cultural heritage in Turpan, which consists 71.95% of total in
China44.

Data collection and preprocessing
Bing Virtual Earth images with a spatial resolution of 0.50m were down-
loaded usingQGIS software version 3.38.0. This resolution allowed for clear
identification ofmost karez shafts. The selection of the study area was based
on thedistributionof humanactivities and thepresence of anoasis. Training
deep learning models and performing object detection on large image
datasets requires substantial computation resources. To streamline down-
loading, the study areawas divided into 65 blocks, eachmeasuring 30 kmby
16 km, as shown in Fig. 3d. Subsequently, each of these blocks was further
subdivided into nine equal smaller blocks to facilitate the detection of karez
shafts using a deep learning model.

The Copernicus DEM data, featuring a spatial resolution of 90m, was
downloaded from theCopernicuswebsite (https://dataspace.copernicus.eu/)
to generate slope and aspect angle data. However, some regions were iden-
tified as flat areas with the 90m resolution DEM data. To address this, the
DEM data was resampled to 500m resolution, allowing for the accurate
derivation of aspect angle in those previously problematic areas.

Preparation of training data
The blocks numbered 32, 42, and 59 in Fig. 3d were selected for labeling
karez shafts due to their representative characteristics. The shafts located in
various environments were labeled utilizing the ArcGIS Pro 3.1.5 software,
resulting in a total of 5825 karez shafts beingmarked with circular symbols,
as depicted in Fig. 4. The PASCAL Visual Object Classes method within
ArcGIS Pro was utilized to generate the training data. The output tile size

Fig. 2 | Main workflow of karez mapping in this study.
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was set to 256pixels, with stridesof 128pixels in both theX andYdirections.
No rotation angles were applied for image data augmentation. Conse-
quently, a total of 8395 images were created, each with dimensions of
3 * 256 * 256, where three represents the red, green, and blue channels, and
256 denotes the size in both theX andY directions. Furthermore, one image
with 10 km by 5.33 km from the block of 35 was selected to test themodels,
in which 1607 shafts were labeled.

Deep learning models for karez shaft detection
Object detection, a cornerstone task in computer vision, involves recog-
nizing and locating diverse objects within visual data, thereby empowering
machines to interpret and comprehend their surroundings45. Various object

detection algorithms exist, and for the purpose of karez shaft detection, the
deep learning library ofArcGISPro3.1.5was used. Specifically, the FasterR-
CNN, SSD (Single Shot Multibox Detector), YOLOv3 (You Only Look
Once version 3), and MMDetection (OpenMMLab Detection Toolbox)
were implemented, each equipped with different backbone models. For
Faster R-CNN, SSD, andMMDetection, ResNet34 andResNet50were used
as the backbonemodels, while DarkNet53 was employed for YOLOv3. The
parameters of these deep learning models were detailed in Table 1.

Faster R-CNN is an object detection model that builds upon Fast
R-CNNby incorporating aRegionProposalNetwork (RPN) in conjunction
with the CNN model46. The RPN shares convolutional features with the
detection network across the entire image, thereby facilitating region

Fig. 4 | Labeling of karez shafts. The green circles
represent the labeled karez shafts.

Fig. 3 | Location of the study area. a The location of China in the world. b The location of Turpan in China. c 3D scene of the Turpan basin (the terrain was exaggerated
vertically by eight times for better visualization). d The patches for downloading images, and the selected ones for postprocessing.
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proposals atminimal computational cost. As a fully convolutional network,
the RPN simultaneously predicts object boundaries and foreground prob-
ability scores at each spatial position. Trained end-to-end, the RPN gen-
erates high-quality region proposals that Fast R-CNN subsequently utilizes
for detection. Notably, Faster R-CNN and its RPN component were
instrumental in achieving1st-placewins in several tracks of the ILSVRCand
COCO 2015 competitions.

SSD is an advanced object detection method that employs a single-
stagedetectionnetwork to efficiently andaccurately detect objects in images.
This network integrates predictions frommultiscale features, enabling it to
capture diverse spatial resolutions and contextual information47. Unlike
two-stage detectors such as Faster R-CNN, which involve a separate region
proposal stage followed by classification and bounding box refinement, SSD
performs detection in a single pass, making it computationally more effi-
cient and faster.

