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A structural information-guided cross-
modal method for damaged inscription
inpainting via vision-language models
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Restoring inscriptions is crucial for preserving cultural heritage. Current methods primarily focus on
visual-level generation and inpainting, ignoring glyph structure information. However, the structural
integrity of Chinese characters is frequently compromised in damaged inscription images. To address
this challenge, we propose a structural information-guided cross-modal inpainting method. Our dual-
branch network includes an inpainting branch and a structure branch. Firstly, to compensate for
missing structural information, we pretrain a vision-language model to obtain high-quality glyph
structure representations by decomposing each Chinese character into components and structural
relationships. Secondly, the glyph structure representation guides the structure branch to optimize
features from the damaged character image, producing features that contain more glyph structure
information. Thirdly, a feature interaction mechanism injects the optimized features into the inpainting
branch, and an adaptive style embedding module improves restoration accuracy in style, structure,

and detail. Moreover, a feature sharing module alleviates potential conflicts between branches.

Inscription images play a crucial role in preserving historical knowledge,
promoting the art of calligraphy, and safeguarding cultural heritage.
However, compared with natural images, inscription images often have a
simple background and limited contextual information. The lack of sui-
table references poses a significant challenge for traditional methods to
achieve complete and accurate restoration. Currently, most existing
methods rely on generative adversarial networks (GANs)'~, which per-
form restoration by learning unimodal image features. However, these
approaches often ignore the inherent structural information of Chinese
characters, resulting in redundant or incorrect strokes (as shown in
Fig. 1a) as well as missing strokes or disordered components (as shown in
Fig. 1b). A critical challenge lies in achieving structurally coherent and
accurate restoration when continuous and referable texture information is
lacking.

To address these limitations, some researchers have incorporated
skeleton priors” into their models. Although these approaches improve
inpainting performance to a certain degree, they still depend on skeleton
information extracted from inscription images. Moreover, they require a
large and diverse dataset for reference, which limits their applicability in
real-world scenarios. To this end, we propose a structure-guided restoration
method inspired by human perception of Chinese character composition,
which explicitly incorporates glyph structure to enhance inpainting quality
under missing information.

Through long-term reading, the brain becomes familiar with the
structural relationships inherent in Chinese characters. Even if a character’s
image is partially damaged, the brain can reconstruct its correct form
through structural inference. Inspired by human understanding, we pro-
pose that incorporating structural priors into existing restoration models
may equip them with analogous inferential capabilities for damaged
inscription character inpainting. To achieve this, we have to establish a
model to represent the association between the structure of Chinese char-
acters and visual features. Due to the great success of the vision-language
model CLIP in text recognition and detection tasks*™"', we want to use the
CLIP model to obtain the Chinese character structural information. For this
purpose, we decompose Chinese characters into components and their
spatial structure combination relationships, forming ideographic descrip-
tion sequences (IDS) as a source of structural information. Following this
line, we pretrain a CLIP model to achieve cross-modal alignment between
Chinese character images (visual modality) and their corresponding
structural text (i.e., IDS, textual modality). Therefore, the pre-trained CLIP
can provide structural priors to compensate for insufficient visual features
from damaged inscription character images, which can produce more
plausible restorations.

To faithfully reconstruct the original inscription character style,
including stroke morphology and thickness, we introduce a style embedding
module to enhance the original visual features. In particular, instead of
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Fig. 1 | Examples of improperly restored images.
a Preserve meaningless strokes. b Disordered
structure. The first row displays the original images,
while the second row shows the corresponding
incorrect inpainting results.
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trying to disentangle style and content in Chinese characters, it matches
styles via similarity and uses a linear classifier for style prediction and
selection. Subsequently, the chosen style features are integrated into the
original features to enhance stylistic representation.

Unlike natural images, the glyph structure of inscription images is
compromised and they lack the continuous textures or color transitions
found in natural images, which lead to insufficient feature information for
inscription image restoration. Moreover, the limited inscription image data
and the diversity of font styles make it difficult for traditional image
restoration methods to be directly transferred and applied to such tasks.
Therefore, we propose the glyph structure-guided inpainting network
(CINet), which leverages the spatial and structural relationships between
Chinese character components for restoration. Specifically, we establish a
deep association between the image and structural components using the
CLIP model, mapping the structure of the IDS latent space from the CLIP
text encoder as prior information, which can guide the Chinese character
structural branch (CSB) of CINet to generate a complete glyph structure
representation. Additionally, we establish an interaction between the
damaged image features and the structural information of Chinese char-
acters, which enhances the inpainting branch (IB) in understanding the
character structure. Furthermore, we introduce a style embedding module
to maintain consistency in the restoration style.

Our contributions can be summarized as follows:

We propose a learning paradigm for acquiring the structural repre-
sentation of Chinese characters. By decomposing a Chinese character
into a series of components and structural sequences, the CLIP model
is employed to perform cross-modal alignment between the inscription
image and the structural sequence. Through this alignment, the CLIP
text encoder gains the ability to model Chinese character structures,
supplies structural priors when the image is compromised.

We propose a dual-branch glyph structure-guided inpainting network
(CINet). The two branches collaborate through feature sharing,
interaction, and fusion, strengthening the synergy between the two
modalities and enhancing the network’s sensitivity to glyph structures
and restoration performance.

We introduce a style embedding module to enhance the network’s
sensitivity to different Chinese character styles. Experimental results
show that the CINet addresses varying levels of damage and minimizes
data dependency, making it particularly suitable for inpainting
inscription images.
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Methods

Overview of related methods

Image inpainting involves reconstructing damaged regions by utilizing
contextual cues and surrounding features. Deep learning has driven the

development of numerous image inpainting methods, including local
completion based on convolutional neural networks'’, GANs', and diffusion
models"". Zhu et al." recently introduced GSDM, a two-stage diffusion
framework guided by global structure, which integrates structure prediction
and content generation for improved text-image inpainting. Although
existing methods have achieved notable progress in content generation, they
remain limited in structural modeling, especially in capturing long-range
dependencies and complex structural relationships. To address this, recent
studies have increasingly adopted self-attention mechanisms to enhance
global structure perception. Self-attention, a key component of transformer
architecture', has proven to be highly effective in modeling global depen-
dencies and has shown substantial success in image inpainting tasks. As a
result, there has been growing research'*"* focused on enhancing trans-
formers to improve reconstruction quality. One notable approach, proposed
by Deng et al.”, is the Tformer network, which leverages Transformer
modules. This network adopts a U-Net-like architecture and integrates an
innovative linear attention mechanism with a gating module. This design
reduces the computational complexity of traditional self-attention while
preserving the ability to model long-range dependencies, greatly improving
image inpainting and supporting large-scale and real-time tasks. A similar
framework, Uformer, proposed by Wang et al."”, replaces global self-
attention with a local enhanced window Transformer module and intro-
duces alearnable multiscale restoration module, which ensures high-quality
image restoration details while alleviating the computational burden. To
strike a balance between computational complexity and restoration quality,
Huang et al.”’ developed a method that enhances Transformer performance
in high-resolution image restoration. They designed a cross-channel
attention mechanism to model global dependencies, implementing sparse
attention distribution by replacing Softmax with ReLU, thus mitigating
performance bottlenecks due to high computational complexity. To further
enhance the preservation of restoration details, Chen et al.'"® proposed the
M x T framework, combining Mamba with Transformer to leverage their
synergy for improving detail recovery and ensuring global semantic con-
sistency in image inpainting tasks. In addition to self-attention, researchers
have explored various other attention mechanisms to further enhance image
inpainting. Cheng et al.”" introduced a lightweight framework that incor-
porates an attention module into group convolutions. This model uses a
rotation mechanism to assign attention weights between groups, enhancing
the interaction between global and local information, making it especially
suitable for resource-limited applications. Wang et al.”> proposed three
attention networks aimed at boosting image restoration performance. Chen
et al.”, aiming to process global information more effectively, reduced the
resolution of damaged images and used a U-Net-like architecture for global
feature capture. They also added a second branch with multiscale channel
attention for local restoration and fused the outputs of both branches to
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Fig. 2 | Overall framework of CINet. The architecture of CINet, which consists of an inpainting branch and a Chinese structure branch for structural awareness.

improve the final restoration quality. The research above highlights the
pivotal role of attention mechanisms in image restoration. By modeling the
relationships between global and local features, attention mechanisms
effectively leverage contextual information to restore damaged regions.
While natural images provide rich information with diverse colors and
textures, supporting robust attention mechanisms use, inscription images
typically feature simpler backgrounds with fewer usable features, making
inpainting more challenging. Therefore, to address the lack of contextual
information in inscription images, it is essential to introduce additional
reference data during the inpainting process to improve restoration quality.

