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on the structure aware diffusion model
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The unearthed oracle bone fragments containing inscriptions often suffer from vagueness, absence,
damage, etc., which significantly obstructs the interpretation of oracle bone inscriptions.While GANs
havebeenapplied to theoracle bone inscriptions restoration (OBIR), their performanceoftendegrades
in intricate regions due to instability during training (e.g. model collapse).Thus, we propose a new
Structure Aware Diffusion Model (SADM) for the OBIR task, which aims to generate more accurate
inscriptions. Specifically, we first introduce a progressive Gaussian mask to simulate damage on
character rubbings. Subsequently, we propose an Oracle Bone Sampling algorithm (OBS) to
progressively recover the oracle bone inscriptions. Then,wedevelop an adaptive dynamic adjustment
mechanism to perceive the hierarchical structure of the reconstructed image. Finally, experiments on
several public datasets prove the method’s effectiveness. Our method achieves 41.3% lower FID on
OBC306 (64 × 64) compared to the Cold Diffusion model.

Oracle bone inscriptions, which reflect the social phenomenon in the Shang
Dynasty, are the earliest known mature writing system in China, inscribed
on turtle shells and animal bones primarily for divination and record
keeping. It has a history ofmore than 3000 years. It is not only an important
heritage of Chinese civilization but also a precious material for studying the
ancient social culture of the world. Most oracle bones have been buried
underground for thousands of years and are easily broken by soil erosion
and weathering1. According to statistics, there are currently about 160,000
pieces of oracle bone script, including about 4500 different oracle bone
inscriptions.More than 1600 inscriptions have been deciphered (about one-
third), and two-thirds are still unsolved mysteries2. The fragmented nature
of the oracle bones, which has resulted in incomplete textual data due to
physical deterioration, poses significant challenges to scholars in deci-
phering their inscriptions. Consequently, developing systematic meth-
odologies for the reconstruction of damaged or missing oracle bone
inscription fragments has emerged as a critical area of interdisciplinary
research that spans paleography, archaeological conservation, and cultural
heritage restoration studies.

The current restoration technology of bone inscriptions in the
oracle can be divided into traditional reconstruction methods and
modern technical methods. The former relies on manual restoration
and expert knowledge, which is time-consuming and subject to sub-
jective influences2. Most modern methods are based on simple
interpolation3 or local inpainting4, making it difficult to handle

complex missing areas and lacking intelligent adaptive inpainting
capabilities.

Due to the development of deep learning and large model technology,
GANs5 and diffusion models6 have demonstrated powerful modeling cap-
abilities through large-scale data learning, enabling them to effectively
inpaint missing regions in images. Conditional GAN7 introduces mask or
context information to improve semantic consistency. Subsequent advan-
ces, Pix2Pix and CycleGAN have extended the application of inpainting to
unpaired data, while high-resolution inpainting methods, such as Style-
GAN, have further improved detail preservation8–12. Nevertheless, these
methods still face several limitations, including a propensity for model
collapse during the training stage, and blurred inpainted details in the
inpainted results. In contrast, diffusion models, employing a progressive
denoising mechanism, exhibit superior performance in detail reconstruc-
tion and stability. However, diffusion models at different stages still have
many limitations in image generation tasks. The early DDPM11 andDDIM6

improve the speed through deterministic sampling, but they tend to gen-
erate blurring artifacts when attempting to repair fine cracks in oracle bone
inscriptions. Latent Diffusionmodels (such as LDM and Stable Diffusion13)
improve the computational efficiency, but the hidden space compression
often leads to the loss of high-frequency details and the image texture blur.
Althoughfine controlmethods such asControlNet improve the consistency
of the structure, there is a risk of overfitting easily leading to a single style14.
For the latest high-speed model HART hybrid architecture, due to the
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difficulty of coordinationbetween autoregressive anddiffusionmodules, the
logical fracture easily occurs in complex scene generation15. However, Cold
Diffusion16 trains the reconstruction information reconstruction network
by minimizing the respective loss function, thereby demonstrating strong
repair capabilities for severely degraded images.

Diverging from general image reconstruction tasks, Oracle Bone
Inscription Restoration (OBIR) necessitates the processing of rubbings with
distinctive inscriptions (as shown in Fig. 1). These rubbings are generated
through a specialized rice paper rubbing technique, which meticulously
preserves the morphological intricacies of the original inscriptions while
concurrently capturing the historical artifacts, such as cracked textures and
natural corrosion, embossed on the oracle bone surface. These inscriptions
define two key aspects of oracle bone inscription reconstruction: 1) the
OBIR task is highly specific, focusing exclusively on text structure and
strokes while ignoring background texture; and 2) the repair logic must
accommodate the dual information properties inherent in rubbings (e.g.
information recording and artistic expression). However, the existing gen-
eral image reconstruction techniques, which often rely on noise robustness,
exhibit limitations in this specific scenario.

Based on the above observation, we propose a novel Structure-Aware
Diffusion Model (SADM) for oracle bone inscription generation. First, we
preprocess multiple oracle bone datasets by retaining textual rubbings
(images) and applying deterministic transformations (e.g., Gaussianmask).
Then, we propose anOracle Bone Sampling (OBS) algorithm to recover the
oracle bone inscriptions in the rubbings progressively. Subsequently, we
integrate a composite loss function comprising perceptual loss, absolute
error loss, and structural similarity loss (SSIM loss), coupled with an
adaptivedynamic adjustmentmechanismtoadaptively adjust theweightsof
various loss functions during the training phase. Finally, the evaluation
indicators FID, SSIM, and RMSE are used to evaluate the model.

Our contributions can be summarized as follows:
• We propose a novel Structure-Aware Diffusion Model (SADM) to

generate oracle bone inscriptions, thereby facilitating the restoration of
incomplete inscriptions on oracle bone fragments. To the best of our
knowledge, this represents the first application of diffusion models for
the restoration of oracle bone inscriptions.

• To enhance the training of the restoration network, we propose an
Oracle Bone Sampling (OBS) algorithm to progressively recover the
oracle bone inscriptions. Moreover, we develop an adaptive dynamic
adjustment mechanism to perceive the hierarchical structure of the
reconstructed image throughout the different training phases.

• We processed four publicly available datasets, employing a single
dataset for training and reserving the other three for testing. The
experimental results confirm the effectiveness of the proposed SADM
method.

