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Multimodal prototype fusion network for
paper-cut image classification
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This paper proposes aMultimodal Prototype Fusion Network (MPFN) to address challenges in paper-
cut image classification, including artistic abstraction, imbalanced data, and unseen category
adaptation. The framework introduces two variants: AMPFN, which dynamically fuses multimodal
prototypes via cross-modal attention and residual learning, and IMPFN, a training-freemodel for rapid
deployment. Leveraging CLIP for feature extraction, AMPFN achieves 90.71% accuracy (16-shot) on
seen classes, while IMPFN attains 84.98% accuracy (16-shot) on unseen classes without training.
Evaluations on paper-cut datasets and public benchmarks (PACS, ArtDL, CUB-200-2011)
demonstrate superiority over existing methods. The approach mitigates data imbalance through
n-shot prototypes and reduces computational costs via pre-trained features, proving robust in fine-
grained and abstract art classification. This work offers a scalable solution for cultural heritage
digitization and multimodal art analysis.

The intangible cultural heritage (ICH) serves to complement the tangible
cultural heritage, and together theyconstitute the richness of humanculture.
In China, intangible cultural heritage represents the collective wisdom and
creativity of the diverse cultures of the Chinese nation. It is the intangible
cultural essence that has been nurtured by all ethnic groups in specific
human and natural environments and handed down to the present day. In
recent years, the advent of computers, big data and the Internethas led to the
emergence of non-heritage culture as a significant area of focus for the
promotion of local culture and economic development. The rapid digiti-
sation of ICHhas resulted in the generationof a substantial volumeof digital
data, including images and videos. The effective processing of such data
represents a significant research focus in the current era.

Paper-cutting is a traditional art form that has a longhistory inChinese
folklore and is imbuedwith a strong cultural heritage andhistorical legacy. It
is inevitable that digital innovationwill play a role in the future development
of paper-cutting art. Technological innovation will enable the art of paper-
cutting to adapt more rapidly to the requirements of modern society and to
reflect aesthetic concepts in a more timely manner, thus accelerating its
development and further promoting its influence in China and
internationally.

In the domain of non-heritage culture, paper-cutting is predominantly
represented in the form of intricate and voluminous imagery. Presently, the
accumulation of paper-cutting images is predominantly conducted manu-
ally, whichnecessitates a considerable investment of human resources, time,
and financial resources. The majority of extant paper-cutting databases are

organised according to the author of the work, which presents a challenge
when attempting to retrieve a specific piece of paper-cutting. As shown in
Fig. 1, there are many categories of paper-cutting images with different
images, and when a paper-cutting learner wants to copy something in a
certain category, it is the fastest andmost effective way to find paper-cutting
works of the same category in the paper-cutting dataset for learning. This
requires that we need to do the task of categorising and labelling the images
in the paper-cutting database so that they can be easily searched by paper-
cutting learners. Consequently, the utilisation of image classification tech-
nology to facilitate the efficient classification and generalisation of paper-cut
images represents a key area of current research.

The dispersed nature of the number of artworks and the subjective
nature of their content have resulted in a paucity of research into the clas-
sification of art images. The advent of digital technologies has led to the
creation of a multitude of intricate artworks, underscoring the necessity for
the development of effective classification algorithms. Themost commonly
used image classification methods are based on deep learning, such as
Convolutional Neural Networks, and in particular ResNet1 networks that
employ a residual block structure. This structure alleviate the gradient
explosion and gradient vanishing problems and permits the construction of
deeper network structures. Another recently popular approach is theVision
Transformer (VIT), whichwas proposed by Dosovitskiy and represents the
first instanceof theTransformermodel being applied to image classification.
VIT achieves this by segmenting the image into small chunks and encoding
them as sequences, before performing the classification task using the
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Transformer encoder. This has proven to be an effective approach, as evi-
dencedby its ability to surpass traditionalCNNnetworkmodels onmultiple
datasets.

Additionally, The Visual Language Grand Model offers new avenues
for image classification tasks, typically employing a convolutional neural
network (CNN)or avision transformer (VIT) as an image feature extraction
network and a transformer as a text feature extraction network. This
approach has been trained on a large number of datasets and has achieved
excellent results on various image classification datasets. Nevertheless, the
effective deployment of this approach in downstream tasks remains a topic
for further investigation.

In order to resolve the issue of classifying paper cutout imagesusing the
aforementionedmethod, it is necessary to consider a number of factors.: (1)
The artistic abstraction and uniqueness of paper-cut works result in sub-
optimal outcomes when deep learning methods are employed to process
image features for classification. (2) The distribution of existing paper-cut
datasets is uneven, with a considerable range in the number of categories,
from hundreds to only a few dozen. In comparison to the conventional
small-sample classification, which is characterised by a restricted number of
categories, the paper-cut dataset presents the challenge of encompassing a
multitude of categories, with some comprising only a limited number of
samples. It thus follows that the conventional methods of small-sample
learning are ill-suited to addressing the classification challenges of paper-cut
images. (3)The classificationof paper-cut images is a challenging taskdue to
the subjective nature of this artistic form. The creativity involved in paper-
cutting often results in the generation of new categories that the model has
not encountered, and it is therefore essential to consider the model’s ability
to accommodate these unseen categories.

Few—shot learning and large vision—language models can effectively
address the challenges faced in paper—cut classification. Where metric
learning is a commonly used method in few-shot learning. The application
of metric learning to small-sample image classification tasks entails the
mapping of an image into a feature representation space, with the objective
of determining its classmembership by comparing the distance or similarity
between the input image and the class prototype. The most commonly
employed similarity computationmethods include the Euclidean distance2,
the Mahalanobis distance3, and the cosine similarity4. For instance,
Matching Networks5 utilise the cosine similarity function for classification
purposes, whereas Prototype Networks6 typically utilize the Euclidean dis-
tance metric to measure the relationship between the input image and the
class prototype, focusing on the degree of their alignment or similarity.
Furthermore, depending on the requirements of the specific task at hand,

alternative distance or similarity measures, such as Manhattan7, bulldozer8,
Minkowski9, or Chebyshev10 distances, can be employed.

Presently, Prototype Networks6 are widely employed due to their
simplicity and ease of network use. As shown in Fig. 2, the prototype net-
work considers that there is a class prototype for each category in the
embedding space, c1; c2; c3 in the figure represent the class prototype of the
three categories.When anew sample is input, its featureX in the embedding
space is obtained by the embedding function, and the distance (similarity)
between X and c1; c2; c3 is calculated to determine which category the
sample belongs to, and the closer it is to the class prototype, the more it is
considered to belong to that class prototype.

