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Generative deep learning provides new approaches for natural image restoration and structural
reconstruction. However, virtually restoring Kizil cave murals remains difficult due to their unique
artistic style, complex damage, and the need to preserve semantic consistency. This study proposes a
multimodal controlled diffusion model that integrates textual and multi-dimensional visual features for
high-precision restoration. The model leverages latent space diffusion for high-quality image
generation and introduces structural constraints to improve semantic alignment and controllability. A
dynamic feature-adaptive GSC (DFA-GSC) module captures local and global features through multi-
scale convolution and an adaptive weight generator, enhancing texture perception. For damaged
regions, a conditional matching loss helps refine both texture and structure. Experimental results
demonstrate that compared to traditional CNNs and single diffusion models, the proposed method
achieves superior performance in both evaluation metrics and visual quality.

The murals of the Kizil Grottoes are not only invaluable treasures of Bud-
dhist art but also crucial evidence for the study of history, religion, and
cultural exchangel. The murals of the Kizil Caves, with their distinctive cave
forms and painting styles, reflect the eastward transmission of Buddhism
through the Western Regions and reveal the cultural interactions between
East and West as well as the trajectory of Sinicization. However, natural
erosion, climatic fluctuations, and human activities—such as large-scale
looting by foreign expeditions, shifts in local religious beliefs, and the
scraping of gold foil from mural surfaces—have led to varying degrees of
degradation, particularly in facial regions, posing serious challenges to
cultural heritage preservation.

In early mural restoration practices, the quality of restoration heavily
relied on the subjective judgment and artistic skill of individual restorers,
making it difficult to ensure scientific rigour and consistency. Moreover, the
traditional cultural heritage restoration sector faces issues such as an
imbalance between supply and demand, a shortage of skilled professionals,
and a high technical entry barrier. Consequently, museums worldwide are
increasingly adopting digital image restoration technologies for virtual
restoration, which has become a key area of research in cultural heritage
conservation™.

Traditional image restoration techniques mainly include diffusion-
based restoration methods and sample block matching-based restoration
methods. Diffusion-based techniques restore missing areas by propagating
pixel information from surrounding regions into the damaged zones using

predefined diffusion functions*. Chen Yong et al.” proposed an improved
curvature-driven diffusion algorithm tailored to the crack restoration of
Dunhuang murals, which optimises the diffusion term in the transitional
regions around crack edges, enhancing restoration fidelity.

Exemplar-based approaches leverage image redundancy by selecting
similar patches within the image to fill in the missing regions®"*. Repre-
sentative works include the block-matching method introduced by Crim-
inisi et al.’, the random sampling-based PatchMatch algorithm by Barnes
et al.", and the sparse representation-based enhancement strategies devel-
oped by Shen et al.”’, all of which have been widely adopted in the field of
cultural heritage restoration'*'. The main idea of these methods is to
complete the repair task by iteratively performing three steps: similarity
calculation of the sample blocks to be repaired, searching for the best
matching sample blocks and filling, which is more suitable for repairing
local damage areas such as small cracks, scratches and scribbles. However,
due to the lack of global context modelling capability, it is inadequate for
large-scale mural restoration tasks with complex structures and high
requirements for stylistic consistency.

The advent of deep learning provides new possibilities for image
restoration. Currently, deep learning-based restoration approaches can be
broadly categorised into non-guided and guided methods. Non-guided
restoration primarily relies on the inherent features of the damaged image
for reconstruction. For instance, Zeng et al.”” proposed a pyramid context
encoder that restores image content via hierarchical transfer of deep and
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shallow features. Li et al."’ introduced a visual structure reconstruction
network that integrates reconstruction layers into the encoder-decoder
framework to enhance structural fidelity. Suvorov et al.”” expanded the
receptive field using fast Fourier convolution to capture periodic structural
patterns, but lacked the boundary semantic constraints. Zheng et al.'®
developed a two-stage restoration pipeline that first generates coarse results,
followed by a refinement stage, offering improved performance in localised
reconstruction. While effective to some extent, these methods are limited by
their exclusive reliance on pixel-level information, often resulting in
inconsistent semantics in the restored regions.

In contrast, guided restoration methods incorporate prior knowledge
—such as structural edges, semantic cues, or external reference images—to
inform the inpainting process. Nazeri et al.” proposed the EdgeConnect
framework, which first reconstructs edge maps to guide content restoration.
Zhao et al.”’ introduced the concept of cross-image guided restoration, and
proposed the use of image chunks to guide the restoration of target images.
Zhang et al.”' utilised text semantics in their TDANet model to enhance
semantic fidelity, though with limited capacity to recover fine details. Guo
et al.”” addressed distortions arising from inadequate interaction between
texture and structure, proposing a texture—structure coupling network that
employs a bidirectionally gated feature fusion module and a contextual
aggregation mechanism to optimise detail consistency. Wan et al.** pro-
posed a two-stage CNN-transformer hybrid model that first reconstructs
global structure via a Transformer and then refines textures through con-
volutional upsampling.