The YOLOv3 algorithm, introduced by Redmon and Farhadi in 2018,
initially divides an image into a grid48. Each grid cell is taskedwith predicting
a certain number of bounding boxes (also known as anchor boxes) around
objects that closely match predefined classes, assigning a high confidence
score to these predictions. Each bounding box has a respective confidence
score of how accurately it assumes that prediction should be. Importantly,
each bounding box is designated for a single object. These bounding boxes
are generated through clustering the dimensions of the ground truth boxes
from the training dataset, allowing YOLOv3 to identify the most common
object shapes and sizes. Unlike systems such as R-CNN and Fast R-CNN,
YOLOv3 can simultaneously perform classification and bounding box
regression.This dual capability ensures thatYOLOv3provides bothefficient
and precise predictions for the detected bounding boxes.

MMDetection is an object detection toolbox that encompasses a
comprehensive collection of object detection and instance segmentation
algorithms, alongwith pertinent components andmodules. It distinguished
itself by winning the detection track of the COCO Challenge 201849,
showcasing its effectiveness and robustness in the field of computer vision.

After training, the model with the highest precision was selected to
detect karez shafts across the entire study area. Table 2 presents the para-
meters employed for detecting karez shafts using the optimal model. The
training of the data and the detection of karez shafts were performed on a
graphic workstation equipped with a 13th Gen Intel® Core™ i9-13900KF
processor clocked at 3.00 GHz, 128 GB of RAM, and an NVIDIA GeForce
RTX 4080 GPU.

Precision (P), recall (R), f1-score,mean average precision at IoU = 0.50
(mAP50), and mean average precision at IoU = [0.50, 0.55, …, 0.95]
(mAP50-95) were used to evaluate the models on test data using the
“compute accuracy for object detection” function of ArcGIS Pro.

Post-processing of detected shafts
The initially detected karez shafts were square-shaped. For further proces-
sing, these polygons were converted into point features, ensuring that the
center of each square was recorded as a single shaft. Given the presence of
some incorrectly detected or missing shafts, it is essential to employ
screeningmethods to achievemore accurate data. In this study, five steps of

screening were used to eliminate incorrectly detected shafts, as
outlined below:

The first step is the deletion of points too close together (<5m) to
avoid duplication. The downloaded image patches were overlapped to a
certain extent to avoid missing shafts, and generally, the shafts should not
be positioned too close to each other. Therefore, any shafts found within
a distance of less than 5m from another shaft were deleted to eliminate
duplication. This procedure was performed using the ArcGIS Pro
software.

Next step is the deletion of points on larger slopes. Basedon experience,
shafts located on slopes steeper than 20° were removed. The slopes were
calculated using the Copernicus DEM with a spatial resolution of 90m

In the third step, the directed fan-shaped buffer method was con-
ducted. Typically, the karez shafts distribute linearly and extend pre-
dominantly from higher terrain to lower terrain. To accommodate this,
aspect angles of the terrain were derived using the Copernicus DEMwith a
spatial resolution of 500m. For each karez shaft, fan-shaped buffer zones
were created, encompassing a fan angle range of aspect ±45° (Fig. 5).
Recognizing that some karez lines do not strictly adhere to the aspect angle,
slight adjustments weremade to the angle for certain areas (this adjustment
was controlled in ±20°). The largest shaft distance was selected as the buffer
distance in different patches. Subsequently, only the intersected buffer zones
were selected, and shafts located outside these zones were removed. This
step can effectively screen out the isolated points that did not align with the
direction of the karez lines and out of the largest shaft distance. This process
was executed within the Python environment of ArcGIS Pro.

Subsequently, small clusters were screened out based on a larger dis-
tance threshold.Utilizing the single-linkage clusteringmethod, clusterswere
formed with a distance threshold set at 0.001°. Then, clusters containing
three or fewer points were removed. This process was facilitated using the
SciPy open-source Python library.

Finally,manual adjustments were applied. Despite the preceding steps,
some erroneous points remained. Therefore, regions of interest were deli-
neated based on expert experience, specifically excluding mountainous
areas and other regionswhere karez are unlikely to be found. Following this,
amanual screening process was conducted to eliminate points thatwere not
linear or highly irregular, combined with satellite images. This step was
executed using ArcGIS Pro software.