Methods
Diffusion model and oracle bone inscription restoration
Thediffusionmodel originates fromthediffusionprocess inphysics. Its core
gradually adds noise to the data, and progressively it reverses to reconstruct

the data. This idea was first proposed by Sohl-Dickstein et al. in 2015; it was
designed to generate realistic images and data through a reverse diffusion
process17. In contrast to traditionalmethods, diffusionmodels overcome the
inherent limitations of GANs18, including training instability and model
collapse. By employing a gradual reverse denoising process, these models
more accurately approximate the true data distribution, consistently gen-
erating higher-quality and more stable outputs. So far, diffusion models
have made significant progress in many fields, especially in multimodal
generation tasks19–21. Among them, SNIPS19 introduces a random diffusion
sampling framework for solving the linear inverse problem under Gaussian
noise, which is suitable for low-level visual reconstruction tasks such as
imagedeblurring and super-resolution.HFS-SDE21 introduced thediffusion
model into medical imaging, and accelerated the MRI reconstruction pro-
cess by introducing a two-manifold constraint, effectively improving the
sampling speed and reconstruction accuracy; GSD20 focuses on the appli-
cation of diffusionmodels in steganalysis generation, it achieves the unity of
high-quality image generation and data embedding. At the same time, they
have been extended to solve problems such as image reconstruction19,22,23. In
image reconstruction tasks, diffusion models demonstrate powerful gen-
eration and flexible modeling capabilities, providing technical support for
image digital preservation. As a basic diffusion model, DDPM11 generates
high-quality images through gradual denoising and is widely used in sce-
narios suchas image restoration and image24.However, its sampling process
is lengthy, resulting in low reconstruction efficiency. To improve recon-
struction efficiency, DDIM transforms the diffusion process into a deter-
ministic mapping, which reduces the number of sampling steps while
maintaining high reconstruction quality. Compared with DDPM, its gen-
eration diversity is reduced6. Latent diffusion models (such as LDM and
stable diffusion) effectively reduce the computational cost but are suitable
for tasks such as image editing and image translation13. Under multimodal
conditions, models such as DALL.E 2 and Imagen have achieved fine
generation from text to image, supporting image reconstruction and
synthesis guided by natural language, but they rely heavily on large-scale,
high-quality image-text pairing data, and there are still errors in complex
semantic understanding25,26. ControlNet performs well in image structure
control and can complete accurate image completion and reconstruction
tasks. However, it is easy to produce style convergence problems in diverse
expressions due to over-control. Cold Diffusion16 avoids noise disturbances
by explicitly modeling the image degradation process as a deterministic
mapping. It is particularly suitable for tasks such as image deblurring,
denoising, and reconstruction of missing areas. It shows better stability and
recovery effects when processing severely degraded images.

Oracle bone inscription restoration refers to the process of repairing
oracle bone inscriptions that are blurred, missing, or damaged due to age
or improper preservation. Traditional image restoration methods include
texture synthesis, edge-driven, and sparse representation methods.
Criminisi et al.27 proposed texture synthesis image restoration, which fills
in missing parts by matching undamaged areas. Song et al.3 proposed an
edge-driven method with edge information to reconstruct stroke con-
tours. Aharo et al.28 proposed a sparse representation to extract local

Fig. 1 | The description of the oracle bone script
restoration task.
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features using dictionary learning, but the limited coverage ability can
easily lead to missing strokes or artifact enhancement. However, some
studies have tried to integrate multi-feature optimization, mathematical
morphology optimization, and fractal geometry interpolation for
improvement4. However, accurate stroke reconstruction remains chal-
lenging due to three fundamental limitations: the fine-grained semantic
segmentation required to distinguish textual strokes from natural cracks
and background artifacts, the topological complexity of preserving glyph
structures during inpainting, and the inherent scarcity of high-quality
training data from extant oracle bone specimens. Recently, deep learning
has promoted the rapid development of image generation and restoration
technology. GAN29 and its variants, such as Pix2Pix and CycleGAN, are
widely used in image restoration and reconstruction. Although they have
strong structural modeling capabilities, the generated images are prone to
artifacts7,8,12. VAE introduces latent space modeling and supports con-
trollable generation, but the generated images are often blurred. The
introduction of VQ-VAE alleviates this problem and lays the foundation
for subsequent multimodal models such as DALL.E30. The context
encoder uses context features to reconstruct missing areas, but the gen-
erated results often have unnatural phenomena at edge transitions31.
DeepFill introduces an attention mechanism to enhance the modeling
capabilities of complex structures, but it may still generate semantically
inconsistent content in the case of large-scale missing areas32. Later, the
rise of diffusion models promoted the development of image generation.
DDPM11 achieved high-fidelity reconstruction, but the sampling process
was slow; DDIM6 improved sampling efficiency but reduced diversity.
Multimodal diffusion models based on this, such as DALL.E, Imagen,
and DALL.E 2, combined with CLIP encoder, enhanced the semantic
consistency of text-to-image generation, but their initial resolution were
limited26,33. Stable Diffusion employs latent—space modeling to reduce
computational overhead and facilitate high—resolution image genera-
tion; however, the inherent compression of latent representations can
result in loss of fine detail13. ControlNet enables precise editing and
inpainting under structural priors such as edges and poses, yet its reliance
on multi—modal guidance makes it sensitive to the distribution of
training data and susceptible to overfitting, while offering limited utility
when only corrupted text images are available14. RePaint demonstrates

strong semantic completion performance in complex missing regions,
but its unconditional Gaussian—noise diffusion framework exhibits
suboptimal detail consistency and inference efficiency34. Because oracle
bone script degradation is predominantly non—Gaussian and structu-
rally localized, these approaches are ill—suited for this domain. To
address these challenges, we introduce a structure—aware diffusion
model based on deterministic degradation that more accurately simulates
real—world damage and enables superior restoration of oracle bone
script details.

SADM framework
In this work, we propose a SADM for the restoration of oracle bone
inscriptions (as shown in Fig. 2). Specifically, in the forward degradation
process, given the absence of annotated partial oracle bone rubbings in
existing datasets, we introduce a progressive Gaussian mask to simulate
authentic damage patterns on complete inscription rubbings. In the reverse
denoising process, we adopt the information reconstruction network to
gradually restore oracle bone inscriptions. In which we propose an oracle
bone image reconstruction sampling algorithm (OBS) to progressively
recover the oracle bone inscriptions in the rubbings. Then, we develop an
adaptive dynamic adjustment system to perceive the hierarchical structure
of the reconstructed image. Finally, the experiments are conducted on
multiple preprocessed public datasets to verify the effectiveness of the
proposed method.

The complete inscription rubbing is denoted as O0, the randommask
generator (M) performs random occlusion, and other previous degrada-
tion operations to obtain the degraded image and real noise. At the t − 1
step, Ot−1 =M⊙O0,M represents the randombinary occlusionmask, and
⊙ represents element-by-element multiplication. Next, the information
reconstruction network generates an initial prediction, producing the
restored image Ot and estimating the noise ϵ̂ at the current step t. The
model is then trained using the total loss Ltotal. To address the varying
importance of different loss functions across training phases, we introduce
an adaptive loss balancing mechanism, which incorporates error com-
pensation for gradient stabilization to dynamically adjust the contribution
of each loss component during training. Finally, the repaired oracle image
Ô0 is output.