To enhance the performance of the prototype network, a number of
researchers have made improvements to prototype networks. For example,
Liu et al.11 proposed a method for correcting class prototype, while Fort
et al.12 developed a Gaussian Prototypical Networks, which incorporates
confidence intervals around class prototype to enhance the quality of
individual data points. Ji et al.13 introduced a classificationmethod based on

Fig. 1 | Some categories of paper cut images on display.

Fig. 2 | Prototypical network principle figure.
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an attentional mechanism and distance scaling strategy, aiming to enhance
the network’s ability to explore diverse classes of information. Relational
Networks14 are also a form ofmetric learning that does not utilise fixed class
prototype. Instead, they employ convolutional neural networks (CNNs) to
compute the similarity relationship between the target image and the
training samples, thereby facilitating the completion of the
classification task.

The primary focus ofmetric learning is on addressing intra- and inter-
class boundary issues. The dissimilarities between datasets have a direct
impact on these distances, which, in turn, influence the classification out-
comes. Mocanu et al.15 put forth a normalised maximum threshold loss
function with the objective of minimising intra-class distances and max-
imising inter-class distances. The imbalance of inter-class differences pre-
sent in different classification tasks may result in the generation of biased
models. Sun et al.16 proposed dynamicmetric learning, with the objective of
learning a scalable metric space that would accommodate visual concepts
acrossmultiple semantic scales.Cheng et al.17 sought tomaximise intra-class
similarity and minimise inter-class similarity by re-weighting each
similarity.

The application of existing metric learning techniques is typically
confined to small-sample classification tasks. However, the high computa-
tional resource requirements and time-consuming nature of these techni-
ques present significant limitations. The dataset is notable for its extensive
number of classes and the disparate distribution of instances across these
classes. The prototype network inmetric learning performs classification by
solving for class prototype, which serves to mitigate the long-tail effect
resulting from an uneven data distribution.However, the original prototype
network has fixed class prototype, poor flexibility, and is mainly composed
of image feature mapping with limited feature representation capability,
thus offering considerable scope for improvement.

In this paper, we address these limitations by proposing enhancements
to the prototype networks to increase their adaptability and feature repre-
sentation capability. Our modifications are designed to better account for
the characteristics of our dataset, ultimately improving the classification
performance of metric learning models.

Whereas, large vision-language models have exhibited remarkably
excellent performance in feature extraction and generalization capabilities.
The advent of deep learning has ushered in a new era of significant
advancements in computer vision, particularly in areas such as image
classification, target detection, and semantic segmentation. Nevertheless,

these outcomes frequently depend on the utilisation of a substantial number
of datasets, each necessitating the training of a network. This inevitably
results in a significant increase in the financial expenditure associated with
practical applications. In this context, visual linguistic macromodelling has
emerged as a prominent area of research.

By learning a substantial corpus of image-text pairs from the Internet,
the trained visual language bigmodels, such asCLIP,ALIGN (ALarge-scale
ImaGe andNoisy-text embedding)18, and other similarmodels demonstrate
the potential for zero-shot learning on downstream datasets. The funda-
mental concept underlying these visual language models is the mapping of
text and image features into a unified space, facilitating intermodal fusion
and computation. The advent of the Transformer19 has been a significant
catalyst for this field, initially deployed in the domain of natural language
processing and subsequently extending its reach to image analysis through
the emergence of the Vision Transformer (VIT)20. This has led to the
development of unified processing methods for diverse image and text
modalities, paving the way for the advancement of visual language mac-
romodels. For example, the CLIP model employs a Vision Transformer as
its feature extraction network. TheCLIPmodel is comprised of twoprimary
components: an image encoder and a text encoder. The image encoder
employs two distinct approaches: one is based on the convolutional neural
network framework of ResNet50,while the other is based on theVIT feature
extraction network. Both of these approaches solely focus on feature
extraction, and they are both based on the VIT feature extraction network.
These approaches do not engage in classification. The text encoder employs
the Transformer as a feature extractor for textual data. The two afore-
mentioned components facilitate themappingof textual andvisual data into
a unified vector space, thereby enabling themodel to calculate the similarity
between an image and a text directly, without the necessity for additional
intermediate representations. The specific structure is illustrated in Fig. 3.

The subsequent research yielded numerous enhancements based on
the visual language big model. In terms of cue learning, Context Optimi-
zation (CoOp), proposed by Zhou et al.21, fine-tunes the CLIP22 by learning
textual cues. Condetional Context Optimization (CoCoOp), proposed by
Yang et al.23, improves the model’s generalisation ability by using condi-
tional textual cues on topofCoOp.Multi-modalPromptLearning (MaPLe),
proposed by Khattak et al.24, The optimisation of the visual and linguistic
branching of the CLIP is achieved through the utilisation of a multimodal
cueing framework. Unsupervised Prompt Learning (UPL)25 employs an
unsupervised supervised cue learning approach to fine-tune theCLIP, while

Fig. 3 | CLIP model architecture.
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Prompting with Self-regulating Constraints (PromptSRC)26 improves cue
learning through the introduction of an additional loss function. Prompt
with Text (ProText)27 combines the features of cue learning and integrated
learning to learn cues for LLMs using only textual data, thereby enhancing
the generalisation ability of the CLIP.

The visual language macromodels of today demonstrate robust
feature extraction and generalisation capabilities, largely attributable
to the comprehensive nature of the training dataset. However, the
considerable complexity and variability of image types demanded by
different industry requirements present significant challenges for the
deployment of visual language big models in downstream tasks. The
training of models for current research purposes, such as cue learning,
requires a significant amount of computational resources. This is
necessary for the adaptation of the models to be able to perform the
required downstream tasks. Consequently, one of the current diffi-
culties is how to rapidly and effectively deploy visual language grand
models in downstream tasks.

This paper presents a multimodal prototype fusion network based on
the prototype network inmetric learning. Thenetwork employs aCLIPpre-
trainedmodel as the feature extractionmodule. The incorporationof textual
features into the prototype-like computation of the prototype network
enables themultimodal fusionmethod to enhance the expressive capacity of
the prototype-like. In the context of specific datasets, the Adaptive Multi-
modal Prototype Fusion Network (AMPFN) is employed to facilitate
dynamic adjustments to the class prototype, thereby enhancing the efficacy
of the classification process. In contrast, the Instant Multimodal Prototype
Fusion Network does not necessitate training in order to effectively harness
the capabilities of CLIP pre-trained models in downstream tasks.