Table 1 | Parameters of deep learning models

Parameters\Model types Faster R-CNN SSD MMDetection YoloV3

Maximum epoch 200 200 200 200

Batch size 64 64 64 64

Chip size 224 224 224 224

Backbone model ResNet34, ResNet50 ResNet34, ResNet50 ResNet34, ResNet50 DarkNet53

Stop when the model stops improving Yes Yes Yes Yes

Freeze Model Yes Yes Yes Yes

Validation 10% 10% 10% 10%

Table 2 | Parameters for detecting karez shafts by using deep
learning models

Arguments name Value

Padding 56

Threshold 0.35

Non-maximum suppression overlap ratio 0.2

Batch size 64

Exclude padding detections True

Test time augmentation False
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Line generation for karez segments
Data clustering organizes objects into groups based on their similarity.
Among the hierarchical clustering methods, the method stands out by
offering multiple, layered partitions. It employs divisive and agglomerative
approaches to split or merge clusters, respectively, based on measures of
dissimilarity or similarity that are tailored to accommodate diverse data sets
and applications50. Hierarchical clustering is widely utilized in cluster ana-
lysis for data mining due to its ability to facilitate the visualization of similar
objects grouped into clusters. In each iteration of hierarchical clustering,
specific objects or clusters are linked together basedona criterion referred to
as the “Linkage Criteria”. Single-linkage clustering is particularly advanta-
geous when aiming to gain insights into the fine granularity of the data. It
performs effectively when clusters naturally exhibit a chain-like or non-
compact structure51,52. The fundamental principles of this method are out-
lined in the paper by Manning and Schutze51.

To identify the shafts belonging to the same karez system, the single-
linkage clustering method of the hierarchical clustering approach was
employed.The clustering analysiswas executedusing the SciPyopen-source
Python library. Due to variations in the distances between shafts across
different regions, different maximum distance thresholds were used for
clustering shafts in various blocks. However, some karez shafts were
undetected either because they had been destroyed or because theywere not
sufficiently distinctive compared to their surroundings, resulting in shafts
belonging to the same karez segment beingmistakenly clustered into several
separate parts. Conversely, some shafts belonging to different karezwere too
close to each other and were inadvertently clustered as part of the same
karez. In such instances, the automatic clustering method alone was
insufficient to yield accurate clusters. Therefore, manual adjustments were
necessary to correct these clusters. Ultimately, the clusters from different
patches were merged and assigned the same cluster IDs.

After clustering, the shafts are sorted utilizing the “sort” tool in ArcGIS
Pro. The X coordinates are generated specifically for shafts where the karez
lines are oriented in an east-west direction and are subsequently employed
for the sorting process. Ultimately, the “Points to Line” tool was utilized to
generate the lines for karez segments.

Field verification
A comprehensive field verification campaign was conducted from 28th
October 2024 to 10th April 2025 as an integral component of the fourth
National Cultural Heritage survey. The investigation encompassed all
identified karez shafts within the study area through systematic ground-
truthing procedures. Four specialized survey teams were deployed, with
each team consisting of four qualified members. All members were equip-
ped with mobile devices running the Omap (Ovi Interactive Map)

application (Beijing Yuansheng Huawang Software Co., Beijing, China),
enabling real-time visualization of detected shaft locations andnavigation to
target sites via satellite imagery. To ensure complete documentation of the
extensive karez networks, each teamwas equippedwith aDJIMavic 3 drone
system (DJI Innovations Science and Technology Co., Ltd, Shenzhen,
China) for aerial photography, particularly crucial for shafts extending
several kilometers in length. Every identified shaft underwent rigorous field
verification, with precise location data collected and detailed distribution
maps produced based on direct field observations.

Results
Model performances
Table 3 presents the performance of various deep learningmodels based on
the training data. As indicated, when employing ResNet50 as the backbone
model, theMMDetection exhibited the best performancewith a precision of
0.812, surpassing other models. Among the backbone models, ResNet50
demonstrated superior performance compared to ResNet34. Additionally,
the SSDhad the shortest training time,with each epoch takingonly 4–7min.
Despite setting the maximum number of epochs to 200, most models were
terminated early due to a lack of further improvement. Table 4 shows the
performanceof various deep learningmodels basedon the test data.As seen,
the MMDetection with the ResNet50 as backbone model showed the best
performance with an overall precision (mAP50-95) of 0.833.