Fig. 2 | The proposed SADM framework for the restoration of oracle bone inscriptions.
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Deterministic degradation process
Given the original oracle image O0 2 RN , the degradation operation
simulates the situation of local information loss in the image. Specifically, we
first construct a two-dimensional Gaussian curve with variance α and dis-
cretize it into an n × n array. Then, the Gaussian curve is normalized to
obtain a mask Zαwith a center close to 0 and an edge close to 1. During the
degradation process, the parameter fαigTi¼1 (where T is the number of
degradation steps) is gradually increased to generate a mask sequence Zαi

.
The degradation process is expressed as follows:

Zαi
ðx; yÞ ¼ 1� exp � x � xc

� �2 þ y � yc
� �2

2α2i

 !

; ð1Þ

Ot ¼ DðO0; tÞ ¼ O0 �
Yt

i¼1
Zαi

 !

; ð2Þ

where x and y represent the horizontal and vertical coordinates of the pixel
in the image, the coordinates of the degenerate center point are xc and yc,
Zαi
ðx; yÞ represents the value of the mask, which indicates the weight of

whether this position is blocked. ⊙ represents element-by-element
multiplication. The degraded distribution D O0; t

� �
changes continuously

with t, and D O0; 0
� � ¼ O0. In the standard diffusion framework, D is

degraded by adding Gaussian noise proportional to t. Due to the sparse
structure of oracle bone inscriptions, randomization is introduced when
generating the mask to cover the information of different parts. The degree
of deterioration varies with t, which improves the model’s robust
reconstruction ability for local missing information.

OBS algorithm
In the reconstruction of oracle bone script images, it is necessary to first
select the degradation operator D and the training information recon-
structionmodel R, and then combine the two to use the diffusionmethod11

to reconstruct severely degraded oracle bone script images. For slight
degradation("t ≈ 0”), the image can be reconstructed by directly applying R,
but under greater degradation, the traditional method is prone to blurring.

In contrast, the standard sampling method (Algorithm 1) adopts an
iterative denoising strategy to gradually reduce noise to improve the stability
of the reconstruction. However, this method is less effective when dealing
with smooth or differentiable degradation.

Algorithm 1. Standard Sampling
Require: A degraded sample xt
for s = t, t − 1,…, 1 do
x̂0  Rðxs; sÞ
xs�1 ¼ Dðx̂0; s� 1Þ
end for
return x0

Algorithm 2. Oracle Bone Inscription Reconstruction Sampling
Require: A degraded sample Ot

for s = t, t − 1,…, 1 do
Ô0  RðOs; sÞ
Os�1 ¼ β Os � DðÔ0; sÞ

� �þ 1� β
� �

DðÔ0; s� 1Þ
end for

To enhance the reconstruction quality of oracle bone images, we
introduce an Oracle Bone Sampling (OBS) algorithm (Algorithm 2).When
β = 0, the sampling method is the same as Algorithm 1. When β = 0.5, the
sampling method is the same as Cold Diffusion16. If R does not perfectly
invert D, we should expect Algorithm 1 to incur errors, and Algorithm 2
becomes immune to errors in R. However, since the recovery quality of the
diffusionmodel varies at different stages of reverse sampling,we need to add
a parameter β to adjust the sampling image. In this work, we set β = 0.2,
which enables the recovery model to achieve higher-quality results.

Information reconstruction network
In the restoration of oracle bone inscriptions task, the reconstruction
operator is denoted byR, which can reverse the degradation operationD, as
follows:

R Ot ; t
� � � O0: ð3Þ

The information reconstruction network is represented as Rθ. The
deteriorated image Ot at degradation step t is input to Rθ, and the recon-
structed image Ô0 is output. The residual hole convolution module is
introduced in the encoder model to alleviate the gradient disappearance
problem. It guarantees that deep-level features are adequately commu-
nicated and improves feature expression, hence expanding the receptive
field. The entire information reconstruction network is also combined with
time embedding coding to adapt to the reconstruction needs of different
degradation levels.

In the oracle image reconstruction information task, using simple
pixel-level metric (i.e. absolute error loss) cannot effectively capture the fine
strokes, complex texture structure, and overall morphology in the oracle
bone image. The SSIM loss possesses structure-preserving capabilities and
texture-enhancing properties, it can effectively distinguish between cracks
and inscription strokes in oracle bone inscriptions while maintaining the
spatial relationships among the strokes. The perceptual loss effectively
preserves critical features including inscription morphology and stroke
trajectory patterns. Therefore, the loss function combines absolute error loss
(L1), structural similarity loss (SSIM), and perceptual loss to optimize pixel
accuracy.

L1 loss is used to calculate the pixel-level absolute error between the
generated image and the real image, it guarantees pixel-level reconstruction
accuracy. The overall expression is as shown in Eq. (4), where N represents
the total number of pixels in the image, Irecon(i) andIog(i) represents the
value of the i-th pixel of the generated image and the real image, respectively.

LL1 ¼
1
N

XN

i¼1
∣IreconðiÞ � IogðiÞ∣: ð4Þ

SSIM loss is introduced to evaluate the visual similarity of images. It
comprehensively considers information such as image brightness, contrast,
and structure35. It can enhance the spatial consistency of oracle bone script
strokes and reduce misalignment or morphological distortion, as shown in
Eq. (5), where μx and μy are the average brightness of images x and y
respectively. σx and σy are the standard deviations of images x and y
respectively. σxy is the covariance of images x and y.C1 andC2 are constants
used to stabilize the calculation to avoid the situation where the denomi-
nator is zero. Minimizing SSIM loss can enhance the model’s learning of
image structure information,making the generated oracle bone script closer
to the original image in detail and improving overall recognizability, as
shown in Eq. (6).

SSIMðIrecon; IogÞ ¼
ð2μxμy þ C1Þð2σxy þ C2Þ
ðμ2x þ μ2y þ C1Þðσ2x þ σ2y þ C2Þ

; ð5Þ

LSSIM ¼ 1� SSIMðIrecon; IogÞ: ð6Þ

Perceptual loss is different from L1 and SSIM losses. It uses the pre-
trained VGG network to extract high-level features and calculates the
difference between the generated image and the real image in the feature
space36. It combines global structure, texture, and semantic information to
make the generated image closer to the real image in visual perception, avoid
stroke distortion, and ensure overall glyph compliance with paleographic
standards. The overall expression is as shown in Eq. (7), where Φl( ⋅ )
indicates that the feature map of the lth layer of the pre-trained VGG
network selects the intermediate layer of VGG16 for calculation. Nl is the
total number of pixels in the featuremap of the l− th layer, that is,Nl =Hl×
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Wl × Cl, Hl and Wl are the height and width of the feature map of the lth
layer, respectively. Cl is the number of channels of the convolutional layer.
ΦlðIreconÞi andΦlðIogÞi respectively represent the value of the i− th feature
pixel in the lth layer (feature activation).