In order to address the aforementioned issues, this paper proposes a
novel multimodal prototype fusion network for the classification of paper
cut images. The model is based on the concept of a prototype network in
metric learning. It introduces text feature prototypical on the basis of image
feature prototypical and adjusts and fuses the feature prototypical through
the embedding of the image in the metric space using Cross Fusion Mul-
tiHead Attention-Net dynamically. This process ultimately yields the fea-
ture prototypical of each class. Subsequently, the classification of paper cut
images is accomplished through the utilisation of the cosine similarity
relationship between the features of the input image and the class prototype.
In this context, the feature extraction module employs the CLIP model,
which is capable of extracting pertinent features with greater efficiency.
Furthermore, the utilisation of n-shots to determine the number of samples
for calculating the class prototype can mitigate the impact of an uneven
distribution of the number. The principal contributions of this paper are as
follows:
• In order to enhance the efficiency of the classification of paper-cut

images and to improve the adaptability of the prototype network, this
paper proposes the implementation of a multimodal prototype fusion
network, comprising an Adaptive Multimodal Prototype Fusion
Network (AMPFN) and an Instant Multimodal Prototype Fusion
Network (IMPFN). The objective is to enhance the expressive capacity
of the prototype by incorporating textual semantic features, thereby
improving the classification efficacy of the model.

• TheCLIP is employed as a feature extractor in an adaptivemultimodal
prototype fusion network for the base class paper cutout dataset. This
network adjusts the textual prototype and image prototype features
and performsmodal fusion through the features of the input images to
obtain the final class prototype, thereby enhancing the expression and
adaptation of the prototype. The instant multimodal prototype fusion
network directly incorporates text and image prototype features
throughmodal fusion, thereby obtaining the final class prototype. This
process does not necessitate training and can be readily applied to
classification tasks, including the classification of previously unseen
categories.

• The method proposed in this paper not only achieves good results on
seen categories, but also shows excellent performance on the

classification task of unseen categories. By utilising the CLIP pre-
trained model, we save computational resources and reduce the
economic cost, thus improving the effectiveness and usefulness of the
model in practical applications. It offers an effective technical support
system and a comprehensive theoretical framework for the classifica-
tion and summarisation of paper-cutting datasets.In addition, the
method provides technical support for classification tasks of other
types of art images in ICHwork.OnPACS, ArtDL andCUB-200-2011
datasets, the model in this paper performs better compared to other
classification models, which is also informative for the application of
CLIP model in downstream classification tasks.

Methods
Inorder to address the issueof insufficient expressiveness of unimodal paper
cut image-like prototypes, we propose MPFN, which is based on a model
that is divided into three parts: feature extraction, model fusion and simi-
larity computation. This section begins with an overview of the model’s
overall structure and the central CFMA-Net module. It then provides a
comprehensive account of the underlying principles and processes involved
in feature extraction. Secondly, MPFNs are categorised as either AMPFNs
or IMPFNs, depending on the specific modal fusion methodology
employed. In the case of AMPFNs, the modal fusion process utilises the
CFMA-Net module, which has been proposed in this paper. In order to
optimise the parameters of the model, a training process is required, which
consists of two distinct phases: model training and testing. This approach is
applicable to the classification of paper clippings within the basic categories.
In contrast, IMPFN directly fuses the features of the image and text pro-
totypes without any training process.

Multimodal prototype fusion network
The proposed MPFN comprises three principal components, as illustrated
inFig. 4. (a) Feature extraction:Thepaper-cutdataset and the associated text
information are subjected to feature extraction through the CLIP pre-
selected concatenation model, thereby obtaining the image and text pro-
totype features. (b) Feature fusion: The experimental paper-cut images are
passed throughCLIP Image Encoder, which generates feature vectors in the
embedding space. The input of CFMA-Net is then adjusted by means of
CrossMultiHead Attention, with the residual structure introduced in order
to obtain Feature1 and Feature3. The image prototypical and text proto-
typical are subjected to cross multihead attention adjustments to obtain
feature 3. Subsequently, the class prototype is derived through the fusion of
Feature1, Feature2 and Feature3. (c) Similarity calculation: The image fea-
ture and class prototype are calculated using cosine similarity to determine
the similarity relationship, and the seat predictionwith thehighest similarity
value is output.

Feature extraction
This abstract is concerned with the feature extraction components of the
model. In this paper, the image encoder and text encoder in the CLIP pre-
training model are employed as feature extractors for images and text,
respectively. Subsequently, the solving process and methods of Image
Prototypical and Text Prototypical are described in detail.

Image prototypical
The solution process of Image Prototypical is illustrated in Fig. 5. Initially, n
paper cut images are selected from each category of paper cut dataset.
Subsequently, the feature vectors in the embedding space are extracted by
Image Encoder in CLIP. Subsequently, the feature vectors of the images
within the same category are integrated and averaged to obtain the proto-
typical features of the category. These prototypical features are then inte-
grated to obtain the Image Prototypical. In practice, different numbers of
images can be selected according to the distribution of the number of
categories in the paper-cut dataset to solve the Image Prototypical.

The following is a definition of the paper-cut dataset for the sake of
clarity. The paper-cut image dataset is divided into three subsets: a training
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set, a validation set, and a test set. In this paper, these subsets are denoted as
follows:

Strain ¼ fðxi; yiÞ; yi 2 CgNtrain
i¼1 ð1Þ

Sval ¼ fðxj; yjÞ; yj 2 CgNval

j¼1 ð2Þ

Stest ¼ fðxk; ykÞ; yk 2 CgNtest
k¼1 ð3Þ

Fig. 5 | Image feature extraction. In the paper cut dataset, n images are selected for each category, which will be used to extract features using CLIP’s image encode, and the
image features of the same category will be processed using averaging, and the result will be obtained as an image class prototype.

Fig. 4 | Overall framework. The model comprises three parts: a Feature extraction:
The paper cut dataset and the textual information are embedded as raw CFMA-Net
via the CLIP Encoder. b Feature fusion: The input to CFMA-Net is comprised of
paper cut images, which are encoded using a CLIP encoder. Modal fusion is

completed by CFMA-Net using techniques such as cross-multiple attention and
residuals, and the resulting output is Class prototype. c Similarity calculation: The
similarity relationship between the input paper cutout image and Class prototype is
calculated to get the predicted category.
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where xi; xj; xk represents the ith, jth, and kth images of the training set,
validation set, and test machine, respectively. Similarly, yi; yj; yk denote the
corresponding category labels. The symbols Ntrain;Nval;Ntest indicate the
number of samples in the training, validation, and test sets, respectively.
Finally, C denotes the collection of labels for all categories in the experi-
mental dataset. It should be noted that the sample classification method
presented in this paper is in accordance with the traditional classification
method of deep learning samples, as opposed to the classification method
typically employed for small sample data. Consequently, the categories
(labels) represented in Strain; Sval; Stest are identical, with the exception of the
number of image samples, which varies. Furthermore, the datasets selected
for the feature extraction stage are all drawn from Strain In the event that
images are employed during the initial computation of class prototype, they
will not be reused in the subsequent training stage.