Due to their age, many crucial glyph structures in inscription images
may have been damaged. The goal of inpainting is to restore the complete
inscription image, even when structural information is missing. This
requires a deep understanding of Chinese character structure and ensures
that the restored characters maintain the same style as the original. To
provide a comprehensive overview, the following section discusses
restoration methods for inscription images, extending the related research
on calligraphy and document image restoration. Existing work primarily
relies on image features for inpainting. For instance, Sun et al. proposed
the RubGAN model’, which utilizes a dual discriminator design: one
focuses on detailed information, while the other captures global features.
By working together, these discriminators help the generator produce
restoration results with richer details and more coherent structures. Chen
et al’” enhanced the GAN framework by incorporating dilated
convolutions™ into the generator, expanding the receptive field and
improving the model’s feature extraction capabilities. While these
methods are effective for lightly damaged inscription images, they fall
short when dealing with severe damage, as relying solely on image features
provides insufficient information, leading to reduced restoration perfor-
mance. To overcome this limitation, some researchers®”*® have attempted
to incorporate additional prior information to improve inpainting per-
formance. Shi et al.” proposed a method that uses character skeletons as
priors to restore real-world inscription images. Built on a GAN frame-
work, this method leverages multiscale feature fusion to enhance detail
restoration. Li et al.”® introduced a network similar to font style transfer,
incorporating template images to provide structural information and
using a style encoder for style consistency. Shi et al.’ proposed a parallel-
task framework for denoising inscription images, where image and ske-
leton features are fused using spatial and channel attention mechanisms
and reinjected to preserve glyph structures. Song et al.”” incorporated a
self-attention mechanism into the GAN generator to better capture global
information, employing multiple loss functions to improve handwritten

Chinese character inpainting. These methods improve restoration accu-
racy by extracting skeleton information or using attention mechanisms to
enhance the utilization of image features. However, they are fundamen-
tally constrained by their reliance on image features, limiting their ability
to restore glyph integrity when the image data quality is poor. In addition,
variational autoencoders (VAEs)*, commonly used for image inpainting
and reconstruction, encode images into a latent space for progressive
reconstruction. Pathak et al. further proposed the context encoder net-
work (CENet)”, which combines VAEs with generative adversarial net-
works (GANs) to improve performance. A recent study by Zhao et al.”
proposed a cross-autoencoder framework for inscription image inpaint-
ing, which employs dilated convolutions and channel attention for parallel
feature encoding, and uses shared-parameter decoders optimized with
multiple loss functions to improve inpainting performance. In related
research, Zhang et al.* expanded the dataset by modeling noise in calli-
graphy images and used GANSs to remove noise patches. Souibgui et al.’
proposed a document restoration network based on a conditional GAN
with a U-Net architecture, designed to handle watermarks, ink stains, and
uneven backgrounds in document images. Lugo-Torres et al.”" applied a
CycleGAN framework® to address uneven backgrounds in document
images (e.g., stains and creases), improving the readability of the docu-
ments. In summary, while existing methods for inscription image
inpainting have advanced, relying solely on image features is insufficient
for restoring glyph integrity and accuracy. Therefore, integrating glyph
structure information into restoration networks is essential for improving
the performance of inpainting methods, especially when dealing with
severely damaged inscription images.

Overall architecture of the proposed method

To enhance the model’s ability to extract discriminative features in severely
damaged scenarios, we propose the CINet, a cross-modal glyph structure-
guided inpainting network. As illustrated in Fig. 2, the CINet consists of a
backbone network (Eg), an inpainting branch (IB), a Chinese character
structural branch (CSB), and a pretrained text encoder (Etgx). The CINet
integrates the character structure information from the CSB into the IB
through a cross-attention mechanism, allowing the IB to focus on damaged
areas and thereby achieving more accurate restoration results. Ergx is
derived from a pretrained CLIP model on large-scale data. The structural
vector served as a cross-modal structural prior, learned from extensive the
pretraining data rather than the limited samples of the current inpainting
task. Moreover, this prior has already been well aligned with the visual
features of complete Chinese characters during pretraining and
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where x,, represents the damaged image, while IB, Ej, and CSB denote the
functions describing the IB, Eg, and CSB, respectively. S, represents the
style embedding.

Pre-training CLIP for glyph structure representation

Chinese characters have significant structural characteristics, and their glyphs
are composed of multiple components arranged according to specific spatial
relationships (such as left and right, up and down). For example, the character
“¥3” consists of the components “ZK”, /77, and “A”, arranged in a left-right
and semi-enclosing structure. To formalize the structural representation of
Chinese characters, the Unicode standard defines IDS. IDS consists of
structural symbols (e.g., € and € to represent structures) and component
symbols (e.g., X, ], and 4 to represent components) defined by Unicode. It
encodes Chinese character components and their hierarchical relationships,
thereby achieving the standardized decomposition of glyph structures.

For inscription image inpainting, although different fonts exhibit sig-
nificant visual variations, their fundamental structures typically remain
consistent. However, relying solely on visual features makes models sus-
ceptible to style interference, hindering the learning of unified and stable
structural representations. To address this, we introduce a structure-aware
cross-modal alignment mechanism inspired by CLIP. Although CLIP is
effective in semantic tasks such as retrieval and classification, it lacks
structural modeling capabilities, limiting its suitability for structure-
sensitive tasks involving Chinese characters. To improve structural under-
standing, we propose an alignment paradigm that replaces natural language
with sequential representations of Chinese character structures. These
sequences are then aligned with character images during training, guiding
the model to learn style-independent structural representations and
improving its ability to model glyph structures. In particular, when training
the CLIP model, we input Chinese character images and ideographic
description sequences (IDS) into the image encoder and text encoder,
respectively, as shown in Fig. 3. Specifically, we adopt the ResNet-50
architecture as the image encoder to extract the image feature vector (I), and
use a Transformer-based text encoder that models sequential dependencies
and projects its output through a linear layer to match the dimensionality of
I, resulting in the text feature vector (7).

We apply contrastive loss optimization to align a batch of M image
feature vectors and text vectors. The specific loss function is as follows,
where the first term represents the image-to-text loss, while the second term

Image N X -

Encoder ]l > -1 T | T 1Ty
¥

L M

Fig. 4 | The inference process of Chinese character recognition. Chinese character
categories are determined by computing the cosine similarity between the output
vectors of the image and text encoders.

represents the text-to-image loss.
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By training on large-scale image-IDS pairs, the CLIP model learns to
align the visual features of complete Chinese characters with their structural
representations. This alignment can establish a stable structural prior after
training. On the one hand, the representation of IDS sequences remains
invariant to font style variations and exhibits strong consistency. On the
other hand, it is independent of the data scale in downstream restoration
tasks. Consequently, even when training data is limited, the model can rely
on the structural vector produced by the text encoder to provide high-
quality structural guidance for the inpainting network.

After training, the inference process is illustrated in Fig. 4. The CLIP
model first encodes the Chinese character image using the image encoder to
obtain its image feature vector (I). Simultaneously, the K predefined can-
didate Chinese characters are decomposed into IDS and encoded by the
Ergx into a series of textual feature vectors T = {T\,T,,..., Ty }. By
computing the similarity between the image and textual representations, the
model outputs the index k* corresponding to the character category with the
highest similarity. Accordingly, the corresponding textural feature T
represents the structural information of the Chinese character. To clarify, we
provide the following formula.

k* = argmax S(I, T
ke(%,z...‘K) (L7 @)

where S denotes the cosine similarity calculation.