Karez shaft detection with the best model
TheMMDetection, utilizing ResNet50 as its backbonemodel, was chosen
for detecting karez shafts due to its superior performance among other

Table 3 | Performance of deep learning models

Model type Backbone
model

Epochs Precision Training
time (Min)

Average
time for
eachEpoch

MMDetection ResNet34 29 0.810 1163 40.10

MMDetection ResNet50 31 0.812 1179 38.03

SSD ResNet34 120 0.711 494 4.12

SSD ResNet50 200 0.751 1402 7.01

YoloV3 DarkNet53 27 0.717 253 9.37

Faster R-CNN ResNet34 27 0.442 454 16.82

Faster R-CNN ResNet50 27 0.773 407 15.07

The models were trained by setting “stop training when models stop improving”. The maximum
epochs were set 200, and most models were stopped earlier because of no improvement.

Fig. 5 | Directed fan-shaped buffer generation. aGenerated buffer according to aspect angle. b Selected buffers according to intersection. The colored buffer zones were the
selected ones, so the non-selected ones and shaft points will be deleted.
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models. As illustrated in Fig. 6, model performance varied significantly
across different confidence thresholds. Lower thresholds yielded higher
overall precision but resulted in more misidentified shafts (false positives,
Fig. 6a). Conversely, higher thresholds improved detection precision but
increased false negatives (lost detection), leading to significant shaft
under-detection (Fig. 6b). To optimize this trade-off between false
positives (requiring extensive post-processing) and false negatives
(resulting in missed detections), this study chose the confidence
threshold of 0.35.

Consequently, a total of 284,500 shafts were identified with a con-
fidence threshold of 0.35 (Fig. 7). Blocks inwhich lacking linear clustering of
points were excluded from further processing. After applying the directed
fan-shaped buffer method for screening, 186,848 shafts remained. Follow-
ing the removal of clusters containing fewer than threepoints, thenumberof
shafts was reduced to 149,932. Subsequently, regions of interest were deli-
neatedbasedonexpert experience and thedistributionpatternsof the shafts.
Shafts located outside these defined regions were then excluded, leaving
107,510 points. These screening methods eliminated 90.20% of false shaft

Table 4 | Performance of deep learning models on test data

Model type Backbone model P R F1-score mAP50 mAP50-95

MMDetection ResNet34 0.788 0.915 0.847 0.803 0.777

MMDetection ResNet50 0.823 0.913 0.865 0.837 0.833

SSD ResNet34 0.597 0.810 0.687 0.615 0.299

SSD ResNet50 0.647 0.740 0.691 0.531 0.228

YoloV3 DarkNet53 0.715 0.894 0.795 0.692 0.525

Faster R-CNN ResNet34 0.483 0.602 0.536 0.428 0.121

Faster R-CNN ResNet50 0.555 0.934 0.697 0.724 0.568

Fig. 6 | The effect of different confidence thresholds on model performance. aMetrics values at different confidence thresholds. b The number of TP, FP, and FN at
different confidence thresholds.

Fig. 7 | Shaft distribution in different steps.
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detections. Lastly, a manual screening process was conducted, further
narrowing down the number of shafts to 88,288 (blue points in Fig. 7).

Cluster results and karez segment line generation
By combining automatic clusteringwithmanual adjustments, a total of 3984
clusters were successfully obtained, which were subsequently used to gen-
erate karez segment lines (as shown in Fig. 8). These karez segment lines
covered a total length of 2527.24 km, with the longest individual karez
segment measuring 7.79 km and an average length of 0.63 km. For better
visualization, the karez detection area was divided into nine rectangles, and

detailed enlargements of these parts are provided in Figs. 9 and 10. Notably,
some previously unrecorded karez, such as those in block four and the
northwest parts of block nine (depicted in Figs. 9 and 10), were discovered
and subsequently verified through field surveys.