This stage is a traditional prototype network feature extraction
approach. In this paper, we utilise an embedding function,
f I�+ : RD � >RM , which maps image features into a metric space (RD).
This function is applied to the imagexi, which is represented in theR

D space.
The resulting value is used to calculate the image class prototype, Imgi for
each category. The calculation formula as Eq. (4):

Ii ¼
1

Nshots

XNshots

i¼1

f I�+ðxiÞ; xi 2 Sshots; ð4Þ

where Nshots denotes the number of samples required to compute class
prototype, and Ii denotes the image prototype feature corresponding to the
ith category, while Sshots represents the set of samples chosen for this pur-
pose. In contrast to the conventional prototype network, this paper employs
the image encoder of the CLIP pre-trained model as the feature extractor.
This approach eliminates the necessity for training and enables direct
utilisation for feature extraction.

Text prototypical
In the categorisation task, each category is represented by a piece of textual
information. In order to enhance the adaptation to thepaper-cut dataset, the
prompt text for the paper-cut category, ‘This is a paper-cut image of a
[Class]’, has been designed with reference to the phrase model provided by
CLIP, as shown in Fig. 6. The aforementioned prompt text is employed for
the generation of textual information pertaining to each category. Subse-
quently, the Text Encoder in CLIP is employed as a feature extractor, with
the extracted features serving as text feature prototypes for the category in
question. These prototypes are then integrated to generate the Text Pro-
totypical for the entire category.

At this stage, an embedding function is employed for the purpose of
mapping the textual information into the embedding space, represented by
the function f T�+ : TD � >TM . In this context, TD denotes the set of
original text information pertaining to a given category, whereas TM

denotes the set of vector features representing the aforementioned text
informationwithin the embedding space. The calculation formula asEq. (5):

Ti ¼ f T�+ðyiÞ ð5Þ

where yi denotes the textual cue corresponding to the ith paper cut category
and Ti denotes the textual prototype feature corresponding to the ith
category.

Adaptive multimodal prototype fusion network
In the case of AMPFN, the feature fusionmethod selected was CFMA-Net.
The fundamental component of the module is illustrated in Fig. 3b. This
summary provides a comprehensive account of the underlying principles of
CFMA-Net, followedbyanexpositionof the training and testingprocedures
employed for the model.

Cross fusion multihead attention network
The principal function of CFMA-Net is to adaptively de-adapt the class
prototypebasedon the inputpaper cutout image. First, the textual prototype
features and visual prototype features undergo initial feature fusion through
cross-attention and scaled residuals to obtain the preliminary class proto-
type Fp. The formulate as follows:

Fp ¼ αCFMAðPT ; PIÞ þ ð1� αÞPI þ ð1� αÞPT ð6Þ

where PI ¼ fIiji ¼ ½1; n�g denotes Image Prototypical, and PT ¼ fTiji ¼
½1; n�g denotes Text Prototypical. while α(where α 2 ð0; 1Þ) is the residual
scaling coefficient. Subsequently, the preliminary class prototype FP is
refined by leveraging the input image features, yielding the final class pro-
totype P.

P ¼ βCFMAðFp; IÞ þ ð1� βÞPT ð7Þ

where P denotes Class prototype, and β (whereβ 2 ð0; 1Þ) is the residual
scaling coefficient, while I denotes feature vector of the input image.

Training process
The model training process is illustrated in Fig. 7. The input image is
extracted from Image Features by the image encoder of CLIP, and then the
class prototype is obtained by CMFA-Net. The similarity matrix is

Fig. 6 | Text feature extraction. A targeted phrase
was devised for the textual information of the paper-
cut image category: ‘This is a paper-cut image
[class]’. The features are extracted using Text
Encoder in CLIP as a text class prototype for the
paper-cut category.
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calculated by determining the degree of similarity between the image fea-
tures and the class prototype. The highest similarity score in each column is
identified, and the corresponding category is used as the prediction result.
Subsequently, the loss function is calculatedwith the true values through the
cross-entropy loss function. Thereafter, the parameters of CMFA-Net are
updated by backpropagation.

In this, the similaritymatrix is calculated by using the cosine similarity
function as Eq. (8) and Eq.(9):

IiPj ¼
Ii�Pj

jjIijj jjPjjj
ð8Þ

SimðiÞ ¼ MaxðIiPjÞ; j 2 ½1;N� ð9Þ
where SimðiÞ is themaximum value of the similarity calculated between the
image and text features, a predicted class for the image is ultimately obtai-
ned.Subsequently, the loss function is calculated using the prediction
(y0i; ði 2 ½1;N�Þ) and the true category (yi; ði 2 ½1;N�Þ) in order to update
the model parameters.

The loss function chosen is the cross-entropy loss function as in Eq.
(10):

CrossEntropyLoss ¼ �ðy log y0Þ þ ð1� yÞ logð1� y0ÞÞ ð10Þ

Model testing
The models that have undergone training during the training phase are
employed for the purpose of evaluating the classification taskwith respect to
the paper cut test set. The data in the test set Stest is employed for feature
extraction utilising the image encoder of the CLIP pre-trained model to
obtain the image feature. Subsequently, it is utilised to derive the class
prototype through CFMA-Net, and the similarity relationship is calculated

between the image feature and the class prototype. The prediction result is
determined by identifying the class prototype with the largest value of
similarity. The specific steps are illustrated in Fig. 8.

Instant multimodal prototype fusion network
Figure 9 illustrates the Instant Multimodal Prototype Fusion Network. The
most notable aspect of this approach is that it does not necessitate any
training, and the overall process is divided into two phases: feature extrac-
tion and model application. The feature extraction process is analogous to
that employed by AMPFN. This involves the extraction of features, the
generation of image and text class prototype, and the formation of image
and text class prototype, respectively. Subsequently, the two class prototype
are merged to create the final class prototype. The module is based on the
CLIP,which serves as a feature extractor. Thismodel can be directly applied
to the classification task without the need for training, through data pre-
processing (solving of class prototype). The input image is subjected to
feature extractionby the ImageEncoder,whichobtains the feature vectorsof
the image in the embedding space. Subsequently, the similarity is calculated
with the obtained class prototype, and the category with the highest simi-
larity score is used as the final classification result.

In the context of paper cut datawith previously unseen categories, only
a limited amount of dataset labelling can be directly applied to the classi-
fication of image and text class prototype. This is due to the fact that the
number of categories involved is relatively small. This process allows for the
efficient preliminary classification of new categories, reducing the time
required for data labelling and providing a sufficient training dataset for
AMPFN, which enables further refinement of the model’s ability to classify
seen categories.