Backbone network
ResNet”, renowned for its innovative residual connection design, excels in

both global and local feature extraction and is widely used in visual tasks™*.
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Fig. 5 | Text decoder of the Chinese character structure branch. It generates the
structural vector (T,,,) of Chinese characters.

Therefore, we select ResNet-50 as the backbone for the backbone feature
extraction.

Fyon = ResNets (x,,) (4)

where F,, represents the extracted the backbone features.

Next, we respectively use three 3 x 3 convolutions to obtain the initial
feature Fy,,, | of the inpainting branch and the initial feature Fy, , of the
structural branch.

tex_.

Feature sharing module

Benefiting from the introduction of the CSB, the IB becomes more sensitive
to glyph perception, thereby significantly improving the inpainting results.
Notably, the IB focuses on restoring pixel-level details, while the CSB
emphasizes the semantic features of the overall glyph structure. To align the
features with the needs of different tasks, we design a feature sharing module
(FSM) to address potential inconsistencies, as shown by the pink dashed box
in Fig. 2. First, the FSM applies three convolutional layers (with a kernel size
of 3x3) to each task branch to extract task-specific features. Then, the
extracted features are concatenated using the concatenation operation (Cat).
Finally, a 3 x 3 convolutional layer is applied to the concatenated features to
fuse them, resulting in the sharing feature F, ; as shown in Eq. (5), which can
enhance the interaction and correlation between the initial features of the
CSB and IB branches.

Ffus = COI’IV3 x3 (Cat <Fimg_1 ’ Ftex_1)> (5)

Character structure branch

The CSB, consisting of a cross-attention module (CArgx) and a text decoder
(Drgx) as shown in Fig. 2, is responsible for extracting high-quality glyph
structure information, helping the IB more sensitively perceive the semantic
features of the glyphs during restoration process. Therefore, obtaining and
utilizing cross-modal glyph structure information is a critical task. Inspired
by the cross-modal learning between images and texts in the CLIP model, we
first pretrained a CLIP model for Chinese character image recognition.
Then, we applied the Ergx from the pretrained CLIP model to get Chinese
character structure representations for constraining the output features of
the CSB. This process forces the CSB to extract key glyph information from
the damaged images. Finally, the glyph representation is passed to the IB
through a cross-attention mechanism, enabling the IB to incorporate glyph
constraints and ensure the accuracy of the restored character structure.

In the CSB, the process of glyph structure extraction is as follows. First,
the CArgx is used to obtain an enhanced feature F,,, , from the initial
feature F,,, | and the sharing feature Fg, as shown in Eq. (6). Then, the
Drgx is applied to map the enhanced feature F,,, , to Chinese character
structure feature (T, ). Finally, the similarity between the output feature of

Ergx and T, is calculated to obtain structural information.

QK{
Fiex» = CArgx (Qy, Ky, V) = Softmax - v, (6)

where Q, = WF,,, |, K, = WKF, V| = WV, with W, WK and
W/ denoting learnable weight matrices, and ¢ is the scaling factor.

Since the CSB relies on features from the damaged character image, it
encounters limitations of accurately capturing the complete structural
information. To improve the representation of Chinese character structures,
we leverage the Ergx output from the pre-trained CLIP model as structural
prior knowledge, which constrains the prediction vector from Drgx and
guides the CSB branch toward generating a more complete and accurate
glyph structure. The Drgx is based on a Transformer architecture'’, as
illustrated in Fig. 5. Specifically, F,., , is first processed by a multihead self-
attention mechanism (MSA), followed by a feed forward network and a
normalization layer. Finally, a fully connected layer outputs the Chinese
character structure prediction vector (T',,).

Theloss function L., of the CSB consists of two components: the cross-
entropy loss L. and the mean squared error loss Ly;. Specifically, we utilize
the E_,, provided by Ergx from CLIP as the target. By optimizing the
similarity between the T, from Drgx and E_;, we aim to bring T, and
E . closer within the feature space. Moreover, we apply Ly to constrain the
distance between the T, and E_ . The detailed formulas (7)-(9) are as
follows:

out*

1 N exp(T" . - EJ’n
Lrec - _ Nzlog c P( out out)v (7)
n=1 Zj:l exp(Tgut ) Eout)
1 N
Ly = NZ ||Ezut - TZutl |§ ®
n=1
Ltex = Lrec +0.01- Ldis (9)

where N represents the number of samples in a batch. C indicates the
number of Chinese character categories, while E., refers to the feature
vector corresponding to the ground-truth character label y,.

Inpainting branch

The inpainting branch (IB) is responsible for restoring the structure, style,
and details of Chinese characters. It comprises an image decoder (Dvg),
two cross-attention mechanisms (CApyg and CApyg tex)> and a style
embedding module as shown in Fig. 2. First, the IB branch performs a
feature interaction between the initial feature Fing ; and the sharing
feature F, ; through the cross-attention (CApyc), obtaining an enhanced
feature representation Fi,,_» as shown in Eq. (10). Then, the CApyg_tex
is employed to inject the cross-modal glyph structure feature extracted
from the CSB into the IB, helping it focus on the key parts of the
restoration and ensuring the accuracy of the restored Chinese character
structure. The feature F;, 5 generated by the CApvc_rex is expressed by
Eq. (11).

T
Fingo = Softmax (_szz ) V, (10)

where Q, = WF, . |, K, = WKE, V, = WY Fq,, with WY, WK and

W) denoting learnable weight matrices.

img_1>

(11)
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= WF,, 5 Ky = WKT (. V, = WYT
WY representing learnable weight matrices.

where Q; withWg, WK and

img_2> out> out>

Due to the difficulty of decoupling the style and content features of
Chinese characters from the latent feature (i.e., F,, 3), we don’t adopt
the decoupling approach™. Instead, we use the style embedding to
enhance the latent feature representation, where style loss optimization
encourages the style embedding module to learn more discriminative
style representations, as shown in Fig. 6. Specifically, we assign a unique
index to each style category and convert the style index into a style
embedding matrix (I, ) through an embedding layer. We then com-
pute the similarity by performing a dot product between I, and the

transformed image features F; . ; from the original features Fy,, 5. The
formula is as follows:
Suot (Iemb, Fig 3) =1, (Angool(Sigmoid (Fimg 3) )) (12)

The dot product S, is a widely used and effective similarity measure in
deep learning. It is adopted in the self-attention mechanism of Transformer
models®, as well as in various tasks such as sentence transformation and
sentiment intensity modeling”. Finally, the computed similarity is passed
through a fully connected layer to predict the font style, as follows:

Istyle =FC (Sdot (Iemb7 F;mg_3 ) ) (13)

where I, corresponds to the logits output by the model, and FC(:)
represents the output of the fully connected layer.

® Matrix multiplication ley]eLoss cons!ralml

F,

img_3
4’| Sigmoid |—>| Avg Pool

|

| |
| |
' Ly |
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I |
I |
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Fig. 6 | Structure of the style embedding module. It is used to capture the style
representation of the image.
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We apply the multiclass cross-entropy loss L
prediction, as shown in the formula (14):

syle 1O constrain the style

N ex ( L )
_izlog /P e (14)
N C ]

n=1 P 1exp( Syle Itme>
where the numerator represents the similarity score between the predicted
style feature and the reference vector of its ground-truth category t”, and the
denominator is the sum of similarity scores between the predicted style
feature and the style vectors of all style categories C'.