Compared to natural images, cultural heritage mural images exhibit
unique characteristics such as complex scenes, blurred textures, and diverse
artistic styles. Deep learning-based mural restoration methods have shown
promising results. For example, Xu and Fu™ effectively restored the colours
of ancient murals using a DenseNet-based algorithm. Peng et al.” proposed
a content-constrained convolutional neural network with multi-scale fea-
ture extraction to restore murals, although this method mainly targets small-
scale breakage. Yang et al.” introduced the 3M-Hybrid restoration model to
address challenges such as data scarcity and large-scale breaks. Wang et al.”’
developed a novel dual-aggregated GAN architecture, combining multi-
scale feature fusion with a polarised self-attention mechanism, achieving
high-quality restoration of high-resolution mural images. However, most of
these methods do not adequately account for spatial structure, making it
difficult to produce satisfactory results when restoring mural images with
large-scale breaks in facial regions.

Recently, diffusion models have gained increasing attention in the field
of image generation, and some studies have explored their application in
image restoration. Wang et al.”® conducted a comprehensive review of dif-
fusion models in the field of image editing, providing a theoretical foun-
dation for understanding their potential advantages in image restoration
tasks. Lugmayr et al.”” used a pre-trained unconditional denoising diffusion
probabilistic model (DDPM) as a generative prior, enabling conditional
sampling without modifying the original network architecture. Meng et al.*
proposed SDEdit, which significantly enhanced restoration quality by
optimising the sampling process. Wang et al.”' developed DDNM, refining
the zero-space content during the inversion process to reduce semantic
errors. Xia et al.*” introduced DiffIR, which integrates an IR prior extraction
network with a dynamic transformer, achieving efficient restoration
through a two-stage training strategy. Zhang et al.” proposed M2S,
employing a coarse-to-fine sampling strategy to greatly improve restoration
efficiency. Saharia et al.* developed the Palette method, which performs
exceptionally well across multiple restoration tasks, including image repair
and super-resolution. Huang et al.”® introduced wavelet transforms into
diffusion models, constructing multi-scale frequency representations to
enhance local sensitivity and improve the model’s performance in detail
reconstruction and texture preservation. Furthermore, Huang et al.*® pro-
posed a dual-schedule inversion mechanism that enables high-quality image
editing without the need for additional training or fine-tuning.

Despite these advancements, the direct application of existing models
—primarily trained on natural images—to mural restoration remains

challenging. This is largely due to substantial differences in data distribu-

tions, structural complexity, and semantic content between natural images

and cultural heritage artefacts such as the murals of the Kizil Caves. These
challenges can be summarised as follows:

(1) Restoration must address pixel-level detail while preserving the murals’
distinctive artistic style, colour hierarchy, and painting techniques to
maintain historical authenticity.

(2) Asillustrated in Fig. 1, damage in murals often follows irregular pat-
terns, unlike the structured gaps in natural images, making it difficult to
infer missing content from surrounding regions.

(3) Conventional U-Net-based architectures use fixed convolutional
kernels, limiting their adaptability to the diverse features of mural
images and restricting the joint modelling of multi-scale information.

(4) Deep learning approaches require large, high-quality datasets, yet there
is currently no publicly available dataset of Kizil cave murals, nor
paired ‘damaged-complete’ samples, thereby increasing the difficulty
of virtual restoration.

To address these limitations, this study proposes a mural restoration
framework based on a multimodally controlled diffusion model, tailored
specifically for the restoration of highly stylised and intricately damaged
Kizil Cave murals. The key contributions of this work are as follows:

(1) Proposing a FEDR restoration network to match suitable reference
images with structural and texture similarity, and to enhance the
consistency and style adaptation ability of local restoration by a double
bootstrapping mechanism. The DFA-GSC module is employed to
capture both global and local mural features using adaptive multi-scale
convolution, thereby improving the modelling of complex textures.

(2) Designing a feature extraction algorithm that integrates structural,
textural and frequency information to make up for the inadequacy of a
single edge detector for detail extraction, and improve the ability of
acquiring structural and textural information of the face region.

(3) A dedicated dataset for Kizil Cave mural restoration is constructed,
addressing the lack of publicly available training resources.

(4) Introducing conditional matching loss to mitigate the potential error
caused by the mismatch between the generated results and the control
conditions, and optimising the training process.

Methods

This section focuses on the training and testing datasets used in this study, as
well as the research approach and methods.

Dataset construction

To support research on the digital restoration of the Kizil Grottoes murals,
this paper constructs a multi-source mural image dataset that includes
original mural images, segmented damage masks, and multi-dimensional
feature fusion images. The goal is to enhance model performance in style
representation and structural reconstruction. The dataset creation process is
divided into several stages, from data collection to organisation, with each
step carefully designed to ensure high quality and practical usability. A
detailed overview of the steps is provided below.