LPerceptual ¼
X

l

1
Nl

XNt

i¼1
k ΦlðIreconÞi �ΦlðIogÞik

2
2: ð7Þ

Thedynamic loss adjustment strategy is shown inEq. (8). By setting the
dynamic hyperparameters λL1, λSSIM, λperceptual, the weights of different loss
terms are controlled to ensure that themodel canbe reasonably optimized at
different levels.

Ltotal ¼ λL1LL1 þ λSSIMLSSIM þ λperceptualLperceptual: ð8Þ

In the early stage of training, the image generated by the model is
blurry. This is because the modelmainly learns the pixel distribution at this
time. The L1 loss needs to be enhanced to ensure convergence at the pixel
level. In the later stage of training, the model can reconstruct the basic
structure well. To increase the image’s structural similarity and high-level
semantic consistency, the L1 lossweight should bedecreasedwhile the SSIM
and perceptual losses should be reinforced. To achieve this process, the
training progress p is first normalized to the interval [0,1]. The p-value
decreases with increasing training time. The training will be completed
sooner as it approaches 1. Scur represents the current number of training
steps, and Stotal represents the total number of training steps. On this basis,
the weight of each loss is dynamically adjusted according to the training
progress p. The specific equation is as follows:

p ¼ Scur
Stotal

; ð9Þ

λL1 ¼ λinitL1 � λdecayL1 p; ð10Þ

λSSIM ¼ λinitSSIM þ λgrowthSSIM p; ð11Þ

λperceptual ¼ λinitperceptual þ λgrowthperceptualp; ð12Þ

among them, the weight of L1 loss λL1 is progressively decreased during the
training process, linearly decreasing from the initial value λL1 to λdecayL1 p. It
ensures that the pixel-level loss is dominant in the early stage of training to
avoid model instability brought on by an excessive gradient. Later on in the
training process, structural and perceptual information receive more
attention. The weight of SSIM loss λSSIM gradually increases to enhance the
ability of structural preservation and make the generated oracle bone script
more realistic. Similarly, the perceptual loss λperceptual uses a rising method.
Early on, the value of λinitperceptualp is small. Its weights are progressively
increased throughout training, which encourages the model to focus more
on high-level semantic information and enhances the overall visual quality
of the output.

Results
This experiment was conducted on aworkstation equippedwith 2NVIDIA
RTX 3090 GPUs, with a total number of steps of 100,000, a batch size of 64,
and an initial learning rate set to 2×10−5. To improve training efficiency and
acceleratemodel convergence,we used theAdamoptimizer, combinedwith
momentum optimization and an adaptive learning rate strategy, and
reduced video memory usage by accumulating gradients every 2 steps. The
model uses a dynamic loss system to jointly optimize the image restoration
effect to ensure a stable and efficient training process. The experiment fixed
the kernel_std parameter value, which governs the standard deviation of
Gaussian masking. A higher standard deviation results in increased mask
“blur” and consequently expands the area covered by the generated mask.

The size of the masked area can be controlled by modifying the image size.
We set the image size to 32 × 32, 64 × 64, and 128 × 128 respectively. The
smaller the image, the larger the coverage area.

Performance evaluation uses three indicators to comprehensively
evaluate the model. The Frechet Inception Distance Score (FID) is used to
measure the distribution difference between the generated image and the
real image16. The lower the FIDvalue, the closer the generated image is to the
real image in terms of visual quality and distribution. The Structural
Similarity Index (SSIM) is used to evaluate the similarity between the
generated image and the original image in terms of structure, texture, and
brightness. The closer the value is to 1, the higher the structural consistency
of the image. The root mean square error (RMSE) is used to quantify the
pixel-level difference between the generated image and the original image.
The lower the value, the higher the image reconstruction accuracy.

Data preprocessing
In this experiment, we have compiled four public oracle bone image data-
sets, including the Oracle Bone Script Multimodal dataset (we abbreviate it
as OBSM)37, the Oracle Bone Script Detection dataset (we abbreviate it as
Testsingle)38, the Oracle Bone Script Rubbing OBC306 dataset39, and the
HandWritingOracle Bone Character (HWOBC) dataset40 (as shown in Fig.
3). Our data processing is mainly divided into two parts: dataset construc-
tion and definition and annotation of missing parts.

We employ the OBSM dataset for training and use the other datasets
for testing. In building the training dataset, we generate single-inscription
images from the OBSM dataset using inscription coordinate information.
Each glyph is extracted individually to serve as an independent training
sample, enabling the model to focus on inscription reconstruction. To
ensure the quality and effectiveness of the training data, we filter out images
with large areas of white pixels after generating single inscriptions. As a
result, we constructed a dataset consisting of 74,178 images. Specifically,
10% of these samples were randomly designated as a validation set, which
was used during training for performance monitoring and hyperparameter
tuning. This internal validation split ensures effective model optimization
while reserving the remaining datasets exclusively for independent testing.

The four public datasets have their own characteristics in terms of
source, style, and task adaptability. The OBSM dataset consists of high-
quality rubbing images, with clear glyph structures and supporting coor-
dinate information, and is suitable for generating standardized training
samples. The Testsingle dataset comes from high-resolution scanned oracle
bone publications, and it is close to the real fragment environment. After
manual annotation and cropping, it retains complex interference factors
such as real cracks, blur, and damage. It is used to test the model’s recon-
struction ability in complex degradation scenarios. TheOBC306 dataset is a
large-scale public oracle bone script glyph database, covering 306 character
categories, with diverse glyphs and rich variants. It is suitable for general-
ization ability evaluation. The HWOBC dataset is artificial handwritten
glyph data, which is handwritten by experts and is used to test the model’s
adaptability to style changes.

The test datasets consist of the processed Testsingle, OBC306, and
HWOBC datasets, which contain 51,687, 28,706, and 11,643 images,
respectively, covering oracle bone inscriptions of different forms and styles
and are suitable for evaluating the generalization ability of the model. The
test datasets also generate single-word images through coordinate infor-
mation during preprocessing to ensure that the model can face the recon-
struction challenge of single-word images during testing. At the same time,
in order to increase the diversity of data and improve the robustness of the
model, we perform a variety of enhancement operations on the training
data, such as rotation, scaling, and contrast adjustment. Through
enhancement operations, the model can better adapt to different image
transformations and improve its generalization ability.