The Dy is a hierarchical feature fusion network, and its key design is
the multilevel feature fusion module (MFM), inspired by ref. 38. MFM
integrates both standard convolution and dilated convolution, effectively
extracting multiscale features, as shown in Fig. 7. The Dy begins feature
tusion from the deepest layers and progressively fuses toward the shallower
layers. After each fusion level, the predicted results are resized to the original
dimensions through a 3 x 3 convolution and an interpolation operation.
This design of multiscale supervision can significantly enhance the
restoration performance. The decoding process is represented as follows:

S = { Conv s (MEM, (Flp, (Figs + Sens) ) )1 = 3,2,1,0}(13)

where %, represents the final restoration result. S, is obtained by trans-
forming the dimensions of I

We employ a multiscale supervision strategy to optimize the restora-
tion process, applying L, loss on the outputs of each intermediate layer. The
final loss function L, ;,; can be expressed as follows:

3
0= willx — x|, (16)
1=0
where X, X,, and x5 are the outputs of the intermediate layers.
In summary, the overall loss L, for training CINet consists of three
components, defined as follows:

Ltotal = Ltex + Lstyle + Lmulti (17)

Results

Datasets and experimental settings

Due to the lack of publicly available inscription image datasets, we con-
structed a real-damaged inscription dataset (DID) by collecting images from
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Fig. 7 | The image decoder (DIMG) of the inpainting branch. The decoder mainly comprises multiple feature fusion modules (MFM) and an output layer, producing the

final restored image.
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a public database; However, the types of damaged inscription images in this
dataset are relatively limited and do not cover more severe degradation that
may occur in practical scenarios. In addition, the dataset is relatively small,
making it insufficient to evaluate the model’s generalization ability. To
address this issue, we further constructed two synthetic datasets, namely the
Damaged Printed Chinese Characters Dataset (DPCCD) and the Damaged
Handwritten Chinese Characters Dataset (DHWD), to assist in analyzing
the model’s performance under various conditions. Furthermore, we
introduced a Printed Chinese Characters Dataset (PCCD) to train the
CLIP model.

We gathered inscription images from different dynasties to construct
the DID, resulting in a dataset of 3295 inscription images, as shown in
Fig. 8a. We use 2608 images for training and 687 for testing.

To construct the DPCCD, we collected 10 unseen styles (not part of
PCCD) to generate images for 3755 Chinese character categories, totaling
37,550 images. We introduced various damaged types and adjusted the
damaged areas to create diverse damaged images, as shown in Fig. 8b. Of
which, 31,920 images are used for training and 5630 for testing.

We collected 37,423 images of handwritten Chinese characters from 10
authors from HWDBL.1”, forming the DHWD. We then generated
damaged images by applying various damage types and adjusting the damage
areas. A total of 31,841 images are used for training and 5582 for testing.

We collected 120 styles and 3755 Chinese character categories
(GB2312 level-1 characters) from a public database, to construct the PCCD,
resulting in 450,600 Chinese character images. The training set includes
110 styles, with 100 styles randomly selected to generate samples for 1126
Chinese character categories. Additionally, 2629 Chinese character cate-
gories are covered by all 110 styles. The total number of training samples
amounts to 401,790 images. The test set contains 10 unseen styles, with
11,260 Chinese character images generated as test samples.

We use several evaluation metrics to assess model performance, where
the PSNR and SSIM are used to evaluate the pixel-level difference and
structural integrity, the LPIPS measures the perceptual difference, and the
FID quantifies the difference in data distribution between the reconstructed
and ground-truth image. To evaluate the model’s ability of restoring styles,
we train a style classifier on the test set and use it to calculate style scores
(StSc)* for the inpainting images.

The model is implemented using the PyTorch framework and trained
on an i9-14900KF processor with an NVIDIA GeForce RTX 4090D (24 GB)
GPU. The IB uses the Adam optimizer'' with a learning rate of 2 x 107%,
while the CSB uses the Adadelta optimizer”” with a learning rate of 1.
Specifically, the DPCCD and DHWD use 128 x 128 with a batch size of 32,
while DID uses 256 x 256 with a batch size of 8. The coefficients w; in the
loss function L, are set to [0.5,0.3,0.2,0.1]. To provide a more detailed
description of the training process, we present the implementation pseudo
code in Algorithm 1.

Algorithm 1. Pseudo code of CINet method

Input: training dataset is Dg,,, = {x;, yi}ll, batch size N is 8 and the
epoch is 200

Output: inpainting image x
. Randomly initialize the model parameter 6.
. For i =1 to epoch do
. {xy,yn} <Sample(Dyy,, N).
- F bon < EB (xN
. Ffus7 Fimg_1>Ftex_l <~ FIM(Fbon)
- Py o < CATEX(W?Ftex,lv WfFfuw WYFfus)’
Fing < CAIMG<W2QFimg_l’W§Ffus7W;/Ffus>
Eoy < Erex (yy

W3 F, g 27 W§T0ut7 W;/Tout>
Semb )» ¥ < Tou X Equt

A\ U1 W W N

img_.

7. Tout A DTEX (Ftex,z)’
8. Fing 3 < CAIMG,TEX(
9. & < Dy, g"‘m’ F

10. Update CS

11. Update IB

12. end for

img_3» Yemb

1 https://www.9610.com/index.htm 2https://www.foundertype.com/
index.php/FindFont/index

Comparison to state-of-the-art methods

In the inpainting of damaged Chinese characters, the absence of strokes and
components significantly hinders the recovery of complete structural
information when relying solely on the degraded image. To address this
limitation, we utilize the known target character category during the
restoration process and employ a trained structural feature extraction model

Printed Chinese
Character Images

- o - 4 - FL " 4
— . 4 — - -.-/‘r
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Character Images {
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7 (@)
-
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Fig. 8 | Examples of real and synthetic datasets. a Examples of real-inscription dataset. b Examples of the synthetic dataset with various corrosion and damage shapes.
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Table 1 | Recognition accuracy of 10 unseen styles (%)

Style Code FZZDXJW FZZhangMLBKSJW FZZhaoMFKSJW FZZhaoMFXSJW FZZHengWGBKSJW
Accuracy 99.911% 98.757% 93.517% 82.416% 99.023%
Style Code FZZhengYJW-R FZZhenSYJW FZZhiATJW FZZHJW XinhuaNewsType-Bold
Accuracy 99.911 99.911 98.313% 99.911% 99.911%
Fig. 9 | t-SNE visualization of feature distributions t-SNE of the Same Chinese Character
for the same Chinese character. We use different n
colors and shapes to distinguish Chinese character 00
classes. Same-class samples cluster tightly in the ‘71 "
feature space, indicating robust structural repre- 00 Af%
sentations by the model. 25 &
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to obtain a complete structural representation of the character. This
representation is subsequently fused with image features to guide the
inpainting of missing regions. Unlike conventional cross-style recognition
methods, our approach focuses on extracting stable and precise structural
features rather than depending on the model’s generalization ability to
unseen fonts. To ensure the reliability of structural representations, training
data should feature clear strokes, standardized structures, and high legibility.
The PCCD dataset, composed of high-quality printed Chinese characters
with complete and regular structures, provides ideal structural templates for
the model. In contrast, handwritten or inscription-based datasets often
exhibit considerable structural distortion and noise, making them less sui-
table for learning stable structural features and potentially degrading
restoration performance.

Although the core of our method lies in leveraging stable structural
features, we also evaluate the CLIP model across various font styles to gain a
more comprehensive understanding of its performance. Specifically, we
train the CLIP model using the PCCD, and the pretrained text encoder
generates high-quality Chinese character glyph structure representations
that are independent of character style. To evaluate the robustness of the
CLIP model in recognizing Chinese characters across different font styles,
we conduct tests on 1126 Chinese character categories and 10 font styles
(both seen and unseen). Notably, there is no overlap between these test sets
and the training set. The average recognition rate for the 10 seen font styles is
99.876%, while the rate for the 10 unseen font styles is 97.158% (as shown in
Table 1), indicating only a slight drop in performance. Among the unseen
fonts, one style achieves a recognition accuracy of approximately 82%, while
all others exceed 90%. Overall, the model demonstrates strong robustness to
unseen font styles. Even in extreme cases where generalization is limited,
reliable structural information can still be retrieved during the inpainting
process by leveraging the known character category.

In damaged character scenarios, we rely on the known character
category to obtain a complete structural representation from the pretrained
model. Accordingly, the model must be capable of extracting consistent

structural features across different font styles. To validate this capability, we
select the same character rendered in multiple font styles, extract its struc-
tural features using the trained model, and project the resulting features into
a two-dimensional space using t-SNE, as illustrated in Fig. 9. The t-SNE
visualization shows that different font styles of the same character form tight
clusters in the feature space, indicating that the structural representations
extracted by the model remain stable and consistent across font variations.
This property ensures that accurate structural information can still be
retrieved from the model to support the inpainting process, even when the
input image is damaged, provided that the character category is known.