Results
The experiments presented in this paper are divided into two distinct
categories: those conductedon thepaper cut dataset and those conductedon

Fig. 7 |Model trainingprocess. Subsequently, the input image is subjected to feature
extraction, after which it is assigned its own dynamic class prototype through the
utilisation of CMFA-Net. Subsequently, the similarity relation is calculated with the

class prototype to derive the predicted categories. Thereafter, the loss function is
calculated with the real categories to update the parameters of CMFA-Net.
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the open dataset. The objective of this paper is to enhance the efficacy of
image classification in the context of paper cutout images. To this end, two
experiments are conducted on the paper cutout dataset, namely, the clas-
sification of seen classes and the classification of unseen classes. Subse-
quently, experiments are conducted on public datasets, including PCAS28,
ArtDL29 and CUB-200-2011, with the objective of verifying the robustness
of the proposed method.

Experiments datasets
The paper cut dataset was primarily collected throughmanual means, with
the network comprising 2500 sheets divided into 27 categories. The dis-
tribution of imageswithin each category is not uniform,with amaximumof

188 sheets and aminimumof 25 sheets per category. Thepaper cut dataset is
characterised by a high number of categories and a relatively low amount of
sample data. The application of traditional deep learning in this contextmay
result in amodel exhibiting a bias towards categories with a greater quantity
of data. Conversely, traditional small sample learning is typically employed
in research contexts involving a limitednumber of categories andquantities.
The utilisation of small sample learning in this case may result in the inef-
ficient utilisation of existing image resources. In light of the aforementioned
considerations, this paper opts to utilise the prototype network as the
foundational network, which is capable of adapting the class prototype in
accordance with the varying sample sizes to achieve optimal results. In the
experiment, categories with fewer than 50 samples were augmented to 50

Fig. 8 | Testing process. The image of the paper cut
is subjected to processing in the Image Encoder of
CLIP, resulting in the generation of a feature vector
within the embedding space. Subsequently, the class
prototype is obtained by CFMA-Net, after which the
similarity relation is calculated between the feature
vector of the input image and the class prototype in
order to obtain the prediction result.

Fig. 9 | IMPFN structure diagram.Once the text and image prototypical have been
obtained, the two are directly fused to create class prototype. Once the image has
been extracted using CLIP features, the similarity is calculated with the class

prototype, thereby obtaining the classification result. This method allows for the
efficient classification of previously unseen classes, thus complementing the
experimental dataset.
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through operations such as flipping and rotation. In accordance with the
aforementioned dataset division in the context of the small sample classi-
fication task, this paper proceeds to divide the paper cut dataset into a
training set (support set) anda test set (query set). The training set comprises
14 classes, while the test set comprises 13 classes. The specific division
information is presented in Table 1(The visualization only shows the ori-
ginal dataset distribution before augmentation).

This paper focuses on three public datasets: PACS, ArtDL and CUB-
200-2011. The PACS dataset is a domain-adaptive image dataset. It
encompasses four distinct domains: photographs, art paintings, cartoons,
and sketches. Each domain contains seven categories. Given the artistic
abstraction of the images, we have selected the art painting and sketch
domains as our experimental data. ArtDL is a novel painting dataset for
image classification. The majority of the paintings originate from the
Renaissance period and depict scenes or figures from Christian art. The
ArtDL dataset was created in 2020 by an internationally renowned research
centre for art and technology, with the aim of promoting the integration of
digital art and deep learning technologies. The core research questions
revolve around how to utilize deep learning techniques for the classification,
style transfer, andgenerationof digital artworks.TheCUB-200-2011dataset
is a bird image dataset, encompassing 200 categories and a total of 11,788
images. The specific division is illustrated in Table 2.

Network structure and parameter settings
The modal prototype fusion network is comprised of four principal com-
ponents: the feature extraction module, the CFMA-Net module, the simi-
larity calculation module and the loss function calculation module. The
feature extraction module employs the Image Encode and Text Encode
functions derived from the CLIP pre-training model. The similarity calcu-
lationmodule employs the cosine similarity function,while the loss function
utilises the cross-entropy loss function.

In order to enhance the extraction of image features, the image feature
extraction network employs the Image Encode module from the CLIP pre-
training model. This module primarily utilises the network architecture of
ResNet and the VIT series, including ResNet50, ResNet101, and the
extended ResNet50×4 and ResNet50×16. The ViT series comprises two
variants: VIT-B/16 and VIT-B/32. The text feature extraction network
employs the Text Encode module from the CLIP, which is based on the
Transformer structure.

In order to ascertain the efficacy of disparate image feature extraction
modules, experimental validation is conducted in this paper on the paper
cutout dataset. Thenetwork employed is the adaptivemultimodal prototype
fusion network, and the similarity function is the cosine similarity calcu-
lation function. The specific results are presented in Table 3. It can be

observed that the VIT-B/16 model demonstrates optimal performance in
the 1-shot, 5-shot, and16-shot experiments.Consequently, this study selects
the VIT-B/16 model as the image feature extraction module for CLIP.

The selection of the similarity (distance) calculation function is also a
significant factor that impacts the performance of the model. The most
commonly utilised similarity (distance) calculation functions in metric
learning are the Cosine Similarity function, the EuclideanDistance function
and the Mahalonobis Distance function. In this paper, experimental com-
parisons were conducted on the paper cut image dataset using the three
methods, and the specific results are presented in Table 4. It can be observed
that the overall performance of the cosine similarity function is the most
optimal, and thus, it has been selected as the similarity calculation algorithm
in this paper.

In this paper, all experiments are evaluated using classification accu-
racy, with the results of three experiments averaged to provide a compar-
ison. Our method’s trainable parameters are approximately 0.78M. The
batch size is set to 16. The training epoch is 100. Furthermore, in regard to
the configuration of parameters, Adam (Adaptive Moment Estimation) is
selected as the optimiser. The learning rate is determined through experi-
mentation and set to 1e–5. During training, the image size is proportionally
adjusted to 224 × 224. The normalization process adheres to the same
requirements as CLIP for images, with the mean and standard deviation
values for the RGB channels being: (0.48145466, 0.4578275, 0.40821073)
and (0.26862954, 0.26130258, 0.27577711), respectively.

Paper-cut image classification experiment
The experiments utilising paper-cut images are primarily categorised into
two distinct groups: those pertaining to the classification of the observed
category and those pertaining to the classification of the unobserved cate-
gory. The model that is to be trained is that which has been trained on the
observed category dataset and is then applied directly to the unobserved
category. In this paper, we select two algorithms for comparison: one based
on metric learning and the other based on the CLIP model. To ensure
fairness, we also choose the Image_Encode module in CLIP for the image
feature extraction module in metric learning.

In order to address the issue of data imbalance and the limited number
of samples in some categories, this study employs a data sampling approach,
whereby a small number of data points are selected from each category for
experimentation. The term “n-shot” refers to the selection of n images from
each category for computing class prototype and training the network.