For an experimental image size of 128 × 128, the computational load is
substantial. Consequently, during testing,we randomly selected 3,200, 2000,
and 3900 images from the Testsingle, OBC306, and HWOBC datasets,
respectively. Multiple test groups are run simultaneously, and the average
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results are taken. The primary sample type consists of single oracle bone
inscription rubbing images, which display distinct glyphs and detailed
textures.To further verify the stability and statistical significance of the
proposed method, we report the mean and standard deviation of various
evaluation metrics across multiple test groups. In addition, a paired t-test
was conducted to assess whether the differences between the improved
method and the baseline are statistically significant.

In the oracle image restoration task, we defined the missing parts for
each image andusedmasks to represent thesemissing areas. Specifically, the
missing parts simulate the damage or occlusion phenomenon in the image.
In order to performeffective restoration,weuseGaussianmasks to annotate
the missing parts of the image. Themask is a binary matrix of the same size
as the input image, where the area with a value of 1 represents the unoc-
cludedpart of the image, and the areawith avalueof 0 represents themissing
or removed part. For each oracle image, we generate task-specific masks,
such as random removal or targeted occlusion, and control themissing area
size. These masks guide the model to restore the images, ensuring the
reconstruction of the missing content based on the visible parts.

Experimental results and analysis
To evaluate the restoration effect of themodel, we tested the FID, SSIM, and
RMSE indicators on three public datasets. Among them, the lower the FID
score, the smaller the distribution difference between the generated image
and the real image, and the better the restoration effect; the SSIM value is
close to 1, which means that the generated image and the original image
have high similarity in structure and texture; the lower the RMSE value, the
smaller the pixel-level difference between the generated image and the real
image. We employ Cold Diffusion16 as our baseline model, which is based
solely on the L1 loss function. In contrast, our proposed SADM model
incorporates a dynamic loss system. To ensure a fair comparison of per-
formance metrics, we computed the three evaluation indicators for the
degraded images and subsequently evaluated the reconstruction results
obtained through standard sampling and our proposed SADM sampling
method. The experimental results are summarized in Tables 1 and 2.

FromTable 1 and Table 2, we can see that for the degraded images, the
FID, SSIM, andRMSEvalues obtainedby the baselinemodel and the SADM
model are comparable, indicating that the reconstructions are based on
similar levels of image degradation. As shown in Table 1, Table 2, the
standard reconstruction significantly improves the performance metrics
compared to the degraded images, with the OBS reconstruction yielding
particularly impressive results. For instance, the FID score for the 32 × 32

image using standard sampling is 43.095, whereas it is reduced to 14.086
after applying the OBS sampling method.

Furthermore, for the same 32 × 32 image, the FID scores are 14.086 for
Cold Diffusion with OBS reconstruction and 8.517 for the SADM model.
This demonstrates that the proposed SADMmodel exhibits superior local
reconstruction capabilities on all three test datasets compared to the baseline
model, particularly in scenarios involving smaller masked simulated defect
areas. When the image size is 64 × 64, the SADMmodel achieves a 36.06%,
41.27%, and 7.2% reduction in FID values compared to the baseline model
Cold Diffusion in the OBS Sample results of the Testsingle, OBC306, and
HWOBC dataset, respectively. Under the 128 × 128 resolution setting, we
conducted five independent tests on the Testsingle, OBC306, andHWOBC
datasets.We computed themean and standard deviation of FID, SSIM, and
RMSE, and applied paired t-tests to evaluate the significance of differences
between the improved and original methods. As shown in Table 3, the
improved method consistently achieved significantly lower FID scores
across all datasets (p< 0.0001), and also yielded significant improvements in
SSIM and RMSE on the OBC306 and HWOBC datasets (p < 0.05),
demonstrating its effectiveness in high-resolution image reconstruction.
These results further underscore the outstanding reconstruction accuracy
achieved by the SADMmodel.

Comparison of reconstruction results of models
To further demonstrate the recovery performance of our method on oracle
bone inscriptions, we visualized the reconstructed images of various sam-
ples. Firstly, we present the reconstruction effects of different models under
varyingmasked areas (as shown in Fig. 4). Subsequently, we provide the test
result images for different datasets (as shown in Fig. 5). Finally, we display
the reconstruction effect images of the same oracle bone inscription under
different mask conditions (as shown in Fig. 6).

From Fig. 4, it can be observed that as the masked area decreases, the
model’s inpainting accuracy significantly improves. When the masked area
is large, although the inpainting effect is weaker, the model still possesses
reconstruction capability and demonstrates a certain level of inpainting
accuracy. This observation is consistent with the conclusions drawn from
the aforementioned quantitative analysis.

From Fig. 5, the model can repair different datasets. Its accuracy is
higher on the topology dataset, likely because it was only trained on rub-
bings. This significantly implies that even without handwritten training
data, the model can still effectively restore the handwritten fonts
of HWOBC.

Fig. 3 | Examples within OBSM, Testsingle, OBC306, and HWOBC datasets.
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Table 1 | Experimental results of Cold Diffusion on different datasets

Dataset Metric 32 × 32 64 × 64 128 × 128

Testsingle Degraded FID↓ 195.773 68.449 28.692 ± 0.3243

SSIM↑ 0.173 0.669 0.912 ± 0.0001

RMSE↓ 0.252 0.162 0.082 ± 0.0004

Standard Sampled FID↓ 43.095 10.302 4.757 ± 0.0297

SSIM↑ 0.650 0.929 0.982 ± 0.0014

RMSE↓ 0.150 0.064 0.027 ± 0.0017

OBS Sampled FID↓ 14.086 5.194 4.634 ± 0.0393

SSIM↑ 0.594 0.910 0.982 ± 0.0003

RMSE↓ 0.188 0.077 0.027 ± 0.0005

OBC306 Degraded FID↓ 194.855 73.207 34.501 ± 0.2255

SSIM↑ 0.166 0.666 0.905 ± 0.0007

RMSE↓ 0.252 0.165 0.092 ± 0.0003

Standard Sampled FID↓ 53.409 11.632 7.985 ± 0.0831

SSIM↑ 0.619 0.912 0.976 ± 0.0003

RMSE↓ 0.157 0.071 0.034 ± 0.0004

OBS Sampled FID↓ 14.537 4.358 6.031 ± 0.0868

SSIM↑ 0.570 0.894 0.972 ± 0.0003

RMSE↓ 0.197 0.086 0.040 ± 0.0004

HWOBC Degraded FID↓ 187.575 105.084 46.500 ± 0.4855

SSIM↑ 0.228 0.681 0.901 ± 0.0006

RMSE↓ 0.418 0.272 0.154 ± 0.0001

Standard Sampled FID↓ 98.829 32.194 26.908 ± 0.5083

SSIM↑ 0.525 0.907 0.975 ± 0.0004

RMSE↓ 0.168 0.093 0.060 ± 0.0005

OBS Sampled FID↓ 106.022 29.841 22.726 ± 0.2186

SSIM↑ 0.507 0.898 0.976 ± 0.0004

RMSE↓ 0.173 0.102 0.059 ± 0.0008

The bold figures in Tables indicate the values that have improved in each comparison.