Because inscription image inpainting is a small-sample problem, we
evaluate the performance of various methods under reduced data conditions
from two perspectives: the insufficient number of glyph instance samples
(G) and style samples (S). We analyze the applicability of different models in
small-sample scenarios.

First, reducing G refers to decreasing the number of damaged images
with diverse styles under the same IDS conditions. Table 2 summarizes the
performance of different methods as G decreases by a step of 2, from 5 to 1
(i.e, 5— 3 — 1), keeping S constant (in this case, S = 2629). As shown in
Table 2, the evaluation metrics for all methods generally exhibit a downward
trend as G decreases, indicating that glyph structural features are crucial to
restoration performance. With only one instance, other models struggle to
learn sufficient structural features, resulting in suboptimal restoration. In
contrast, CINet performs the best in this scenario, demonstrating its ability
to effectively compensate for the lack of information caused by a single glyph
sample and showing better adaptability to scarce glyphs. Specifically,
compared to the second-place methods, our model outperforms CENet by
0.4442 dB in PSNR; outperforms GSDM by 0.0046 and 0.0205 in SSIM and
StSc, respectively; and reduces LPIPS and FID by 0.0051 and 0.6358,
respectively.

Second, the reduction of S refers to the decrease in degraded images with
identical styles but different IDS. Table 3 reports the performance of various
methods when G is 5, and the number of S decreases in an approximately
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Table 2 | Impact of reducing glyph instances on performance of the DPCDD Dataset

G of seen inpainting character PSNR 1 SSIM 1 LPIPS | FID | StSC 1
G=5 CIDG* 18.7166 0.9289 0.0742 11.0120 0.9041
DE-GAN® 18.0239 0.7739 0.1572 95.0079 0.6941
CycleGAN? 13.9018 0.8078 0.1583 45.0151 0.7137
RubGAN?® 14.1066 0.8342 0.1336 20.7753 0.7698
FD-Net* 18.4013 0.8448 0.1352 63.6833 0.8092
RCRN’ 19.9264 0.9300 0.0647 8.9237 0.9218
Charformer® 19.3447 0.9267 0.0702 13.5724 0.9133
Uformer'® 18.2975 0.9129 0.0885 16.1491 0.8560
Tformer'” 19.0662 0.9020 0.0635 5.0784 0.9140
CENet” 21.4248 0.9050 0.0836 34.0152 0.9126
GSDM'™ 21.8589 0.9508 0.0421 2.9016 0.9560
CINet(ours) 22.5642 0.9501 0.0365 2.5185 0.9728
G=3 CIDG* 18.6069 0.9300 0.0766 10.7084 0.8995
DE-GAN® 17.9095 0.7792 0.1579 100.5968 0.7162
CycleGAN? 13.6177 0.8071 0.1609 27.9348 0.6124
RubGAN?® 14.2907 0.8260 0.1366 27.4403 0.7593
FD-Net* 17.7863 0.8308 0.1539 73.4424 0.7723
RCRN’ 19.6830 0.9286 0.0671 9.5869 0.9224
Charformer® 19.6244 0.9184 0.0726 13.0601 0.9140
Uformer'® 18.1853 0.9109 0.0906 16.3983 0.8451
Tformer'” 18.7107 0.9197 0.0657 5.7012 0.9057
CENet” 21.1021 0.8967 0.0879 35.9235 0.8927
GSDM'™ 21.5331 0.9485 0.0442 3.1541 0.9488
CINet(ours) 22.1492 0.9525 0.0387 2.6915 0.9680
G=1 CIDG* 18.4636 0.9276 0.0781 10.9620 0.9060
DE-GAN® 17.8112 0.7765 0.1623 96.9172 0.6861
CycleGAN? 11.4235 0.7148 0.2517 80.3395 0.5531
RubGAN?® 13.3369 0.8087 0.1519 35.3300 0.7259
FD-Net* 14.4154 0.7813 0.2068 118.5517 0.5700
RCRN’ 19.5665 0.9215 0.0704 11.5964 0.9156
Charformer® 16.5597 0.7348 0.1592 48.1134 0.7972
Uformer'® 17.9328 0.9027 0.0957 19.7934 0.8398
Tformer'” 18.8557 0.8502 0.0669 6.0376 0.9110
CENet* 21.3248 0.8957 0.0895 46.9806 0.8909
GSDM'™ 21.2570 0.9458 0.0464 3.3881 0.9472
CINet(ours) 21.7690 0.9504 0.0413 2.7523 0.9677

The optimal results are shown in bold, and the sub-optimal results are underlined. G denotes glyph instance samples.

halving pattern, from 1315 to 329 (ie., 1315 — 657 — 329). As shown in
Table 3, with the reduction of S, the evaluation metrics for all methods
generally show a downward trend, indicating that style information also
influences restoration performance. However, our model, CINet, still
maintains optimal performance compared to all other methods. When
S =329, although our method is 0.0167 lower than the best-performing
method in SSIM, it achieves a 0.0823 dB and 0.0202 increase in PSNR and
StSc over the second-best, along with reductions of 0.0010 and 0.0700 in
LPIPS and FID, respectively. This shows that even with insufficient style
information, our method can maintain excellent performance. As shown in
Fig. 10, CINet can effectively restores the image, while other models (e.g., DE-
GAN, FD-Net, RubGAN, and CENet) produce artifacts. Moreover, com-
pared to models such as RCRN, Tformer, and GSDM, CINet demonstrates
greater precision in restoring glyph structures (as highlighted by the red
boxes), while better preserving details and avoiding structural blurring or loss.

To more clearly and intuitively demonstrate the performance of CINet
under limited G and S samples, we present Table 4 and Fig. 11. Table 4
shows the inpainting effects of CINet as G and S decrease. It is evident that
even with a minimal number of glyph categories and style samples (G =1,
S =329), our model still outperforms most other models tested at G = 5 and
S$=2629 (as shown in Table 2). This proves the effectiveness and applic-
ability of our method under small-scale conditions. Figure 11a illustrates the
variation trend of S. Specifically, Table 4 divides S into three groups, with G
remaining consistent within each group, highlighting the variations in
metrics across these groups. Figure 11b illustrates the variation trend of G.
Here, Table 4 divides G into four groups, with S remaining unchanged
within each group, demonstrating how the metrics change across the
groups. Figure 11 visually demonstrates that CINet can maintain satisfac-
tory results even with insufficient S and G samples, showcasing stronger
robustness, particularly in SSIM, LPIPS, and StSc. Specifically, when G
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Table 3 | Impact of reducing style samples on performance of the DPCDD Dataset.

S of seen PSNR 1t SSIM 1 LPIPS | FID | StSC 1

inpainting character

S=1315 CIDG* 18.1848 0.9260 0.0817 11.9105 0.8881
DE-GAN® 17.8320 0.8221 0.1605 93.2365 0.7121
CycleGAN? 13.8805 0.8070 0.1527 25.8557 0.6105
RubGAN?® 13.8123 0.8128 0.1466 29.7008 0.7520
FD-Net® 18.2892 0.8401 0.1414 64.9951 0.8087
RCRN’ 19.5924 0.9297 0.0675 9.1496 0.9187
Charformer® 16.0271 0.7506 0.1668 34.2922 0.6615
Uformer'® 17.9640 0.9087 0.0915 15.8036 0.8504
Tformer'” 18.4590 0.9192 0.0677 5.9465 0.9043
CENet” 20.9787 0.8981 0.0881 37.7460 0.9023
GSDM™ 20.8786 0.9451 0.0491 3.5012 0.9455
CINet(ours) 21.5947 0.9493 0.0434 3.0026 0.9694

S =657 CIDG* 17.7657 0.9203 0.0928 16.6527 0.8842
DE-GAN® 17.8188 0.7644 0.1651 95.8881 0.6941
CycleGAN? 12.1792 0.7576 0.1810 38.0451 0.5767
RubGAN?® 14.0834 0.8071 0.1508 41.2603 0.7870
FD-Net® 17.7891 0.8367 0.1466 68.0548 0.7782
RCRN’ 19.2927 0.9221 0.0734 10.7448 0.9169
Charformer® 141731 0.5614 0.2690 110.9627 0.4956
Uformer'® 17.9784 0.9093 0.0930 17.7786 0.8448
Tformer'’ 18.6731 0.9143 0.0660 5.3971 0.8995
CENet*” 20.6433 0.8925 0.0942 31.3222 0.8911
GSDM™ 20.4847 0.9428 0.0520 3.7486 0.9320
ClINet(ours) 21.0008 0.9282 0.0482 3.7203 0.9638