The dataset comprises 10,277 original mural images, which were col-
lected through field photography by our laboratory researchers and pro-
vided in part by the Kizil Grottoes Research Institute of the Xinjiang Uygur
Autonomous Region. All images underwent data cleaning, which involved
identifying and removing duplicate or highly similar images, resizing them,
and cropping irrelevant regions to focus on the core content of the Kizil
murals. In the integrity screening phase, we evaluated three key aspects:
colour preservation, shape contour integrity, and clarity of semantic con-
tent. We selected mural areas that were relatively complete both visually and
semantically to improve the overall quality and utility of the dataset, as
illustrated in Fig. 2, which depicts the data construction pipeline of the Kizil
mural dataset.

This study also defines “breaks” in the murals with clear criteria,
including human-caused surface scraping, large-scale pigment peeling,
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Fig. 1 | Damage patterns in mural and natural images. a Kizil Cave murals, showing complex textures and irregular, continuous damage. b Dunhuang murals, exhibiting
similar complex and irregular damage patterns. ¢ Natural images, with more regular and often discontinuous damaged regions.

cracks, discolouration, and fractures consistent with the natural ageing
process of cultural heritage artefacts. This definition is based on a com-
prehensive analysis of the diverse and complex break patterns found in the
Kizil murals. For areas with severe breaks and significant loss of structural
information, we manually annotated representative missing regions with
high precision. These annotations are shown in the mask dataset in Fig. 2.
Given the irregularity and complexity of mural breakage, the annotation
process included multiple rounds of iterative review to identify and correct
omissions or errors. Each review cycle aimed to improve the accuracy and
completeness of the annotations. After thorough quality control, the fina-
lised mask data was exported in PNG format to form the segmented mural
break dataset. These manually annotated break regions simulate real-world
damage, allowing for the construction of paired “broken-intact” images to
support supervised learning tasks in mural restoration.

Additionally, this paper generates multi-dimensional feature fusion
images that correspond one-to-one with the original mural images, as
shown in the multi-dimensional feature fusion dataset in Fig. 2. These
images provide additional structural and stylistic guidance during image
generation. Generated using the fusion algorithm detailed in Table 1, the
fused features are designed to improve the model’s capacity for multi-scale
semantic representation and fine-grained detail reconstruction, thereby
providing more precise guidance for the restoration of complex mural
content.

FEDR overall network architecture

To address the significant domain gap between natural images and mural
paintings in terms of colour distribution, texture patterns, and structural
organisation, we propose a dual-guidance network, FEDR, tailored for the
restoration of Kizil Grotto murals, as illustrated in Fig. 3. FEDR is trained on
a diverse collection of mural image data and incorporates multi-modal
conditions to embed both structural and semantic priors. This design helps
to alleviate the adverse effects caused by cross-domain feature distribution
discrepancies, thereby improving the model’s adaptability and generation
quality in mural-specific restoration tasks.

The architecture of the network is composed of several key compo-
nents, including a text-conditional encoder”, a multi-feature fusion module,
a structural guidance branch™, and a variational autoencoder (VAE)”.
These components work together to enable dual-guided restoration mod-
elling, particularly targeting the facial regions of the Kizil Grottoes murals.

The framework takes as input I, .4 € R"*"** mural images com-
bined with their corresponding binary masks, effectively integrating the
original mural appearance with explicit structural and damage information.
This fusion embeds spatial cues directly into the input, enabling the model to
distinguish between intact and damaged regions from the very beginning. A
VAE encoder is then employed to extract latent image features z, from this
fused representation, capturing both visual texture and structural cues
necessary for accurate restoration. The mask regions explicitly highlight
areas that require reconstruction, thereby sharpening the network’s focus
and guiding the generation process toward selectively restoring only the
damaged portions of the mural. At the same time, text prompts Prompt €
R? describing the mural’s semantic content—such as facial features and
stylistic cues—are processed by a text encoder, which converts them into
semantic embedding vectors T,;,. These embeddings guide the generation
process toward semantically coherent and contextually appropriate
reconstructions.

The aforementioned mural control images and textual information are
jointly fed into the main U-Net architecture, which performs guided
denoising and generation through multiple Cross-Attention modules. To
enhance the network’s capability in detail restoration, a structurally asym-
metric submodule stacking strategy is adopted within the U-Net. Both the
encoder and decoder are divided into three processing stages: in each
encoder stage, two CrossAttnDownBlock modules are stacked to progres-
sively extract contextual features; in contrast, each decoder stage stacks three
CrossAttnUpBlock modules to strengthen the generative modelling capa-
city along the upsampling path.