After the field verification survey, 99.3% of the shafts that were iden-
tified and screened in this study proved to be real karez shafts, as otherswere
shaft-like objectswith linear distribution.However,more than ten thousand
karez shafts couldnot be identified fromsatellite images, evenmanually. It is
mostly because they were covered by cement structures or similar soil for
mitigation and safety purposes, particularly in residential areas, and some

Fig. 8 | Distribution of final karez lines. The blue lines represent karez lines.

Fig. 9 | Enlarged views of parts 1–5 from Fig. 8. The blue lines represent karez lines.
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were under vegetation such as trees. Furthermore, some shafts have been
eroded and disappeared in recent years, and the shafts could not be found
even in the survey.

Discussion
There are two primary factors that hinder the performance of the deep
learningmodel:misidentified shafts andmissing shafts. The best-performing
model attained an overall precision of 0.833, which suggests cautious pre-
dictions but also indicates some missed detections. Since some karez shafts
arenot readily apparent in aerial images, thedetection confidence coefficients
for these were lower. However, they can be distinguished based on the dis-
tribution patterns of neighboring shafts, as they are linearly distributed.
Consequently, a lower confidence threshold (0.35) was set to obtain more
complete data.As a result,more karez shaftswere detected, but this also led to
an increase in misidentified shaft-like objects. The following sections delve
further into the specifics of these misidentified and missed karez shafts.

The first issue is themisidentification of karez shafts. Numerous shaft-
like objects, such as graves, earthmounds, circularmarshlands, borrow pits,
and other circular ground features with noticeable color differences from
their surroundings, were incorrectly detected as karez shafts Fig. 11). These
objects were easily misclassified as karez shafts due to their similar
appearance in aerial images. Identifying them manually, especially when
viewed individually, even remains challenging. Generally, the shafts of a
karez should form a linear pattern, and a single shaft can be accurately
identified when observed alongside others, even if it is not particularly
prominent. The reason for these misidentifications can also be traced back
to the training data itself, where these less obvious shafts were labeled as
karez shafts along with others. Unfortunately, deep learning models focus
solely on identifying individual objects without considering their overall
distribution. However, the goal of this study was to detect as many karez
shafts as possible to build a comprehensive database. This, in part, explains
why themodel precision of this studywas lower; the training data contained
samples that were easily confused with other objects. Consequently, post-
processing is essential to filter out the misidentified shafts.

The second issue concernsmissing karez shafts. Somekarez shaftswere
eroded or buried naturally, while others have been covered to prevent

landfill or for safety reasons. Consequently, it is extremely challenging to
distinguish them from the surrounding soil even for manual identification.
Fig. 12 illustrates this spectrumofdetectability:well-preserved shafts (yellow
frames in Fig. 12a–c) are readily identifiable in both satellite and aerial
imagery, while severely eroded examples (red frames) challenge even expert
analysis. Cloud covers further compromise visibility. These limitations
currently necessitate field verification to complete comprehensive inven-
tories, though future integration of LiDARormulti-temporal analysis could
mitigate such constraints.

This study developed an innovative pipeline combining directed fan-
shaped buffering with clustering techniques for false positive removal in
karez shaft identification. The automated screening effectively eliminated
most misidentified points (Fig. 13b), though some ambiguous cases
required manual verification. Furthermore, during the clustering process,
the shafts of somekarezweredivided intomultiple clusters due tomissing or
undetected shafts, while others were merged because of the proximity of
shafts from different karez channels (Fig. 13d). These systematic errors
necessitated targeted manual correction (Fig. 13e), demonstrating both the
efficacy and current limitations of automated approaches in complex
archeological feature identification.

The advantage of the directed fan-shaped buffer method is that it can
screen out the shafts that do not strictly follow the linear distribution of
existing studies. For instance, in their study, Li et al. used the circular buf-
fering method for screening the shafts40. Although the method can screen
out most of the misidentified shafts, it cannot distinguish some of the
irregularly distributed shaft-like objects. For instance, Fig. 14a shows several
shaft-like objects that were detected as karez shafts in higher confidence
coefficients from the MMDetection method (Fig. 14b). If the circular buf-
feringmethodwere used, then all shafts would remain due to all the circular
buffers being intersected with each other (Fig. 14c). If the directed fan-
shaped buffer method were used, then only two groups of buffers (B and C,
F, and G in Fig. 14d) were intersected and effectively screened out. Fur-
thermore, they demonstrated that theYoloV5model achieved a precision of
0.86 usingGoogle Earth images, outperforming the bestmodel of this study.
However, it is worth noting that the shafts in the western part and the
mountain regions in the northwestern part were not presented in their