S=329 CIDG* 17.4630 0.9020 0.1074 30.2657 0.8766
DE-GAN® 17.5614 0.8181 0.1652 97.7782 0.7025
CycleGAN? 11.3436 0.7212 0.2169 80.8598 0.5362
RubGAN?® 13.0118 0.7793 0.1752 43.9956 0.7089
FD-Net* 16.3434 0.8015 0.1792 87.4964 0.6863
RCRN’ 18.2356 0.9037 0.0924 18.2225 0.8922
Charformer® 14.4962 0.4556 0.2628 121.8568 0.6082
Uformer'® 17.6506 0.8984 0.0973 21.1528 0.8320
Tformer'” 18.0993 0.9106 0.0750 9.8653 0.9025
CENet* 20.0241 0.8293 0.1087 39.5338 0.8554
GSDM™ 20.2234 0.9411 0.0548 4.2930 0.9281
CINet(ours) 20.3057 0.9244 0.0538 4.2230 0.9483

The optimal results are shown in bold, and the sub-optimal results are underlined. S denotes style samples.

changes (from 5 to 1), SSIM, LPIPS, and StSc vary smoothly. PSNR
decreases slightly (with a maximum change of 1.1614 dB), while FID
increases slightly (with a maximum change of 1.8070). When S changes
(from 2629 to 329), SSIM, LPIPS, and StSc show better robustness (with
maximum changes of 0.0349, 0.0233, and 0.0275, respectively). PSNR
decreases moderately (with a maximum change of 2.6331 dB), and FID
increases (with a maximum change of 3.2777).

Table 5 reports the influence of degradation levels on the effectiveness
of various inpainting methods. For slight degradation (10-20%), the loss of
image information is relatively small, allowing most methods to effectively
leverage the remaining features, thus achieving better performance. How-
ever, under severe degradation (30-40%), significant loss of image infor-
mation results in poor performance for methods that rely solely on image
features. In comparison, our method consistently produces higher-quality

results across all degradation levels. Notably, under conditions of severe
degradation, CINet compensates for the loss of image information by uti-
lizing glyph structure information, ensuring superior robustness. Specifi-
cally, under slight degradation conditions, most methods show good
performance in terms of PSNR and SSIM; however, CINet achieves higher
PSNR and SSIM values, with notable improvements in LPIPS and FID. For
example, under 20% degradation on the DHWD dataset, CINet attains a
PSNR of 28.5654 dB and an StSc of 0.8705, outperforming all other meth-
ods. CINet also achieves an FID score of 6.9545, which is 2.4368 lower than
the second-best method, GSDM. Under high degradation conditions, the
performance of most methods (e.g., RubGAN and FD-Net) significantly
declines, while CINet maintains relatively stable performance. Moreover,
CINet shows notable advantages in LPIPS and FID. For example, on the
DPCCD dataset with 40% degradation, CINet achieves an FID of 6.3836,
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Fig. 10 | Restoration results of different methods on damaged DPCCD images. The red boxes highlight regions for the comparison of local inpainting results across

methods.

Table 4| Impact of reducing glyph instances and style samples
on CINet performance.

G of seen S of seen PSNRt SSIMt LPIPS| FID| StSc 1

inpainting inpainting

character character

5 2629 22.5642  0.9501 0.0365 25185 0.9728
1315 215947 0.9493  0.0434 3.0026 0.9694
657 21.0008 0.9282  0.0482 3.7203  0.9638
329 20.3057 0.9244 0.0538 42230 0.9483

& 2629 22,1492 09525 0.0387 2.6915 0.9680
1315 21.1227 0.9474 0.0461 3.3452 0.9634
657 20.3279 0.9416  0.0533 42516 0.9567
329 19.5161 0.9350 0.0610 5.5980 0.9405

1 2629 217690 0.9504  0.0413 2.7523 0.9677
1315 20.4333 0.9418  0.0511 4.1197  0.9568
657 20.2268 0.9414  0.0547 4.5300 0.9535
329 19.3160 0.9155  0.0646 6.0300 0.9437

significantly outperforming the second-best method, Tformer (15.2614).
Additionally, its LPIPS and StSc scores are 0.0820 and 0.9014, respectively,
demonstrating clear superiority over other methods. To summarize, CINet
delivers excellent performance across different degradation levels (10-40%)
on the DPCCD and DHWD datasets, showcasing remarkable adaptability
to complex scenes. Figure 12 shows the restoration results of the DPCCD
and DHWD datasets. Our method restores the glyph structure more
accurately, while other methods exhibit distortion and artifacts. Further-
more, we use Grad-CAM for visualization (as shown in Fig. 13). We overlay
the heat maps generated by different methods onto the damaged images to
highlight the areas the model focuses on. Red areas indicate high attention,

while blue represents low attention. In CINet, the red-highlighted areas are
concentrated on the glyph structure or missing parts, demonstrating that the
model correctly focuses on the restoration areas, thereby achieving better
results. In contrast, other models (e.g., Tformer) fail to adequately focus on
the glyph structure, or their highlighted areas do not concentrate on glyph-
related regions (e.g., CIDG, RCRN), leading to glyph distortion.

In Table 6, we report the performance of various methods on the DID
dataset. Our method outperforms others across most metrics, with the
exception of FID, where it ranks second, demonstrating significant advan-
tages in real-inscription image restoration. This makes our model more
suitable for real-world scenarios. Specifically, although CINet’s FID is
16.2541, which is only 0.4457 higher than the best-performing Tformer
(15.8084), it surpasses both GSDM and Tformer in PSNR, SSIM, LPIPS, and
StSc. CINet achieves SSIM and StSc values of 0.9564 and 0.9534, respec-
tively, outperforming Tformer by 0.0115 and 0.0305. It also outperforms the
second-best method, GSDM, by 0.9711 dB in PSNR. Furthermore, CINet
has the lowest LPIPS score of 0.0370, which is significantly better than other
methods, such as CIDG (LPIPS=0.0628) and Charformer (LPIPS=
0.2935). Figure 14 displays the restoration results, where CINet ensures
consistent restoration of the glyph structure, while comparison models (e.g.,
Tformer) retain unnecessary strokes. GSDM performs well in handling
slight degradations but is less effective at removing spurious strokes, often
resulting in the retention of incorrect structural information. Figure 15
presents the Grad-CAM visualization results, showcasing how CINet
effectively focuses on the glyph structure, distinguishing real from fake
features. In contrast, other models (e.g., Tformer and CIDG) fail to con-
centrate on the glyph regions accurately and instead focus on irrelevant
areas, leaving meaningless strokes in the restored images.

Ablation study

To evaluate the impact of different components on restoration performance,
we analyze the performance fluctuations after removing each module on the
DID dataset, as shown in Table 7. The results indicate that the removal of
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Fig. 11 | Impact of G and S samples on CINet performance. a Impact of seen style samples (S) on performance. b Impact of seen glyph instance samples(G) on performance.

any module negatively affects CINet’s performance, underscoring the
importance of module cooperation in achieving high performance. When
removing a single component, the performance degradation is relatively
minor, with significant fluctuations occurring only in specific metrics. For
example, removing the FSM module leads to more noticeable increases in

LPIPS and FID, which rise by 0.0018 and 3.5012, respectively, while its effect
on SSIM is negligible. In contrast, removing the S, has a more substantial
impact on StSc, reducing it from 0.9534 to 0.9301. When multiple modules
are removed together, the performance degradation is much more pro-
nounced, highlighting strong synergistic effects among the modules. For
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Fig. 13 | Visualization of Grad-CAM results on DPCCD. Red areas indicate high attention, and blue areas indicate low attention.

example, in the CINet-FSM-CArgx-CApvig-Semb-Erex or CINet-FSM-
CA1Ex-CAvG-Semb configurations, all metrics show a significant decline,
and the magnitude of this degradation is far greater than when removing a
single module. Specifically, when all modules are removed, PSNR decreases
by 1.2043 dB, and FID increases by 21.2852. It is noteworthy that even when
all components are removed, the CSB branch, relying solely on CApvg tex
to transfer glyph information to the IB branch, still performs reasonably
well, achieving a PSNR of 20.5643 dB and an FID of 37.5393. These results
outperform most of the comparison methods (as shown in Table 6),
highlighting the critical role of glyph information in inpainting inscription
images.