Inspired by the design philosophy of ControlNet”, FEDR further
incorporates a structural control path into the U-Net framework. Lever-
aging weight sharing, this path integrates structural prompt images I,

control
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Fig. 2 | Diagram illustrating the dataset construction process.

generated by multiple feature fusion modules—to guide the restoration
process in preserving key structural elements of the mural. Specifically, the
structurally guided features are first spatially aligned using Zero Convolu-
tion, and then injected into the backbone network through each Cross-
Attention module, thereby imposing structural constraints throughout the
generation process. The computation within the Cross-Attention module is
defined as follows:

Attention(Q, K, V) = softmax (QKT> \% (1)
b 7 \/d—k

Among these, Q, K, and V, represent the query, key, and value
matrices, respectively, and dy denotes the dimensionality of the key.
To accommodate the distinct information sources for semantic and
structural guidance, we designed a differentiated attention input
strategy within the dual-path architecture. In the main U-Net path,
the query is derived from the features of the masked mural image,
while the key and value matrices are composed of semantic embed-
dings, enabling semantic-level guidance. In the structural control
path, the query is shared with the main path, whereas the key and
value matrices are generated from the control image features, pro-
viding fine-grained structural constraints. Finally, in the MidBlock
layer, semantic and structural guidance signals are unified and fused,
allowing the generative trajectory in latent space to be iteratively

optimised—thus achieving both semantic consistency and structural
coherence in mural image restoration and reconstruction.

Compared to natural images, mural images from the Kizil Grottoes
exhibit greater complexity and diversity in semantic structure, textural
details, and damage patterns, thereby posing more stringent demands on
the feature modelling capacity of restoration networks. Although the
graph structure convolution (GSC) module commonly used in diffusion
models offers a concise architectural design, its fixed receptive field and
static channel response mechanism limit its ability to capture multi-scale
semantic structures, particularly in the context of highly degraded mural
images.

To address the limited region-specific feature extraction capacity of
standard U-Net architectures when applied to Kizil mural restoration, we
propose an enhanced GSC variant, termed dynamic feature-adaptive
improved gated spatial convolution (DFA-GSC) module®. This module is
designed to improve the model’s capability to represent large-scale con-
textual information and to guide the network toward more effective
attention to semantically critical regions.

As illustrated in Fig. 4, the DFA-GSC module comprises two main
components: a multi-scale convolutional branch and an adaptive con-
volutional weight generator. Input features are processed through three
parallel convolutional branches to capture hierarchical spatial information:

A 1x1 convolution branch captures inter-channel dependencies;

A 3x3 convolution branch focuses on local feature extraction;

A 5x5 convolution branch captures broader contextual features via a
larger receptive field.
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Table 1 | The process of multi-feature fusion

Algorithm: multi-feature fusion for Kizil caves murals

Require:

Input image tensorX, low threshold 7, high_threshold Thighs Kernel size k, Gaussian Sigmao, hysteresis flag h, small constant 6.

Ensure:

Fused feature map F; detected edges E.

1: Convert to grayscale

Xgray = rgb_to_grayscale(X)

gray

2: Apply Gaussian Blur

3: Compute spatial gradients

4: Calculate gradient magnitude and angle

M=,/G2+ G}Z, +e
A = atan2(G, G,) x 180
A =round(A/45) x 45

5: Non-maximum suppression (NMS)

6: Extract Gabor features

22,2 ,
F gabor = exp(J‘iijy ) cos(2m¥ + y)

7: Extract HOG features

Frog = VI = [2,2]

8: Extract LBP features

1x>0

P=1
= i —i)-2P -
Fiop —pgos(/p i) - 2° where s(x) = { D

9: Fuse features with weighted sum

F = 0.1 %F ggpor + 0.1 X Foq +0.25 X Fip +0.55 X My

10: Detect edges with thresholding

11: Return F, E.
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Fig. 3 | FEDR network framework for dual-guided mural restoration.
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Fig. 4 | DFA-GSC module.

F,, € ROTCICIHW “Thig s followed by Global Average Pooling
(GAP) and Global Max Pooling(GMP)"' to generate two global descriptors
Foaps Fomp € IRE. The pooled descriptors are then passed through two
shared fully connected layers to reduce the channel dimension C to C/r
(where r is the reduction ratio), and then restored back to C to produce the

dynamic convolutional weights:

Wdynamic = G(FCZ(SILU(Fcl (Fgap + Fgmp)))) (2)
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Table 2 | Numerical characteristics of facial features in varying regional and temporal styles

Different regional styles Gabor features LBP features HOG features
Early Kizil murals 0.971 1.00 1.00
Mural paintings from the Dunhuang Middle Period 0.540 0.074 0.499
Han dynasty tomb mural paintings 0.318 0.504 0.221
Tang dynasty tomb mural paintings 0.294 0.331 0.175
Yuan dynasty temple and monastery murals 0.464 0.000 0.000
Fig. 5 | Circular consistency diagram. | P Conditional Consistency <€ |
Condition P, Generated Image 1, Output P
I I = & 4
3 Controllable i \ Mgltl-featLlre
| Diffusions | > i fusion module
Prompt

Layer

Preprocessing

Bottleneck
Layer

E

Cross-attention
mechanisms

Finally, these adaptive weights are applied to reweight and fuse the

multi-scale feature map, yielding the enhanced output:

Ffused = Wdynamic ® Fms (3)

where ® denotes channel-wise multiplication and ¢ is the sigmoid
activation function.