Table 1 | Paper cuter image data division table

Paper-cuter Class count Sample size

Base 14 1456

New 13 1044

Table 2 | Expose the dataset partition table

Dataset Subset Class count Sample size

Art painting (PACS) Base 4 1103

New 3 945

Sketch (PACS) Base 4 2873

New 3 1056

ArtDL Base 10 5846

New 9 23800

CUB-200-2011 Base 100 5927

New 100 5863

Table 3 | Comparison table of module effects

Model n-shot accuracy (%)

1-shot 5-shot 16-shot

RN50 58.74 73.77 78.69

RN50×4 68.85 77.32 79.78

RN101 73.22 81.69 82.79

ViT-B/16 82.19 89.07 90.71

ViT-B/32 80.87 84.97 88.80

The use of bold text indicates themost favourable outcomeswhen the same conditions are applied.

Table 4 | Similarity Algorithm Table

Function type n-shot accuracy (%)

1-shot 5-shot 16-shot

Cosine similarity 82.19 89.07 90.71

Euclidean distance 75.80 78.80 82.06

Mahalanobis distance 74.72 80.94 83.36

The use of bold text indicates themost favourable outcomeswhen the same conditions are applied.
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These images are excluded from the training of the model’s computational
class prototype. The experimental results are presented below.

Regarding the classification of base classes, the specific experimental
results are shown inTable 5. The results indicate thatAMPFNdemonstrates
the optimal performance in 1-shot, 5-shot, and 16-shot scenarios, and the
accuracy increases as the number of samples increases. This is because the
AMPFN and IMPFN proposed in this paper exhibit a certain degree of
dependence on the quantity of the dataset. The larger the number of
experimental data, the stronger the representation ability of the class pro-
totype, and thus the better the classification effect.

Regarding the classification of unseen classes, the specific experimental
effects are presented in Table 6. In the 1-shot, 5-shot, and 16-shot scenarios,
IMPFN shows the most excellent performance. This suggests that when
applied to unseen classes, AMPFN has a poorer performance compared to
IMPFN, while IMPFN has a broader applicability. The performance of
IMPFNonseen classes is similar to that ofAMPFN.Moreover, IMPFNdoes
not require training. It onlyneeds toobtain the class prototype throughprior
conditions and can then be applied to classification tasks.

A detailed examination of the experimental outcomes reveals that the
two multimodal cue learning approaches based on the CLIP pre-training
model of Coop and CoCoop, due to the high level of abstraction inherent in
paper-cut images, which differs from the conventional image content for-
mat, exhibits a comparatively weaker correlation with the corresponding
text content. This, in turn, results in a suboptimal outcome with regard to
the classification based on the text-image similarity. Similarly, the CLIP
Zero-Shot approach encounters the same issue, and it also has a fixed upper
performance limit. Furthermore, the cost of fine-tuning is prohibitively
high, and the improvement effect is limited for datasets with poor classifi-
cation performance. CLIP+Linear can be regarded as a traditional deep

learning model that solely relies on image content for classification. It is
highly dependent on the amount of data and exhibits a robust performance
in classifying seen classes but a suboptimal performance in migrating
unseen classes. ThePrototypicalNetwork andMatchingNetwork, however,
only select image features as the solution object of the class prototype, which
results in an inadequate representation of the class prototype and, conse-
quently, an adverse effect on the classification outcome.

The experimental results demonstrated that, with regard to the paper
cutout dataset, AMPFNexhibited superior performance for the seen classes,
while IMPFN demonstrated enhanced efficacy for the unseen classes.
Furthermore, the model has a reduced number of parameters, necessitates
less computational resources, and canbe rapidly reproducedon themajority
of devices. The superiority of the model proposed in this paper for classi-
fying abstract data images such as paper cuttings is verified through
experimentation, which proves that the method proposed in this paper is
feasible.

Public dataset image classification experiments
In order to further verify the generalisation of the method presented in this
paper, experiments were conducted using the public datasets PACS (art
painting and sketch) andArtDL. These experiments employed a 5-shot and
16-shot classification approach, with the datasets divided into two cate-
gories: classification on Base Classes and Unseen Classes. The results of the
experiments are presented below.

An analysis of Table 7 indicates that for the PACS dataset, the abstract
nature of image content, combined with a limited number of categories and
significant inter-class differences, allows the CLIP Zero-shot method to
achieve high accuracy without training. However, under the 5-shot and 16-
shot conditions, the AMPFN method demonstrates superior performance
after model training. Compared to the Prototypical Network, which solely
utilizes image features for class prototypes, bothAMPFN and IMPFN show
significant improvements in accuracy. This highlights that the use of mul-
timodal prototypes enhances the expressiveness of class prototypes, thereby
improving classification performance.

Analysis of the experimental data in Table 8 shows that in the ArtDL
dataset, the abstract nature of artistic content and the strong modality dif-
ferences between images and text categories (which are named after per-
sons) negatively affect CLIP Zero-shot performance. While Coop and
CoCoop enhancemodel performance through prompt learning to optimize
text inputs, their improvements are limited. AMPFN achieves the best
results in both 5-shot and 16-shot conditions, even surpassing Coop’s 16-
shot performance in the 5-shot scenario. IMPFN also demonstrates high
performance. This indicates that MPFN excels in handling datasets with
abstract content and significant image-text differences. The complexity of
such datasets demands stronger model generalization and feature expres-
sion. By innovatively integrating multimodal information to enhance class
prototype expressiveness, the MPFN series achieves remarkable perfor-
mance improvements in classification tasks. These results validate the
applicability and effectiveness of our method for challenging datasets and
support its potential for real-world applications.

Public dataset generalization from base to new classes
An analysis of the experimental results in Table 9 shows that, for the PACS
(art painting) dataset, AMPFN and IMPFN achieved the best performance
in the 5-shot and 16-shot settings, respectively. For the PACS (sketch)
dataset, IMPFN performed best in both settings. These results demonstrate
that the AMPFN and IMPFN proposed in this paper maintain a certain
advantage in generalizing to unseen classes. Additionally, PACS validation
on new classes involves only three categories with significant inter-class
differences, making classification relatively easier, yet the results still high-
light the superior performance of MPFN.

From the experimental results in Table 10, it can be seen that AMPFN
achieved the best performance in both 5-shot and 16-shot settings for the
new classes in the ArtDL dataset. This further highlights the high perfor-
mance of the MPFN series in classifying abstract art datasets. Overall, these

Table 5 | Base paper-cut classification results

Methods Type Training n-shot accuracy (%)

1-shot 5-shot 16-shot

COOP Prompt learning Yes 55.12 60.20 68.8

CoCoOp Prompt learning Yes 79.56 80.02 83.43

CLIP Zero-shot Contrastive learning No 81.47 81.47 81.47

CLIP-Linear Deep learning Yes 25.07 57.31 72.17

Prototypical Network Metric learning No 47.41 70.84 80.92

Matching Network Metric learning No 45.23 65.33 67.99

AMPFN Metric learning Yes 82.19 89.07 90.71

IMPFN Metric learning No 68.93 83.92 84.64

The use of bold text indicates themost favourable outcomeswhen the same conditions are applied.