To evaluate the network’s adaptability and restoration performance
under different damage shapes, we simulate circular, rectangular, and
square damage patterns at a 20% degradation level on the DHWD and
DPCCD datasets, with results shown in Table 8. The results are visualized in

Fig. 16. The findings indicate that CINet exhibits robust restoration cap-
abilities, showing minimal sensitivity to different damage shapes. This
reflects the model’s strong generalizability across various damage patterns.
Specifically, on the DHWD dataset, our model demonstrates consistent
performance with only minor fluctuations across all metrics. The maximum
variations are 0.0027 for SSIM, 0.0057 for LPIPS, and 0.0052 for StSc. On the
DPCCD dataset, CINet similarly shows excellent robustness to different
damage shapes. Notably, the maximum fluctuations are 0.0044 for SSIM
(ranging from 0.9501 to 0.9545), 0.0027 for LPIPS (from 0.0365 to 0.0392),
0.4527 for FID (from 2.4913 to 2.9440), and 0.0059 for StSc (from 0.9728
to 0.9787).

More visualization results
To evaluate the generalization capability of the proposed method across
different Chinese calligraphy styles, we perform restoration experiments
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Fig. 14 | Inpainting results of different methods on DID. Each row shows, from left to right: Damaged image, CIDG, DE-GAN, CycleGAN, RubGAN, FD-Net, RCRN,
Charformer, Uformer, Tformer, CENet, GSDM, Ours and Ground Truth.

Table 5| Comparison of different methods under varying degradation ratios (10-40%) on damaged DPCCD and DHWD datasets.

DataSet DPCCD DHWD

Damage Ratio 10% 20% 30% 40% 10% 20% 30% 40%

PSNR 1 CIDG* 23.8485 17.9637 15.6344 14.3110 32.5975 27.0959 23.6979 21.1915
DE-GAN® 21.5729 17.4547 14.0916 12.4792 22.9489 19.0931 19.5765 16.1321
CycleGAN® 16.3694 15.0276 121797 11.4907 12.7699 12.5543 12.0983 8.7998
RubGAN® 16.0821 12.3080 10.6780 8.6255 23.6705 15.6063 14.6452 16.1002
FD-Net* 22.7529 17.5490 13.8879 12.5476 27.6416 20.4685 20.2979 16.8503
RCRN’ 27.1793 20.0975 17.9561 16.3993 25.7484 21.5700 20.9555 20.3070
Charformer® 16.9728 13.9899 12.1706 11.1936 22.4961 18.9827 17.0869 16.0577
Uformer™ 22.9206 18.1223 16.3102 13.8839 28.5608 26.2205 23.2619 20.9709
Tformer'’ 24.6870 18.5650 17.1622 15.3204 31.9444 27.9480 25.1058 22.4783
CENet” 26.9407 21.9001 18.1533 16.6877 32.0849 21.5519 18.0554 16.9368
GSDM™ 27.3847 22.2099 18.9256 16.7105 31.3204 26.5663 25.1741 23.2469
CINet(ours) 27.0752 21.9040 19.0391 16.9545 33.6503 28.5654 25.3990 22.9516

SSIM t CIDG* 0.9708 0.9235 0.8879 0.8198 0.9850 0.9563 0.9149 0.8585
DE-GAN® 0.5544 0.5088 0.4621 0.4013 0.9278 0.8537 0.7955 0.7236
CycleGAN® 0.8763 0.8457 0.7811 0.7586 0.7351 0.6979 0.4804 0.4396
RubGAN® 0.8735 0.7581 0.6889 0.5699 0.9192 0.7061 0.6686 0.6972
FD-Net® 0.9170 0.6117 0.4419 0.4107 0.9594 0.8551 0.8157 0.6964
RCRN’ 0.9737 0.9409 0.9086 0.8795 0.9770 0.9425 0.9226 0.8992
Charformer® 0.8724 0.7155 0.7090 0.4127 0.9000 0.8268 0.6558 0.7311
Uformer'® 0.9529 0.9097 0.8857 0.8134 0.9562 0.9466 0.9102 0.8515
Tformer"’ 0.9713 0.9281 0.8859 0.8519 0.9871 0.9692 0.9421 0.9059
CENet” 0.9495 0.8828 0.8373 0.7234 0.9796 0.9119 0.8459 0.6361
GSDM™ 0.9684 0.9402 0.9161 0.8455 0.9811 0.9556 0.9389 0.9058
CINet(ours) 0.9788 0.9573 0.9142 0.8981 0.9880 0.9689 0.9423 0.9102

LPIPS | CIDG* 0.0367 0.0897 0.1260 0.1766 0.0224 0.0576 0.0971 0.1448
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Table 5 (continued) | Comparison of different methods under varying degradation ratios (10-40%) on damaged DPCCD and

DHWD datasets.
DataSet DPCCD DHWD
DE-GAN® 0.1437 0.2223 0.3295 0.3940 0.1127 0.1941 0.2390 0.3010
CycleGAN? 0.1082 0.1273 0.1903 0.2079 0.2441 0.2608 0.3755 0.4007
RubGAN? 0.1211 0.2101 0.2566 0.3338 0.1342 0.3186 0.3171 0.2953
FD-Net* 0.0778 0.1996 0.3397 0.3966 0.0587 0.1782 0.2120 0.2979
RCRN’ 0.0250 0.0616 0.0926 0.1177 0.0424 0.0901 0.1063 0.1320
Charformer® 0.1199 0.1937 0.2366 0.3058 0.1491 0.2436 0.3602 0.3049
Uformer'® 0.0489 0.0909 0.1143 0.1777 0.0637 0.0722 0.1071 0.1511
Tformer'” 0.0261 0.0643 0.0858 0.1203 0.0179 0.0368 0.0611 0.0914
CENet™ 0.0403 0.0823 0.1268 0.1975 0.0328 0.1182 0.1842 0.3268
GSDM™ 0.0281 0.0543 0.0760 0.1219 0.0297 0.0583 0.0810 0.1100
CINet(ours) 0.0186 0.0375 0.0590 0.0820 0.0200 0.0441 0.0723 0.1029
FID| CIDG* 4.5217 21.9642 34.9379 69.1312 3.3452 15.5087 33.5072 61.3743
DE-GAN® 82.9050 106.0662 139.7068 176.1016 84.9855 103.6033 175.3730 145.0369
CycleGAN® 23.9995 26.4705 45.1659 41.9275 78.9258 70.8618 173.5766 157.7194
RubGAN?® 30.1559 61.1383 81.5016 92.0147 128.6956 206.5620 255.3818 185.5508
FD-Net* 30.2129 91.9941 162.6583 203.0982 26.0509 89.4191 155.0165 124.9439
RCRN’ 6.1782 9.7630 25.8691 38.6952 5.2834 11.5529 18.6234 30.3388
Charformer® 49.3760 76.0000 100.5720 148.0570 211.4300 257.8482 286.1490 281.6109
Uformer'® 10.3924 16.8941 21.4015 54.7658 30.4457 34.1864 56.2771 74.2093
Tformer'’ 2.1062 5.5788 8.6455 15.2614 5.8980 12.1144 30.1857 47.7919
CENet® 16.7125 31.2776 69.0545 114.4214 13.7978 77.7357 71.3762 246.1889
GSDM™ 10.9715 12.9593 13.1736 23.9740 12.4396 9.3913 24.4904 53.6999
ClINet(ours) 1.5773 2.5201 4.9128 6.3836 2.4655 6.9545 14.0550 23.4199
StSc 1 CIDG* 0.9803 0.9266 0.8609 0.7492 0.9753 0.8271 0.6994 0.5699
DE-GAN® 0.9471 0.6147 0.3757 0.2718 0.2187 0.0919 0.1299 0.0889
CycleGAN® 0.7652 0.7020 0.6268 0.5583 0.1383 0.1329 0.1284 0.1125
RubGAN?® 0.7822 0.6957 0.5368 0.3265 0.7899 0.4962 0.5573 0.3581
FD-Net* 0.9524 0.8131 0.3726 0.2606 0.4633 0.2030 0.2132 0.0980
RCRN’ 0.9876 0.9362 0.8686 0.8226 0.4025 0.2874 0.2994 0.2583
Charformer® 0.8821 0.7877 0.6966 0.6332 0.5176 0.4686 0.1700 0.2569
Uformer'® 0.9268 0.8323 0.8266 0.6666 0.5441 0.4140 0.3812 0.3108
Tformer'” 0.9812 0.8948 0.8686 0.7867 0.8789 0.7768 0.6754 0.4973
CENet™ 0.9838 0.9082 0.8259 0.6297 0.9162 0.6541 0.4912 0.1362
GSDM'™ 0.9883 0.9512 0.8948 0.8220 0.9636 0.8225 0.6748 0.4575
ClNet(ours) 0.9902 0.9684 0.9385 0.9014 0.9679 0.8705 0.7306 0.6023
The optimal results are shown in bold, and the sub-optimal results are underlined.
Table 6 | Comparison of performance on real-inscription images.
DID PSNR 1 SSIM 1 LPIPS | FID | StSc 1
CIDG* 19.7501 0.9407 0.0628 25.5439 0.9098
DE-GAN® 19.9100 0.9076 0.1430 122.9757 0.8952
CycleGAN? 16.9535 0.8826 0.1056 43.6596 0.6900
RubGAN?® 17.6579 0.5975 0.1841 115.0252 0.8180
FD-Net” 18.9690 0.8811 0.1743 147.9551 0.8355
RCRN’ 18.7303 0.9123 0.1003 78.1304 0.8559
Charformer® 18.1647 0.4742 0.2935 204.4901 0.7948
Uformer'® 18.5368 0.9312 0.0585 18.5603 0.8355
Tformer'” 20.0371 0.9449 0.0475 15.8084 0.9229
CENet® 20.4213 0.8961 0.1285 92.8850 0.9112
GSDM™ 20.7975 0.9347 0.0917 81.6815 0.9199
CINet 21.7686 0.9564 0.0370 16.2541 0.9534