To address the challenge of restoring missing facial regions in the
murals of the Kizil Caves, this paper proposes a restoration guidance
approach based on multi-dimensional feature fusion. Specifically, the multi-
dimensional feature fusion module (as illustrated in Fig. 3) is employed to
implement the style-guided feature extraction described in this section. The
core objective is to construct a multi-dimensional fused feature map that
balances stylistic distinctiveness and structural stability, providing prior
style guidance for subsequent restoration processes.

First, considering that the Kizil Grottoes murals exhibit distinct
regional stylistic characteristics, this study systematically extracts and nor-
malises mural figure images from various regional styles across multiple
feature dimensions. As shown in Table 2, the analysis results indicate that
the Kizil murals demonstrate stylistic separability within the following
feature spaces.

To enhance structural control during the restoration process, we fur-
ther introduce a multi-dimensional feature fusion algorithm that integrates
Gabor, HOG, LBP, and Canny descriptors through a weighted combination.
This fusion provides a more comprehensive representation of facial con-
tours and fine-grained texture details. Feature normalisation is applied to
improve both the expressiveness and stability of the representation. The
resulting fused map is embedded as a conditional input into the dual-guided
generative network, serving as an auxiliary structural prior to guide the
reconstruction of missing mural regions. This approach is particularly
effective in cases of extensive damage or severe semantic degradation, where
textual prompts alone are insufficient. By compensating for the lack of
reliable structural cues, the fused feature prior plays a crucial role in
enhancing restoration quality in complex or degraded areas.

To enhance the control capabilities and consistency of the generated
results of multimodal diffusion models, we propose a recurrent consistency
training strategy that enables the model to generate images that are

structurally faithful and semantically reasonable under the joint guidance of
text prompts and visual control conditions. This mechanism establishes a
bidirectional mapping between the input multi-dimensional feature fusion
conditions and the generated mural images, ensuring that the generated
results are faithful to the input conditions in both structural and semantic
aspects, thereby significantly improving the controllability and consistency
of the generated mural images.

Specifically, first, the optimal Kizil mural reference image fusion fea-
tures are given as input control conditionsP;. Combined with text
promptsP,, mural images I, are generated through a controllable diffusion
model. Subsequently, a multi-feature fusion model is used to re-extract
multi-feature fusion conditions P, from the generated mural imagesI,,, and
these are matched with the input conditionsP; to minimise conditional loss,
thereby achieving a cyclic consistency constraint, as shown in Fig. 5. Ideally,
condition P, & P, should be satisfied, meaning that the mapping process
from conditions to generated images and back to conditions remains con-
sistent, thereby ensuring that the input conditions effectively guide the
generation process.

To implement the above mechanism, the pre-processing module first
extracts features from the input multi-dimensional feature fusion control
image through two 3 x 3 convolution layers and ReLU activation functions.
Then, it stabilises the feature representation at the beginning of model
training through zero convolution layers and maps it to a spatial feature
map:

J pre = ZeroConv(ReLU(Conv(P)))) 4)

Subsequently, the encoder component extracts high-level visual fea-
tures through convolution. The cross-attention mechanism combines text
prompt features with visual features, using an attention weight distribution
mechanism to map text embeddings as Key and Value, with control diagram
features as Query, thereby achieving deep integration of multi-modal
semantic information. After feature compression and decoder upsampling,
and deconvolution operations, the final target mural image I, is generated.

During training, a condition-matching loss based on multi-feature
fusion was designed, combined with a time step weighting mechanism to
dynamically adjust the weight distribution between the noisy early stages
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Fig. 6 | Restoration results of different algorithms on simulated broken mural paintings. Columns show: (a) Input damaged murals, (b) ground truth, (c) Repaint [28], (d)
CTSDG [22], (e) ICT [23], (f) SD [40], (g) BrushNet [45], (h) MuralNet [46], and (i) Our method.

and the clear later stages of the image, in order to avoid noise interference
and enhance the generation of high-quality images. The condition matching
loss™ is defined as:

1
Leongiton = Y M || EG(P,, P)) — P13 )

[=lpye

Where

E(-) denotes the multi-dimensional feature fusion extraction function,
which is applied to both the generated mural image and the reference
control image to map them into the semantic feature space for consistency
comparison;

G(-) denotes the diffusion model;

A, is the weight coefficient of timestep t, dynamically adjusted to reflect
its relative importance: smaller weights are assigned at early timesteps
(larger t) when noise is dominant, and larger weights at later timesteps
(smaller t) when the image becomes clearer;

tyre i @ predefined threshold indicating the timestep at which the
reward mechanism becomes active, typically set at a smaller value to sup-
press noise interference in the early stages of generation.

Loss function

To optimise the visual quality, artistic style, and semantic consistency of the
generated murals, this study integrates latent space denoising loss”, the
conditional matching loss”, and the stylistic loss"** into a unified total loss
function for the controlled generation network. The specific components
are described as follows.