Table 6 | Unseen paper-cut classification results

Methods Type Training n-shot Accuracy (%)

1-shot 5-shot 16-shot

COOP Prompt learning Yes 36.21 38.15 41.21

CoCoOp Prompt learning Yes 35.8 32.8 32.4

CLIP zero shot Contrastive learning No 39.93 39.93 39.93

CLIP +Linear Deep learning Yes 20.65 32.51 35.15

Prototypical Network Metric learning No 37.88 70.84 75.3

Matching Network Metric learning No 38.22 55.63 57.52

AMPFN Metric Llearning Yes 50.19 70.61 76.45

IMPFN Metric learning No 53.92 79.52 84.98

The use of bold text indicates themost favourable outcomeswhen the same conditions are applied.
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results validate the effectiveness of our proposed methods in handling
challenging classification tasks.

Fine-grained image classification
The aforementioned experiments serve to validate the efficacy of ourmodel
in the context of commondatasets. Furthermore, the subjective and abstract
nature of paper-cut image works gives rise to the additional issue of inter-
class variability in paper-cut images. As illustrated in Fig. 10, the variability
of paper-cut images between cats and dogs is minimal in both sets (a) and
(b), with the shapes exhibiting notable similarity. This has implications for
the classificationof paper-cut images.As thenumberofpeople engagedwith
paper-cutting increases, it is likely that there will be a corresponding rise in
the number of paper-cutting works produced. This will, in turn, give rise to
the need to consider the problem of further detailed classification of paper-
cutting images. To illustrate, if the two images of birds in Fig. 10 were to be
classified in a more refined manner, the images in group (a) would be
classified as belonging to swallows, while the images in group (b) would be
classified as belonging to pigeons. This necessitates the consideration of the

fine-grained image classification issue, given the considerable inter-class
similarity.

The number of datasets utilising paper cutting for this problem is
limited, therefore the publicly available dataset CUB_200_2011was selected
for evaluation purposes. This dataset represents the current benchmark for
fine-grained classification and recognition research, comprising 200 classes
of bird images with minimal inter-class distinctions. The results of the
experiments are presented in Tables 11, 12.

Analyzing the experimental results in Tables 11, 12, we observe that
IMPFNandAMPFNachieve the best performanceunder 5-shot and 16-shot
conditions respectively for seen categories. Similarly, IMPFN and AMPFN
demonstrate optimal performance under 5-shot and 16-shot conditions for
unseen categories. Notably, CLIP Zero-shot exhibits relatively poor perfor-
mance compared to the Prototypical Network, which achieves satisfactory
results. This suggests that in the CUB_200_2011 dataset, there exists a sig-
nificantdiscrepancybetween image features andcategory textualdescriptions
forCLIPmodels,where classprototypes are substantially influencedby image
features. Remarkably, the Coop method attains 80.56% accuracy under 16-

Table 7 | Base PACS classification results

Datasets Methods Training n-shot accuracy (%)

5-shot 16-shot

PACS (art
painting)

COOP Yes 97.60 98.20

CoCoOp Yes 97.00 98. 20

CLIP Zero-shot No 98.78 98.78

CLIP-Linear Yes 92.20 94.50

Prototypical
Network

No 96.97 98.78

Matching Network No 95.58 98.62

AMPFN Yes 99.09 99.60

IMPFN No 98.49 99.39

PACS (sketch) COOP Yes 94.80 95.80

CoCoOp Yes 96.40 95.50

CLIP Zero-shot No 95.36 95.36

CLIP-Linear Yes 92.80 93.60

Prototypical
Network

No 94.08 94.69

Matching Network No 93.20 93.80

AMPFN Yes 96.06 96.29

IMPFN No 94.78 94.89

The use of bold text indicates themost favourable outcomeswhen the same conditions are applied.

Table 8 | Base ArtDL classification results

Methods Type Training n-shot accuracy (%)

5-shot 16-shot

COOP Prompt learning Yes 32.90 41.20

CoCoOp Prompt learning Yes 24.20 38.20

CLIP zero-shot Contrastive
learning

No 20.67 20.67

CLIP-linear Deep learning Yes 18.90 25.60

Prototypical
network

Metric learning No 34.95 36.78

Matching network Metric learning No 30.25 33.85

AMPFN Metric learning Yes 41.27 41.85

IMPFN Metric learning No 39.57 41.37

The use of bold text indicates themost favourable outcomeswhen the same conditions are applied.

Table 9 | Unseen PACS classification results

Datasets Methods n-shot accuracy (%)

5-shot 16-shot

PACS (art painting) COOP 84.50 85.70

CoCoOp Z 88.60

CLIP Zero-shot 98.48 98.48

CLIP-Linear 90.50 91.20

Prototypical Network 94.01 96.47

Matching Network 92.47 94.68

AMPFN 98.59 98.60

IMPFN 98.23 99.29

PACS (sketch) COOP 97.60 98.50

CoCoOp 99.40 99.40

CLIP Zero-shot 98.97 98.97

CLIP-Linear 94.40 95.30

Prototypical Network 99.18 99.99

Matching Network 97.60 98.60

AMPFN 99.34 99.36

IMPFN 99.99 99.99

The use of bold text indicates themost favourable outcomeswhen the same conditions are applied.

Table 10 | Unseen ArtDL classification results

Methods Type Training n-shot accuracy (%)

5-shot 16-shot

COOP Prompt learning Yes 25.60 26.30

CoCoOp Prompt learning Yes 30.20 35.10

CLIP Zero-shot Contrastive
learning

No 44.51 44.51

CLIP-Linear Deep learning Yes 20.13 27.70

Prototypical
Network

Metric learning No 40.13 47.70

Matching Network Metric learning No 30.14 32.11

AMPFN Metric learning Yes 58.59 62.75

IMPFN Metric learning No 46.58 56.70

The use of bold text indicates themost favourable outcomeswhen the same conditions are applied.
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shot conditions for seen categories, merely 0.02% lower than the top-
performingAMPFN.This indicates that throughmodel training, textual class
prototypes can be effectively aligned with image features. The superior per-
formance of both Coop and Prototypical Network demonstrates the excep-
tional feature representation capabilities inherent in both textual and visual
class prototypes. Our proposed MPFN series, which integrates these dual
modalities, achieves state-of-the-art experimental results and demonstrates
enhanced performance. The outstanding performance on the

CUB_200_2011 dataset validates our model’s robust capability in handling
challenges involving high inter-class similarity.