Fig. 10 | Enlarged views of parts 6–9 from Fig. 8. The blue lines represent karez lines.
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study, assuming they were not included in the shaft detection procedure.
Additionally, after screening, their study identified 82,493 shafts, which is
approximately 5500 fewer than the shafts obtained in this study. This study
represents the first field-validated comprehensive inventory, addressing a
critical gap in previous work.

Most karez are oriented from higher terrain to lower plains. However,
some karez lines do not strictly adhere to the aspect angle, resulting in the
direction of fan-shaped buffers not aligning with the karez line. This
necessitates caution when using the directed buffer method, although it is
not a frequent occurrence. In such instances, the direction of the buffer
should be adjusted to align with the karez line. Furthermore, some shafts
from different karez are positioned too closely to each other, while others
intersect, posing challenges for clustering (asFig. 15, even though it is not the
common case). Therefore, fully automated mapping of karez shafts is
challenging, andmanual adjustments are essential to achievemore accurate

data.Consequently, semi-automatedmethods shouldbe employed for karez
mapping.

The effects of fan-shaped buffer angles and distances were demon-
strated in Tables 5 and 6 on test dataset: with a fixed buffer distance, a
smaller angle reduced false positives (misidentified shafts) but increased
false negatives (lost detections), with the best overall precision at 30° (Table
5); similarly, with a fixed buffer angle, a smaller distance decreased false
positives but raised false negatives, peaking in precision at 115m (Table 6).
Table 7 compared the circular bufferingmethod (180°, 57.5 m, equivalent to
the 115m fan-shaped buffer), which shows lower overall precision due to
more false positives. Although the directed fan-shapedmethod yielded one
additional false negative, it eliminated 42 more false positives than the
circular approach.

As shown in Fig. 8, the majority of karez wells were concentrated near
settlements and farms. However, there are also some karez located in

Fig. 12 | Example of seriously eroded karez shafts
by wind. a Satellite image of one karez in desert.
b and c are the aerial photos of this karez. The karez
shafts in yellow frames were identified successfully
in this study, while the shafts in red frames were not
detected.

Fig. 11 | Some examples of misidentified objects detected as karez shafts.
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mountainous regions, even in the absence of irrigation land. It is possible
that these karez were only used to provide drinking water for humans and
livestock.Theplacementof these karez indry streambeds or ephemeral river
valleys is geomorphologically similar to those in the wadis near Turpan
city53. Some similar examples can be found in the northern parts of Flaming
Mountain (patch number 32). The shafts are located near but almost never
right on top of shallow dry stream beds, undoubtedly, to minimize any
potential flood damage. These karez are often not very long, though some
examples have proven to run very deep (several tens of meters). This would
often imply a rather large labor investment for minimal agricultural profit
since these valleys and wadis cannot accommodate large swatches of fields.
This does strengthen the hypothesis that these karez might have been
constructed to mostly provide drinking water. Another argument would be
the location of the newly recognized mountainous karez lines. These are
placed along known historical routes through the Tian Shan Mountain.
Peculiarly, the use of karez to provide shepherds and herdwithwater during
transhumance practices has been attested in oral tales and karez names as
recent as the 19th century54. Consequently, it is unwise to restrict the search
for karez solely to areas near agricultural regions or oases. The rather narrow
location and short karez length make it easy for these systems to be missed
with lower resolution data.