Latent space denoising loss is derived from the fundamental
mechanism of the diffusion model, which progressively adds noise to the
original mural x,, and trains the network to reconstruct the image from this
degraded representation. The objective is to preserve the structural and
textural information of the image in the latent space:

1
Ldenoise =FE E(SNR(t - 1) - SNR(t)) ” Xo — x@(‘xtxo + 04€, t)”Z

(©)

q(x;1%,)

X is the denoised mural output predicted by the model;

a, and o, are time-dependent scaling parameters;

€ ~ N(0,1) is the random noise sampled from a standard normal
distribution;

SNR(#) = % the signal-to-noise ratio at timestep ttt, reflecting the
reconstruction difficulty.

To preserve the distinctive colour palette and line aesthetics of the Kizil
cave murals, a style loss is adopted to measure the similarity in stylistic
features between the generated and reference images, using Gram matrices
computed from intermediate layers of a pre-trained visual network:

L
Lyge = YA | G(g(D) — GG, )II} @)
=1

G(¢,(-)) is the Gram matrix computed from the I-th layer of the feature
extractor;

II - Il is the Frobenius norm;

A, is the style weight for layer I

Finally, the total loss function is defined as a weighted combination of
the individual loss terms:

Ltotal = aLdenoise + nLcondition + (Lstyle (8)

8=04,4n=1,0=025 ©)

Where 8, 1, and { are the weighting coefficients that balance image quality,
semantic consistency, and artistic style preservation during the restoration
process.

Results

Experimental configuration

This experiment was conducted using PyTorch 2.4.0 and Python 3.11 fra-
meworks, with training performed on four NVIDIA GeForce RTX
3090 GPUs.

Experimental comparison and analysis

To evaluate the effectiveness of the proposed method, we conducted com-
parative experiments against several typical image restoration models.
These include Repaint, a representative diffusion-based model*’; CTSDG,
which utilises a CNN-based framework for the separation of texture and
structural information™; ICT, a two-stage restoration method integrating
Transformer and CNN architectures”; and SD1.5, a text-guided image
restoration method®’, A dual-branch diffusion image restoration algorithm
Brushnet® based on structure-texture decoupling modelling capabilities,
and a mural restoration strategy Muralnet” based on line drawing-guided
structure reconstruction and colour correction. To ensure a fair and rig-
orous evaluation of MuralNet’s performance in mural restoration tasks, we
standardised the structural prior sketches it relies on. Specifically, we
adopted a hybrid strategy combining Sobel edge detection with manual
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Table 3 | Comparison of restoration result indicators of different methods to simulate damaged murals

EvaluationMetrics PSNR/dB SSIM

M, -1 M, -2 M, -3 Mean M -1 M, -2 M, -3 Mean
Repaint 24.31 29.75 28.36 27.47 0.3765 0.5341 0.4871 0.4659
CTSDG 28.56 26.90 27.70 27.72 0.9674 0.3939 0.5250 0.6288
ICT 24.28 29.64 28.46 27.46 0.3730 0.5294 0.5198 0.4741
SD1.5 29.35 30.37 27.61 29.11 0.8312 0.7405 0.4681 0.6799
BrushNet 27.83 28.95 29.65 28.81 0.8477 0.3761 0.3485 0.5241
MuralNet 28.92 25.46 26.78 27.05 0.9701 0.3630 0.6219 0.6517
Ours 33.51 31.51 29.41 31.48 0.9521 0.7613 0.7106 0.8080

Bold text indicates the best sample results based on the evaluation metrics.

(a)Input (b)Fused () Repaint  (d)CTSDG
features

(©)ICT

S

Fy

(h)MuralNet

(HSD (g) Brushnet

(i)Ours

Fig. 7 | Restoration results of different algorithms on the real scene of broken mural paintings. Columns show: (a) Input damaged murals, (b) Fused features, (c) Repaint
[28], (d) CTSDG [22], (e) ICT [23], (f) SD [40], (g) BrushNet [45], (h) MuralNet [46], and (i) Our method.

refinement. Initial edge maps were generated using the Sobel operator,
followed by semantically informed manual tracing to produce clean,
coherent structural line drawings. This process yielded input structure maps
that are both visually complete and semantically consistent. It is important
to note that edge detection algorithms often introduce structural noise or
fragmented contours in damaged regions of mural images. Such artefacts
can significantly impair the effectiveness of structure-guided restoration
methods, particularly in areas like facial features, where restoration accuracy
heavily depends on reliable priors. To minimise these confounding factors
and maintain experimental consistency, all evaluations of MuralNet were
conducted using manually refined structural sketches, thereby ensuring
robust and noise-free guidance during the restoration process.