Table 2 | Experimental results of SADM on different datasets

Dataset Metric 32 × 32 64 × 64 128 × 128

Testsingle Degraded FID↓ 195.566 69.192 29.063 ± 0.3117

SSIM↑ 0.173 0.669 0.913 ± 0.0005

RMSE↓ 0.252 0.163 0.082 ± 0.0003

Standard Sampled FID↓ 29.645 8.528 4.110 ± 0.0612

SSIM↑ 0.653 0.928 0.986 ± 0.0002

RMSE↓ 0.155 0.067 0.024 ± 0.0005

OBS Sampled FID↓ 8.157 3.321 3.509 ± 0.0430

SSIM↑ 0.607 0.910 0.984 ± 0.0015

RMSE↓ 0.185 0.079 0.025 ± 0.0020

OBC306 Degraded FID↓ 193.889 73.226 34.748 ± 0.1308

SSIM↑ 0.167 0.667 0.904 ± 0.0005

RMSE↓ 0.252 0.165 0.092 ± 0.0005

Standard Sampled FID↓ 35.697 10.094 7.061 ± 0.1133

SSIM↑ 0.622 0.912 0.977 ± 0.0002

RMSE↓ 0.163 0.075 0.034 ± 0.0004

OBS Sampled FID↓ 9.653 2.560 5.031 ± 0.0567

SSIM↑ 0.580 0.892 0.973 ± 0.0001

RMSE↓ 0.194 0.088 0.039 ± 0.0002

HWOBC Degraded FID↓ 188.488 105.012 46.661 ± 0.3981

SSIM↑ 0.227 0.680 0.901 ± 0.0004

RMSE↓ 0.418 0.273 0.154 ± 0.0001

Standard Sampled FID↓ 90.694 30.383 22.163 ± 0.3892

SSIM↑ 0.523 0.904 0.975 ± 0.0004

RMSE↓ 0.182 0.096 0.057 ± 0.0004

OBS Sampled FID↓ 81.801 27.703 21.591 ± 0.3534

SSIM↑ 0.522 0.897 0.977 ± 0.0005

RMSE↓ 0.176 0.111 0.056 ± 0.0007

The bold figures in Tables indicate the values that have improved in each comparison.
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From Fig. 6, it can be observed that the proposed algorithm can suc-
cessfully reconstruct oracle bone inscriptions regardless of the size of the
masked areas. Specifically, with a 64 × 64 pixel mask, corresponding to
moderate masking, the reconstructed inscriptions appear smoother. This
suggests that the algorithm achieves the best restoration effect for oracle
bone script inscriptions that are approximately half damaged.

Ablation study
In this section, we first conduct ablation experiments on different loss
functions and dynamic loss strategies, followed by an analysis of parameter
β. For the experiments, oracle bone inscription rubbingswith a resolution of
64 × 64 are selected as test samples to evaluate the impact of the afore-
mentioned factors on the restoration effect.

For the ablation experiments on different loss functions, we first gra-
dually introduce various loss functions, compare their performance in
oracle bone inscription image restoration, and analyze how different loss
functions affect the image restoration effect, especially in terms of pixel-level
accuracy and the rationality of inscription morphology.

In the ablation experiment, we first used L1 loss and L1+0.01 per-
ceptual loss for training respectively, and evaluated their performance on
multiple datasets. From the experimental results, the introduction of per-
ceptual loss will affect the overall oracle bone inscription image recon-
struction quality. In the Testsingle and OBC306 datasets, the FID, RMSE,
and SSIM of L1 combined with perceptual loss did not show significant
improvements. However, in the HWOBC dataset, the FID of the standard
sampling reconstruction method was reduced by 1.81, indicating that per-
ceptual loss may help the reconstruction of high-level features on this
dataset. Fromthese three indicators, the introductionofperceptual losshas a
limited impact on the overall deblurring effect. The reason for the analysis
may be that the current perceptual loss weight is low (0.01), which failed to
affect the FID result during the optimization process. To further improve
model performance, we can increase the weight of the perceptual loss and
combine it with SSIM loss or other loss functions. This will enhance the
model’s ability to reconstruct structural information.

Table 3 | Statistical comparison of FID, SSIM, and RMSE
metrics at 128 × 128 resolution

Dataset Metric SADM(mean
± std)

Cold
Diffusion(mean
± std)

paired t-
test
p-value

Testsingle FID↓ 3.509 ± 0.0430 4.757 ± 0.0297 1.40E-06

SSIM↑ 0.984 ± 0.0015 0.982 ± 0.0014 2.31E-01

RMSE↓ 0.025 ± 0.0020 0.027 ± 0.0017 2.40E-01

OBC306 FID↓ 5.031 ± 0.0567 7.985 ± 0.0831 2.44E-07

SSIM↑ 0.973 ± 0.0001 0.976 ± 0.0003 1.82E-05

RMSE↓ 0.039 ± 0.0002 0.034 ± 0.0004 7.54E-05

HWOBC FID↓ 21.591 ± 0.3534 26.908 ± 0.5083 4.42E-06

SSIM↑ 0.977 ± 0.0005 0.975 ± 0.0004 2.88E-02

RMSE↓ 0.056 ± 0.0007 0.060 ± 0.0005 1.46E-03

Fig. 4 | Visualization of oracle bone inscription
restoration experiments. The restoration effect of
the oracle bone inscription image with a size of 32 ×
32 (a), 64 × 64 (b), and 128 × 128 (c).
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Fig. 5 | Visual representation of test results across
various datasets. It demonstrates the oracle image
restoration performance for the Testsingle (a),
OBC306 (b), and HWOBC (c) datasets.

Fig. 6 | Effects of image specifications on inscrip-
tion restoration. The restoration effects of three
different image specifications on different inscrip-
tions (eg. (a) and (b). GT represents the ground
truth, DI represents the degraded and incomplete
oracle bone script, and RI represents the restored
oracle bone inscriptions. The restoration effect of
the oracle bone inscription image with a size of 32 ×
32 (top line), 64 × 64 (second line), and 128 × 128
(bottom line).