The fourthNational Cultural Heritage survey, running fromNovember
2023 to June 2026, serves as the foundation for China’s heritage policy-
making and conservation work. This nationwide initiative provides essential
data to guide both legislative decisions and practical preservation efforts
across the country’s cultural sector55. Building a comprehensive heritage
database is crucial for enabling thorough analysis and developing effective
preservation strategies. The karez systems represent the most extensive
heritage features in the Turpan Basin. They display remarkably complex
distribution patterns compared to other heritage types. A single karez may
consist of dozens tohundredsof shaftswithmultiple branches, often covering
large geographical areas. Therefore, themapping results from this study have
proven invaluable, providing accurate location data that significantly
improves field survey efficiency and contributes to building amore complete
karez database. Although many karez have been abandoned due to various
factors including natural disasters, frequent collapses with highmaintenance
costs, and changes in settlement and grazingpatterns, they still hold immense
value, containing important cultural, historical, geological and ecological
information21,25,56,57. They alsoprovide insights into environmental changes in
surrounding regions. For example, some karez were abandoned during
constructionwhennowaterwas found,while otherswerediscontinuedwhen
they could no longer provide a reliable water supply. These types of karez

Fig. 13 | Example of the main procedure of screening. a Original detected shafts.
b Shafts after being screened by the directed buffer method. c Shafts after manual
screening. d Clustering by using the single-linkage hierarchical clustering method.

eClusters aftermanually adjusting. fGenerated karez lines according to clusters. The
different colors represent the different clusters.
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typically lack associated residential areas.Other karezwereused exclusively as
water sources for humans and livestock in grazing areas, where only sheep-
folds were constructed. Moreover, the spatial and temporal distribution of
karez offers valuable evidence for analyzing ancient settlement patterns. A
complete karez database enables informed decisions about which systems
should be preserved as cultural heritage and which can be abandoned. Such
databases also support the protection and reconstruction of hydraulic
infrastructure, helping to optimize water resource utilization and improve
water supply efficiency58. Finally, the comprehensive karez dataset has mul-
tiple practical applications in modern planning. Some abandoned karez
without historical significance have been repurposed, as observed in this
study’s survey, serving new functions like surface water diversion in some
areas or urban sewage drainage in others59. This demonstrates the continued
relevance and adaptability of these ancient systems.

Fig. 14 | Performance comparison of two screen-
ing methods for shaft-like object detection.
a Original satellite image of the shaft-like object.
bMMDetection confidence score. c Circular buffer
screening result. d Directed fan-shaped buffer
screening result.

Fig. 15 | Example of crossed karez lines. a Before detection. b After detection.

Table 5 | The evaluation metrics with different buffer angles at
a buffer distance of 115m

Angle P R F1 mAP50 mAP50-95 TP FP FN

10 0.803 0.864 0.833 0.824 0.818 1389 341 218

20 0.791 0.961 0.867 0.915 0.909 1544 409 63

25 0.781 0.974 0.867 0.924 0.918 1565 439 42

30 0.770 0.976 0.861 0.925 0.918 1569 469 38

35 0.761 0.977 0.856 0.923 0.917 1570 492 37

40 0.753 0.977 0.851 0.920 0.914 1570 514 37

50 0.744 0.977 0.845 0.919 0.913 1570 539 37

60 0.734 0.977 0.839 0.916 0.910 1570 568 37
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Remote sensing and deep learning methods have demonstrated con-
siderable potential in archeological prospecting. Despite the confusing
appearance of karez shafts in aerial images and their irregular distribution
characteristics, these methods, combined with screening and clustering
techniques, can effectivelymap karez shafts. Compared to other studies, the
approach of this study detected the karez shafts over a broader area and
generated more comprehensive karez lines. However, while this study has
identified the most extensive collection of karez shafts in the study area to
date, severalmethodological limitationswarrant careful consideration. First,
despite achieving unprecedented detection rates, certain shafts remain
challenging to identify through currentmethods. This is particularly true for
shafts that are partially collapsed, heavily vegetated, or located in complex
terrain, where RGB imagery alone proves insufficient for reliable detection.
The spectral limitations of visible light data often fail to capture subtle
surface anomalies characteristic of degraded shafts. The potential advan-
tages of multispectral imagery and LiDAR for karez detection should be
incorporated in future studies, although they were constrained by several
factors in this study. The different objects can be easily detected by different
spectral bands, such as vegetation60, water61, or soil composition62. For
example, the additional inclusion of NIR reflectance images enhances the
classification ability of models, particularly when the presence of vegetation
and biogenic materials63. However, the minimal spectral contrast between
karez shafts and surrounding arid landscapes limited the effectiveness of
multispectral data. Furthermore, by creating precise 3D models, LiDAR
data can be used to extract detailed information about heritages64. However,
available LiDAR datasets lacked sufficient resolution to reliably detect the
narrow shaft diameters characteristic of karez systems (shaft diameters of
1–2m). While high-resolution airborne LiDAR and multispectral data
could offer improvements for targeted investigations, their prohibitive costs
and limited coverage make them impractical for large-scale applications.
These constraints reinforce the rationale for prioritizing high-resolution
RGB imagery as the most viable option for regional-scale mapping of karez
systems, though future work could explore targeted fusion of these com-
plementary data sources in critical areas, such aswhere the karez shafts were
partially buried, obscured, or eroded.