The optimal results are shown in bold, and the sub-optimal results are underlined.
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Fig. 15 | Grad-CAM visualization results on DID. Red areas indicate high attention, while blue areas indicate low attention.

Table 7 | Ablation experiments of different components.

Methods PSNR 1 SSIM 1 LPIPS | FID | StSc 1
CINet 21.7686 0.9564 0.0370 16.2541 0.9534
CINet-FSM 21.6633 0.9551 0.0388 19.7553 0.9476
CINet-Semp 21.3994 0.9534 0.0382 16.6070 0.9301
CINet-Ergx 21.5526 0.9551 0.0381 18.8814 0.9505
CINet-CAnc 21.7001 0.9550 0.0373 16.2934 0.9491
CINet-CArex 21.4337 0.9438 0.0389 16.4120 0.9389
CINet-CArex-CAima 21.3917 0.9533 0.0382 16.5173 0.9345
CINet-FSM- CArex-CAna 21.6970 0.9483 0.0387 26.5635 0.9461
CINet-FSM- CArex-CAma-Semb 21.5443 0.9216 0.0386 32,5536 0.9389
CINet-FSM- CArex-CAa- 20.5643 0.9335 0.0431 37.5393 0.9127
semb'ETEX

The optimal results are shown in bold, and the sub-optimal results are underlined.
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Fig. 16 | Restoration results of our method on DHWD/DPCCD for different damage shapes. The left side of the dashed line shows examples of different damage shapes,
and the right side shows the restoration results of our method.
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Fig. 17 | Visualization of restoration results for Yan, Ou, and Liu scripts. The first row shows the damaged images, and the second row shows the results obtained using our
proposed method. a Visualization of the testing results for Liu scripts. b Visualization of the testing results for Ou scripts. ¢ Visualization of the testing results for Yan scripts.

during the testing stage on Yan Zhenqing’s Epitaph of Guo Xuji (Yan script),
Ouyang Xun’s Jiuchenggong Liquan Inscription (Ou script), and Liu
Gongquan’s Diamond Sutra (Liu script) (see Fig. 17). The DID training set
contains only Yan script samples, with no Ou or Liu script samples.
Moreover, for the Yan script, the training and testing sets are strictly non-

overlapping. The visualization results demonstrate that CINet can accu-
rately inpaint glyphs and maintain style consistency in both unseen fonts
(Ou and Liu scripts) and seen fonts with different samples (Yan script),
evidencing its effectiveness and robustness under varying font style
scenarios.

npj Heritage Science | (2025)13:485

17


www.nature.com/npjheritagesci

https://doi.org/10.1038/s40494-025-02059-1

Article

Fig. 19 | Visualization of failed restoration examples. a DPCCD images with 40% degradation ratio. b Ground-truth images. ¢ Inpainting results of our method.

To further validate the advantages and limitations of the proposed
method, we select a 40% degradation ratio from the DPCCD dataset as the
testing scenario, which provides a challenging setting and effectively eval-
uates the model’s inference ability under conditions of missing information.
As shown in Table 5, under the 40% damage condition, CINet still achieves
the best performance in all indicators. However, the visualization results (see
Figs. 18, 19) show that some characters are still not fully restored. Specifi-
cally, samples with successful inpainting (see Fig. 18) generally retain most
of their crucial structural elements, enabling the model to accurately infer
missing parts based on existing structural information. In contrast, failed
inpainting cases (see Fig. 19) often exhibit substantial loss of core strokes and
numerous strokes or overlapping components, which significantly increase
the restoration difficulty and lead to missing strokes, structural distortions,

or incorrect completions, as highlighted by the green boxes. This indicates
that while the proposed method performs well overall, it still faces challenges
and has potential for improvement in inpainting Chinese characters with
severe key structure loss and multiple overlapping components.

Discussion

We propose CINet, a specialized image inpainting network built with an in-
depth understanding of Chinese character structures. CINet adopts a dual-
branch architecture. The first branch, the CSB, generates high-quality
representations of Chinese characters. Specifically, we utilize the text
encoder from the CLIP model, pretrained for Chinese character image
recognition, to provide additional supervisory information to the CSB. The
second branch, the IB, incorporates a cross-attention mechanism to inject
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Table 8 | Impact of different mask shapes on CINet performance

Mask Shape DHWD DPCCD
PSNR 1 SSIM 1 LPIPS | FID | StSc 1 PSNR 1 SSIM 1 LPIPS | FID | StSc 1
Circle 24.0742 0.9356 0.0637 10.0686 0.8097 21.3738 0.9526 0.0392 2.9440 0.9787
Rectangle 24.6600 0.9383 0.0675 8.2798 0.8067 22.5642 0.9501 0.0365 2.5185 0.9728
Square 24.4833 0.9376 0.0618 9.3718 0.8119 21.8370 0.9545 0.0374 2.4913 0.9739
key glyph information, guiding the inpainting task. This enables the model ~ 11. Zhao, L., Guo, Q., Li, X. & Wang, S. Clii: Visual-text inpainting via

to be more sensitive to glyph features and compensates for the limitations of
relying solely on degraded image feature extraction. The cross-modal design
of CINet also effectively addresses the challenge of insufficient inscription
image data. Additionally, to improve the network’s ability to capture and
preserve style, we integrate a style embedding module. This enhances the
model’s precision in maintaining style consistency during inpainting. We
demonstrate the superiority of CINet across multiple datasets, especially in
scenarios with limited data and complex degradation, showing greater
robustness and adaptability.

Data availability
The DID, DHWD, and DPCCD datasets are available via the following link:
https://github.com/liuyunjing0306/CINet.

Code availability
The code for this study is available via the following link. https://github.com/
liuyunjing0306/CINet.
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