The effectiveness of the proposed model in mural restoration is eval-
uated through experiments on murals with simulated damage. To account
for the irregular and continuous nature of real-world artefact degradation,
masks representing facial damage ranging from 5% to 20% were designed,
denoted as M-1-3. For MuralNet, which requires structural priors in the
form of line drawings, we employed the ground-truth line drawings cor-
responding to the original mural images as input priors in this setting. As
shown in Fig. 6, for smaller-scale mask restoration tasks, most methods are
able to generate results that are nearly complete; however, issues arise in
smoother regions, where the restored details often lack precision. In con-
trast, for larger-scale mask restoration, noticeable differences between
methods emerge, with some methods struggling to maintain the consistency
and structural integrity of the image content.

The restoration indices for different methods are shown in Table 3.
While the PSNR" values for BrushNet and MuralNet in M -3 samples, as

well as the SSIM*® values for M, -1 samples, are slightly higher than those of
the proposed method, the overall mean values demonstrate the superiority
of the proposed method in both PSNR and SSIM indices. Specifically,
compared to the six methods of Repaint, CTSDG, ICT, SD, Brushnet, and
Muralnet, the average PSNR scores improved by 14.60 percentage points,
13.56 percentage points, 14.64 percentage points, 8.14 percentage points,
9.27 percentage points, and 16.38 percentage points, respectively; the
average SSIM scores improved by 73.43 percentage points, 28.50 percentage
points, 70.43 percentage points, 18.84 percentage points, 54.17 percentage
points, and 23.98 percentage points, respectively.

To further evaluate the practical effectiveness of the proposed method,
we selected three representative figures from the Nirvana painting in Cave
38 of the Kizil Caves, whose facial area has been severely damaged due to
religious conflict and human destruction. Figure 7 presents a comparative
analysis of the restoration results under different facial mask conditions
M,-1-3 with varying occlusion ratios ranging from 5% to 20%, using dif-
ferent methods. As observed in Fig. 7¢, d, the outputs of CTSDG and
Repaint are relatively smooth but exhibit a lack of contextual semantic
coherence. In Fig. 7e, the ICT method is able to reconstruct the facial
structure, yet presents texture repetition, which affects the viewing experi-
ence to some extent. Figure 7f demonstrates the results of the method based
on textual cues for image restoration, which provides better semantic gui-
dance, but still has limitations in detail control. Figure 7g reveals semantic
inconsistencies in the generated mural content, including stylistic deviations
and misalignment in facial features, which further impact the visual
authenticity of the restoration. As shown in Fig. 7h, the model exhibits
noticeable blurring and pixel diffusion, which compromises the clarity and
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Fig. 8 | Comparison of LPIPS values for different masks. a LPIPS values of different methods under Mk-1 masks. b LPIPS values of different methods under Mk-2 masks.
¢ LPIPS values of different methods under Mk-3 masks. d Average LPIPS values of different methods across all three mask types.

structural integrity of the restored region. In contrast, the method proposed
in this study leverages dual conditioning—textual prompts and multi-
dimensional mural feature fusion—to enable structural and semantic con-
trol. As a result, the restored images better align with the stylistic char-
acteristics of Kizil cave murals.

Furthermore, we observed that models trained solely with conven-
tional loss functions such as PSNR and SSIM, despite achieving high scores
on these metrics, do not always produce visually optimal results. This
limitation arises because the computational mechanisms of these metrics
often mirror the constraints used in training, thus biasing the models toward
numerical optimisation while overlooking the subtleties of human visual
perception. In cultural heritage image restoration, such models may yield
high-scoring results that still suffer from minor blurring in detailed areas—
insufficient to meet the standards of human visual assessment.

To address this gap, we introduce LPIPS (learned perceptual image
patch similarity)*’ as an auxiliary evaluation metric. LPIPS better captures
perceptual differences by emulating human visual system characteristics,
offering a more perceptually aligned assessment compared to PSNR and
SSIM. The integration of LPIPS into our evaluation protocol aims to
enhance the visual quality of the generated results—not only ensuring high
scores on traditional metrics, but also satisfying perceptual demands for
detail fidelity and overall realism.

As shown in Fig. 8, the LPIPS scores of the proposed method are
reduced by 47.48%, 59.96%, 48.50%, 18.35%, 69.99%, and 54.09% compared

to Repaint, CTSDG, ICT, SD, Brushnet, and Muralnet, respectively. In
summary, the proposed method demonstrates superior performance across
all three evaluation criteria—PSNR, SSIM, and LPIPS—confirming its
effectiveness in both structural reconstruction and semantic coherence.

Ablation experiment

To comprehensively validate the effectiveness of each key component in the
FEDR framework, we conducted five ablation experiments targeting the
structural guidance path, the matching loss, and the multi-scale perception
module, DFA-GSC.