The temporal constraints imposed by the fourth National Cultural
Heritage survey necessitated the use of ArcGIS Pro’s built-in deep learning
libraries, which, while effective, represent a conservative approach to model
implementation. These pre-packaged solutions lack the flexibility to incor-
porate emerging architectural innovations such as transformer-based
networks65 or hybrid convolutional-attention mechanisms66 that have
shown promise in similar tasks. As the field of deep learning evolves, future
work should explore cutting-edge frameworks like vision transformers or
diffusion models67, whichmay better capture the complex spatial patterns of
karez systems. This would particularly benefit the detection of partially

obscured shafts where traditional CNNs struggle. Furthermore, the training
data collection methodology of this study, though rigorous, could be
enhanced through more systematic approaches. Current training samples
werenecessarily limitedby theurgent survey timeline, potentially introducing
certain biases. A more robust future approach might employ random sam-
pling across different geomorphological units and preservation conditions.
The development of standardized methods for archeological feature labeling
in remote sensing data would significantly improve model generalizability.

The screeningmethodwhich introduced in this study,while advancing
automated processing, still requires manual intervention at multiple stages.
This is primarily due to the inherent irregularity in karez shaft spatial dis-
tributions, varying preservation states across different geological substrates,
and occasional false positives from modern linear features like pits along
roads or electric power poles. Subsequent research should focus on devel-
oping fully automated solutions, potentially through advanced spatial sta-
tistics for linear feature clustering and context-aware screening algorithms
that incorporate topographical features, historical settlement data, and
geological constraints. Integration with GIS-based hydrological modeling
tools68 may help distinguish true karez shafts from other linear features
based on their characteristic alignment with groundwater flow paths.
Additionally, the current approach does not fully leverage temporal data
that could provide crucial contextual information. Historical imagery ana-
lysis could help differentiate active from abandoned shafts based on tem-
poral persistence patterns, while multi-temporal InSAR data might reveal
subtle subsidence features associated with underground karez tunnels. The
incorporation of such temporal dimensions could significantly reduce false
positive rates.

Finally, while the methods in this study have proven effective in the
study area, their transferability to other regionswith different geological and
climatic conditions remains untested. Future work should validate the
approach across diverse arid region environments to develop truly robust,
generalizablemethods for this ancient groundwater infrastructuremapping.
This cross-regional validation would not only test methodological robust-
ness but could also yield comparative insights into different civilizations’
adaptations to arid environments. This, in turn, will contribute to a better
understanding, preservation, and sustainable management of these ancient
water systems, safeguarding their historical and cultural significance for
future generations.

Data availability
The training data and scripts will be made available on request.
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Table 7 | The evaluation metrics of the circular buffering method at a buffer distance of 57.5m

Distance P R F1 mAP50 mAP50-95 TP FP FN

57.5 0.754 0.977 0.851 0.920 0.914 1570 511 37

Table 6 | The evaluation metrics with different buffer distances at a buffer angle of 30°

Distance P R F1 mAP50 mAP50-95 TP FP FN

90 0.795 0.933 0.859 0.890 0.884 1500 386 107

100 0.786 0.966 0.867 0.918 0.912 1553 422 54

105 0.780 0.969 0.864 0.920 0.913 1557 439 50

110 0.775 0.975 0.864 0.924 0.918 1567 454 40

115 0.770 0.976 0.861 0.925 0.918 1569 469 38

120 0.764 0.977 0.857 0.924 0.918 1570 486 37

125 0.760 0.977 0.855 0.922 0.916 1570 497 37

135 0.750 0.978 0.849 0.920 0.914 1571 524 36
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