The MPFN series model proposed in this paper demonstrated
superior performance in experiments on the abstract PACS and ArtDL
datasets. Additionally, it showed strong ability to handle high inter-class
similarity on the fine-grained classification dataset CUB_200_2011.
These experiments validate the effectiveness and superiority of the
MPFN series. In conclusion, for datasets that are more unique and
abstract, such as paper cuttings, AMPFN is more effective on seen
classes, while IMPFN is more suitable for unseen classes. AMPFN
requires data for model training, while IMPFN requires no training and
can be directly applied to downstream classification tasks after obtaining
class prototype by a priori conditions, which is highly applicable. In
comparison to the CLIP-based zero-shot approach, IMPFN demon-
strates enhanced model performance and classification efficacy with an
increase in the quantity of data, establishing a benchmark for the
deployment of CLIP models in downstream tasks.

Ablation study
The proposed AMPFN in this paper primarily consists of threemodules:
the fusion module for image and textual class prototypes, the fusion
module for input images and preliminary class prototypes, and the
residual module. To evaluate the effectiveness of each module, experi-
mental studies were conducted on the Paper-Cut dataset. The experi-
mental results, presented in Table 13, are based on three module
combinations: Scenario 1: Without the residual structure. Scenario 2:
Without fusing input images with preliminary class prototypes. Scenario
3: Using all modules in combination.

An analysis of the experimental results in Table 13 shows that in
Scenario 1, the residual structure is crucial for enhancing model per-
formance by alleviating gradient vanishing and enabling more effective
learning of deep features. A comparison between Scenario 2 and Sce-
nario 3 reveals that fusing input images with preliminary class proto-
types significantly boosts performance, likely due to the complementary
information between image features and class prototypes. Finally, the
results of Scenario 3 demonstrate that combining all modules achieves
the best performance, highlighting the rational design of the AMPFN
model and the synergistic collaboration of its modules in enhancing
classification capabilities.

In this paper, a proportional residual connection strategy is employed
during feature fusion. The residual proportion is treated as a trainable
hyperparameter, allowing its magnitude to be adjusted during model
training. However, different initializations of the residual proportion can
impact the final model performance. Therefore, this paper discusses the
initializationof the residual proportion and conducts experimental analyses,
with the results presented in Table 14. This approach is crucial for perfor-
mance enhancement, as it helps mitigate gradient vanishing and enables
more effective learning of deep features. The experimental results demon-
strate the impact of varying residual proportion initializations on model
outcomes.

Analysis of the experimental results shows that a residual proportion of
0.2 allows the model to achieve the highest accuracy on the paper-cut
dataset. Adjusting the residual proportion significantly impacts model
performance, especiallywith limited samples.Thus, selecting anappropriate
residual proportion is crucial for enhancingmodel performance in practical
applications.

Fig. 10 | A comparative analysis of paper cut images. The data set is divided into
two parts, designated as (a) and b, with each column belonging to the same category
of cut-out images.

Table 11 | Base CUB_200_2011 classification results

Methods Type Training n-shot accuracy (%)

5-shot 16-shot

COOP Prompt learning Yes 72.05 80.56

CoCoOp Prompt learning Yes 73.10 74.10

CLIP zero-shot Contrastive
learning

No 60.33 60.33

CLIP-linear Deep learning Yes 58.05 68.89

Prototypical
network

Metric learning No 71.05 77.91

Matching network Metric learning No 60.27 69.24

AMPFN Metric learning Yes 73.56 80.58

IMPFN Metric learning No 75.28 77.22

The use of bold text indicates themost favourable outcomeswhen the same conditions are applied.

Table 12 | Unseen CUB_200_2011 classification results

Methods Type Training n-shot accuracy (%)

5-shot 16-shot

COOP Prompt learning Yes 33.48 35.54

CoCoOp Prompt learning Yes 52.10 52.30

CLIP Zero-shot Contrastive
learning

No 49.26 49.26

CLIP-Linear Deep learning Yes 45.45 50.66

Prototypical
Network

Metric learning No 62.96 68.63

Matching Network Metric learning No 51.52 62.51

AMPFN Metric learning Yes 63.36 69.32

IMPFN Metric learning No 64.66 68.40

The use of bold text indicates themost favourable outcomeswhen the same conditions are applied.

Table 13 | Ablation Study Results Table

combination 1-shot(%) 5-shot(%) 16-shot(%)

Scenario 1 7.65 10.30 11.20

Scenario 2 50.36 80.60 85.40

Scenario 3 82.19 89.07 90.71

The use of bold text indicates themost favourable outcomeswhen the same conditions are applied.
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Discussion
This paper proposes a multimodal prototype fusion network classification
model (MPFN) for the problem of classifying paper-cut images. Themodel
is divided into two types according to the situation: an adaptivemultimodal
prototype fusion network (AMPFN) and an immediate multimodal pro-
totype fusion network (IMPFN). Both enhance the representation of pro-
totypical by introducing textual semantic features. However, there is a
distinction between the two models in terms of their approach to feature
integration. The AMPFN employs the feature information of the input
image to dynamically adaptively adjust and fuse image-like and text-like
prototypical during training, thereby obtaining the final class prototype. In
contrast, the IMPFN directly performs modal fusion of text-like proto-
typical and image-like prototypical without training, thereby obtaining the
final class prototype. The experimental results demonstrate that the
AMPFN model exhibits superior performance in classifying seen classes,
while the IMPFN model demonstrates superior performance in classifying
unseen classes. The proposed model demonstrates robust classification
capabilities across a range of tasks on the paper cut dataset. Consequently, in
practical applications, IMPFN can be employed to perform preliminary
classification of novel paper-cut image categories with a limited amount of
labelled data, thereby facilitating sufficient experimental data forAMPFN to
enhance its classification performance.

The limitation of this study is that the cue text isfixed. The potential for
adapting different cue texts to suit different classification tasks is not
addressed in this paper. Furthermore, IMPFN is unable to achieve zero-shot
learning, as it requires samples of each category to calculate the class pro-
totypes. The greater the number of samples, the more expressive the class
prototypes become, thereby improving the classification effect. To address
these issues, future work will focus on enhancing the classification perfor-
mance of the model by identifying more appropriate textual cues through
cue learning. Additionally, the related unsupervised classification algorithm
will be employed to initially classify the unseen class of the paper cut dataset,
providing samples for IMPFN to compute class prototypes.

Data availability
For information regarding the paper-cut dataset, please contact cdlin@-
xauat.edu.cn. The PACS datasets at the following link: https://
paperswithcode.com/dataset/pacs; the ArtDL datasets at the following
link: https://artdl.org/; the CUB-200-2011 datasets at the following link:
https://www.vision.caltech.edu/datasets/.
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