As illustrated in Fig. 9, removing the structural guidance path (w/o
Structural Guidance Path) leads to a significant decline in spatial localisation
and semantic constraint capabilities for the damaged regions, resulting in
distorted facial contours and blurred structures. This guidance path
leverages a multi-dimensional fused structure prior and facilitates cross-
layer information flow in the backbone network, substantially enhancing
the model’s ability to understand and reconstruct complex mural structures.
When the matching loss is excluded (w/o Matching Loss), the overall
structural layout is roughly maintained, but the generated regions exhibit
stylistic inconsistencies and insufficient contextual blending. This indicates
that the matching loss plays a vital role in enforcing semantic alignment
between generated content and its surrounding context, thereby improving
the overall restoration fidelity. We further compared the DFA-GSC module
with two alternative structures—namely, the traditional GSC (w/GSC) and
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(a)Original
Mural

(b)w/o Structural
Guidance Path

(¢) w/ GSC
(Replace DFA-GSC)

Fig. 9 | The impact of the proposed method on mural restoration quality.
a Original mural image. b Restoration without the Structural Guidance Path (w/o
Structural Guidance Path). ¢ Restoration with DFA-GSC replaced by the traditional

(d)w/ Swin-Tiny Block

(e)w/o
Matching Loss

Ours(Full
(Replace DFA-GSC) (BOurs(Full)

graph structure module GSC (w/ GSC). d Restoration with DFA-GSC replaced by
Swin-Tiny Block (w/ Swin-Tiny Block). e Restoration without the Matching Loss (w/
o Matching Loss). f Restoration using the proposed method.

Table 4 | Ablation study comparison

w/o Structural guidance path w/ GSC (replace DFA-GSC) w/ Swin-tiny block (replace DFA-GSC) w/o Matching loss Ours (full)
PSNR? 30.22 31.07 30.79 31.61 32.78
SSIM? 0.7259 0.8326 0.7763 0.8561 0.8736
LPIPS| 0.0881 0.0786 0.0803 0.0583 0.0528

the Swin Transformer Tiny Block (w/Swin-Tiny Block). Although both
alternatives possess some modelling capacity, neither effectively captures the
directional structural information that is prevalent in murals. As a result, the
restored regions suffer from blurred details and unnatural transitions along
semantic boundaries. In contrast, the proposed DFA-GSC module models
cross-regional, direction-aware structural dependencies, leading to
improved fine-grained restoration and spatial coherence.

Quantitatively, as shown in Table 4, the full model achieves superior
results across all metrics: PSNR (32.781), SSIM (0.8736%1), and LPIPS
(0.0528)), clearly outperforming the comparative baselines. Visual com-
parisons further corroborate the synergistic contributions of each compo-
nent in enhancing both structural restoration and texture fidelity under real-
world degradation scenarios. These ablation studies confirm that the full
model consistently preserves structural continuity and semantic consistency
during generation, underscoring the effectiveness and necessity of the
proposed method for mural restoration tasks.

Discussion
Due to their long history, natural erosion, and human-induced damage, the
murals of the Kizil caves suffer from serious damage problems, posing
challenges to restoration efforts. Traditional restoration methods often
struggle to strike a balance between subjectivity and objectivity, thereby
limiting their effectiveness in restoration.

In this study, we propose a diffusion-based restoration model frame-
work guided by dual conditional control, incorporating both multi-feature
fusion of image information and textual semantics. By assigning appropriate

weights to stylistic and structural features extracted from the mural images,
the model demonstrates improved capacity to recover structure and texture
information during the restoration process. This contributes to enhanced
consistency in the generated content, particularly in terms of texture and
stylistic fidelity. To ensure semantic alignment between the input conditions
and the restored output, a conditional matching loss is introduced. Addi-
tionally, the network’s adaptability to complex mural features is enhanced
through an improved DFA-GSC module, which strengthens the network’s
representational capacity.

Experimental results demonstrate that the proposed method outper-
forms baseline approaches in standard evaluation metrics such as PSNR,
SSIM, and LPIPS, with advantages in preserving semantic consistency and
detail restoration.

However, some limitations remain. The model’s ability to reconstruct
details is still constrained by the diversity and completeness of training data.
Furthermore, in certain experimental cases, high quantitative evaluation
scores are not always aligned with satisfactory visual perception. Within the
context of cultural heritage restoration, there is a pressing need for domain-
specific assessment metrics that more accurately reflect perceptual quality
and visual coherence.

Overall, the method proposed in this paper offers an effective solution
for the restoration of murals with complex textures and degraded details.
Future work will focus on incorporating richer historical and cultural
context into the restoration framework, through knowledge graphs and
culturally guided priors, to further enhance the accuracy, interpretability,
and cultural fidelity of mural restoration processes.
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Data availability

All mural images used in this study were provided by the Kizil Grottoes
Research Institute of the Xinjiang Uygur Autonomous Region. In accor-
dance with the cooperation agreement between the parties, the dataset is
restricted to academic research within the scope of this project. The images
contain unpublished cultural relic details and sensitive mural areas. Due to
cultural heritage preservation considerations and information security
regulations, the data is not publicly available at this time.

Code availability
Due to institutional regulations and the sensitive nature of the project, the
code cannot be shared publicly at this time.
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