Fig. 7 | The weights of different loss functions change dynamically during training when using a 64 × 64 image size.
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Then, comparing L1 + perceptual loss with L1 + perceptual loss +
SSIM loss, it was found that the addition of SSIM loss improves the overall
quality of oracle bone inscription reconstruction. This improvement was
evident in the reduced FID, improved SSIM, and reduced RMSE. Specifi-
cally, in the Testsingle dataset, the FID of L1 + 0.01 perceptual loss + 0.2
SSIM loss decreased by 29.2%(from 5.47 to 3.87). In the OBC306 dataset, it
decreased by 39.6% (from 4.88 to 2.95), demonstrating the positive impact
of SSIM loss on theperceptual quality of the reconstructed images.Across all
datasets, the SSIM index improved, indicating that SSIM loss contributes to
enhancing the structural similarity of the images and making the recon-
structed oracle bone inscriptions more akin to the original images. In the
HWOBC dataset, while the FID decreased by 11.7% (from 33.41 to 29.49),
despite a slight increase in RMSE, potentially linked to the handwritten
nature of the dataset’s inscriptions, the addition of SSIM loss significantly
improved the FID score. This confirms that SSIM loss plays a beneficial role
in preserving structural information within the images.

The dynamic loss adjustment strategy is introduced to further improve
the reconstruction ability of the model (as shown in Fig. 7 and Table 6).
During the training process, the weight of each loss function is adjusted
according to the training progress of the experiment, so that the model can
adaptively balance the influence of different losses at different stages. This
mechanism is introduced to balance the impact of specific loss functions
during training, preventing instability or overfitting and improving recon-
struction accuracy for oracle bone inscription images.

The experimental results in Tables 4, 5 show that the dynamic loss
adjustment strategy significantly improves the image reconstruction quality
on the Testsingle and OBC306 datasets, reducing the FID of the Testsingle
and OBC306 datasets by 14.26% and 13.12%, respectively. It indicates that
the perceptual difference between the generated image and the original
image is further reduced. As training weight increases, both perceptual loss
and SSIM loss contribute to a clearer restored image. However, this also
results in a slight increase in RMSE. Despite this, the overall RMSE level
remains low, suggesting that this strategy enhances overall visual quality
without significantly impacting local pixel errors. In theHWOBdataset, the
FID and RMSE of the strategy increased slightly, which may be due to the
fact that the images in this dataset are handwritten datasets and have
characteristic differences from the pre-trained rubbing datasets, resulting in
a certain deviation in the dynamic loss adjustment when weighing detail
retention and overall perceptual quality. In addition, from the perspective of
FID improvement, the FID of sample reconstruction of the Testsingle and
OBC306 datasets increased by 65.87 and 70.67, respectively, which is better
than the fixed loss weight scheme. Overall, the dynamic loss adjustment
strategy performs better than the fixed loss scheme in the Testsingle and
OBC306 datasets, significantly improving the quality of the reconstructed

Table 4 | Quantitative comparison under different loss
strategies across three datasets. L1+P is the abbreviation of
L1+Perceptual Loss, L1+P+SSIM is the abbreviation of
L1+Perceptual Loss+SSIM Loss, and DLS is the abbreviation
of Dynamic Loss System

Dataset Metric Method

L1 L1+P L1+P
+SSIM

DLS

Testsingle Degraded FID↓ 68.449 68.782 68.910 68.193

SSIM↑ 0.669 0.669 0.669 0.669

RMSE↓ 0.162 0.163 0.162 0.163

Standard
Sampled

FID↓ 10.302 9.923 9.090 8.528

SSIM↑ 0.929 0.928 0.930 0.928

RMSE↓ 0.064 0.071 0.065 0.067

OBS
Sampled

FID↓ 5.194 5.465 3.873 3.321

SSIM↑ 0.910 0.909 0.911 0.910

RMSE↓ 0.077 0.079 0.078 0.079

OBC306 Degraded FID↓ 72.832 73.207 72.907 73.226

SSIM↑ 0.668 0.668 0.668 0.667

RMSE↓ 0.165 0.165 0.165 0.165

Standard
Sampled

FID↓ 11.435 11.268 11.022 10.094

SSIM↑ 0.912 0.911 0.913 0.912

RMSE↓ 0.071 0.071 0.072 0.075

OBS
Sampled

FID↓ 4.324 4.875 2.946 2.560

SSIM↑ 0.895 0.894 0.895 0.892

RMSE↓ 0.086 0.088 0.086 0.088

HWOBC Degraded FID↓ 105.084 104.830 105.179 105.012

SSIM↑ 0.680 0.681 0.680 0.680

RMSE↓ 0.273 0.273 0.273 0.273

Standard
Sampled

FID↓ 36.708 25.895 26.510 29.841

SSIM↑ 0.893 0.906 0.908 0.904

RMSE↓ 0.098 0.092 0.095 0.096

OBS
Sampled

FID↓ 39.741 33.407 29.489 32.194

SSIM↑ 0.886 0.895 0.901 0.897

RMSE↓ 0.106 0.103 0.105 0.111

The bold figures in Tables indicate the values that have improved in each comparison.

Table 5 | Comparison of FID values in various ablation
experiments

Method Standard sampling
boosts FID.

OBS reconstruction
boots FID.

L1 58.147 63.255

61.397 68.508

74.701 74.701

L1 + Perceptual 58.859 63.316

61.939 68.331

78.935 71.422

L1 +
Perceptual +SSIM

59.82 65.036

61.885 69.961

78.669 75.691

Dynamic Loss
System

60.664 65.871

63.132 70.666

72.818 75.171

The bold figures in Tables indicate the values that have improved in each comparison.

Table 6 | Theweights of the L1 loss, SSIM loss, and perceptual
loss during training

Step Progress λL1 λSSIM λPerceptual

0 0.00 1.00 0.20 0.01

20000 0.20 0.90 0.30 0.05

40000 0.40 0.80 0.40 0.09

60000 0.60 0.70 0.50 0.13

80000 0.80 0.60 0.60 0.17

100000 1.00 0.50 0.70 0.21
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images, but its adaptability in the HWOBC dataset still needs to be opti-
mized to better balance local details and overall visual quality.

Figure 7 shows the changes in the weights of L1 loss, SSIM loss, per-
ceptual loss, and the total loss functionduring trainingunderdifferent oracle
image specifications. As the training progresses, the weights of each item
gradually change and the total loss gradually stabilizes, indicating that the
performance of the model gradually improves during the optimization
process. The convergence of the loss function indicates that the model is
gradually becoming more effective in the oracle image restoration task.

In order to explore the influence of parameter β on the ODS sampling
effect, we designed the changes of FID, SSIM, and RMSE indicators when
taking different β parameter values, and measured the β value when the
optimal sampling was performed. The experimental results are shown in
Table 7, and the visualization results are shown in Fig. 8. When β is 0.5, the
sampling method is the same as Cold Diffusion16 In the context of oracle
bone image reconstruction, the range of β between 0.2 and 0.3 yields the
most favorable results. This is evidenced by lower FID and RMSE values,
along with a higher SSIM value, which collectively suggest increased simi-
larity between generated and real images, reduced prediction errors, and
enhanced structural similarity, thereby indicating its suitability for our
experimental task.

Evaluating the model’s generalization to handwritten style
To assess the model’s zero-shot generalization to handwritten styles, we
conducted experiments at 64 × 64 resolution using the OBSMdataset as the
training set and HWOBC as the test set. Three training settings were
compared: OB-RubbingNet (rubbing data only), OB-HandNet (hand-
writtendata only), andOB-FusionNet (a combination of both).As shown in
Table 8, OB-HandNet achieved the best performance on the target domain
(FID = 7.76, RMSE = 0.087, SSIM = 0.932). OB-FusionNet significantly
improved generalization over OB-RubbingNet (FID: 27.703 → 9.389;

RMSE: 0.111 → 0.087), and alleviated RMSE spikes under dynamic loss.
These results highlight themodel’s adaptability to style variations. Although
augmenting the training set with handwritten characters improved results
on theHWOBC dataset, it degraded performance on rubbing-related tasks.
Since oracle bone inscription restoration primarily targets inscriptions on
rubbings (not handwritten forms), the original SADM (i.e., OB-Rubbing-
Net) model delivers optimal restoration performance for rubbings.

The restoration examples from real rubbings
Moreover, we have applied our method to restore incomplete oracle bone
inscriptions sourced from genuine rubbing fragments. Figures 9 and 10
illustrate representative restoration results for samples exhibiting less than
20% damage and those with 45–60% damage, respectively. A critical pre-
processing step involves embedding the damaged oracle bone fragments
into a black background (P-BI) to spatially extend the pixel regions,
addressing the inherent limitation of diffusion models, which do not
natively perform pixel expansion during the denoising process. Following
this embedding, deterministic degradation (DI)was applied, and restoration
was guided using the Oracle Bone Sampling (OBS) strategy integrated into
our model to obtain the final restored images (RI). As shown in Fig. 9, the
reconstructed results demonstrate the model’s high fidelity in restoring
lightly damaged inscriptions. In Fig. 9, the first five cases correspond to
samples with severe structural loss, and the resulting RI outputs highlight
the model’s capacity to reconstruct significant missing regions. The lower
four cases in Fig. 10 further validate the model’s robustness against sub-
stantial noise, showcasing its ability to recover the structural integrity of
oracle bone characters under adverse visual conditions.

Table 8 | Performance comparison of OB-RubbingNet, OB-
HandNet, andOB-FusionNet on theHWOBCdataset at 64 × 64
resolution

Model Sampling FID↓ SSIM↑ RMSE↓

OB-RubbingNet Degraded 105.012 0.68 0.273

Standard Sampled 30.383 0.904 0.096

OBS Sampled 27.703 0.897 0.111

OB-HandNet Degraded 104.609 0.272 0.682

Standard Sampled 8.402 0.101 0.922

OBS Sampled 7.776 0.932 0.087

OB-FusionNet Degraded 105.27 0.681 0.273

Standard Sampled 11.221 0.921 0.099

OBS Sampled 9.389 0.93 0.087

The bold figures in Tables indicate the values that have improved in each comparison.

Fig. 8 | Change in three metrics with β value under
the OBS sampling method. The figure shows the
variation of three evaluation metrics (FID in blue,
RMSE in red, and SSIM in green) with different β
values. The curves indicate how the sampling para-
meter β influences the reconstruction quality, with
lower FID and RMSE and higher SSIM representing
better performance.

Table 7 | FID, SSIM, and RMSE values corresponding to
different β values in OBS sampling

β FID↓ SSIM↑ RMSE↓

0.0 8.1167 0.9127 0.0709

0.1 7.7887 0.9139 0.0708

0.2 7.7861 0.9145 0.0705

0.3 7.9449 0.9144 0.0704

0.5 7.9520 0.9124 0.0715

0.7 7.9542 0.9122 0.7080

0.9 8.0819 0.9124 0.7150

The bold figures in Tables indicate the values that have improved in each comparison.
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The failed restoration examples of some incomplete
oracle bones
Although the proposed method shows excellent reconstruction perfor-
mance onmost samples, there are still cases of repair failure on some special
samples. A typical example is shown in Fig. 11. Specifically, when the image

is severely occluded, it is difficult for the model to accurately infer the
structural information of themissing area, such as in the third line; when the
noise interference in the image is strong, it will significantly affect the
model’s understanding of the overall structure of the oracle bone
inscriptions.

Fig. 9 | The effect of completing oracle bones with
a degree of incompleteness within 20% in reality.
The leftmost is a handwritten font, BI represents real
damaged oracle bone script, P-BI represents oracle
bone script after processing, DI represents the image
of degraded oracle bone script, and RI represents the
restored oracle bone script.
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While the SADM method cannot achieve accurate restoration, it can
perform local denoising, as seen in the fourth and fifth lines. However, as
demonstrated by the first line, some samples feature complex fracture
structureswith severe informationmissing, leading to generated resultswith
issues like missing strokes, structural misalignment, or overall blurriness.

Despite these structural integrity deviations, the reconstruction results still
offer valuable reference information for experts and scholars working with
oracle bone inscriptions. These failures may stem from the limited repre-
sentation of complex structural samples in the training data, hindering the
model’s generalization under extreme conditions.

Fig. 10 | The effect of completing oracle bone
inscriptions with a degree of incompleteness
between 45% and 60% in reality. The leftmost is a
handwritten font, BI represents real damaged oracle
bone script, P-BI represents oracle bone script after
processing, DI represents the image of degraded
oracle bone script, and RI represents the restored
oracle bone script.

https://doi.org/10.1038/s40494-025-02000-6 Article

npj Heritage Science |          (2025) 13:461 13

www.nature.com/npjheritagesci


Discussion
In this work, we propose a structure-aware diffusion model to reconstruct
oracle bone inscriptions, addressing challenges such as vagueness, frag-
mentation, and missing content in unearthed fragments. This is the first
application of diffusion models for the restoration of oracle bone inscrip-
tions. The FID, SSIM, and RMSE evaluations all show that the proposed
method can effectively restore the details of the oracle bone inscriptions. At
the same time, this study also recognizes that there are some directions for
the current model to be optimized: in terms of style transfer, since the
training mainly relies on the images of oracle bone inscriptions, the
adaptability of the model to oracle bone inscriptions with multiple writing
variants and styles needs to be improved; in terms of context information
utilization, The current single-character damage repair is our initial
exploration of oracle fragment restoration. In future work, we will continue
to conductmore in-depth research based on themulti-character sequences.
In summary, the structure-aware diffusionmodel proposed in this studyhas
achieved remarkable results in the reconstruction of single-word details of
oracle bone inscriptions, providing a new method for the field.

Data availability
The datasets used or analyzed during the current study are available from
the corresponding author on reasonable request.
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