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A structural information-guided cross-
modal method for damaged inscription
inpainting via vision-language models
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Restoring inscriptions is crucial for preserving cultural heritage. Current methods primarily focus on
visual-level generation and inpainting, ignoring glyph structure information. However, the structural
integrity of Chinese characters is frequently compromised in damaged inscription images. To address
this challenge, we propose a structural information-guided cross-modal inpaintingmethod. Our dual-
branch network includes an inpainting branch and a structure branch. Firstly, to compensate for
missing structural information, we pretrain a vision-language model to obtain high-quality glyph
structure representations by decomposing each Chinese character into components and structural
relationships. Secondly, the glyph structure representation guides the structure branch to optimize
features from the damaged character image, producing features that contain more glyph structure
information. Thirdly, a feature interaction mechanism injects the optimized features into the inpainting
branch, and an adaptive style embedding module improves restoration accuracy in style, structure,
and detail. Moreover, a feature sharing module alleviates potential conflicts between branches.

Inscription images play a crucial role in preserving historical knowledge,
promoting the art of calligraphy, and safeguarding cultural heritage.
However, compared with natural images, inscription images often have a
simple background and limited contextual information. The lack of sui-
table references poses a significant challenge for traditional methods to
achieve complete and accurate restoration. Currently, most existing
methods rely on generative adversarial networks (GANs)1–5, which per-
form restoration by learning unimodal image features. However, these
approaches often ignore the inherent structural information of Chinese
characters, resulting in redundant or incorrect strokes (as shown in
Fig. 1a) as well as missing strokes or disordered components (as shown in
Fig. 1b). A critical challenge lies in achieving structurally coherent and
accurate restorationwhen continuous and referable texture information is
lacking.

To address these limitations, some researchers have incorporated
skeleton priors6,7 into their models. Although these approaches improve
inpainting performance to a certain degree, they still depend on skeleton
information extracted from inscription images. Moreover, they require a
large and diverse dataset for reference, which limits their applicability in
real-world scenarios. To this end, we propose a structure-guided restoration
method inspired by human perception of Chinese character composition,
which explicitly incorporates glyph structure to enhance inpainting quality
under missing information.

Through long-term reading, the brain becomes familiar with the
structural relationships inherent in Chinese characters. Even if a character’s
image is partially damaged, the brain can reconstruct its correct form
through structural inference. Inspired by human understanding, we pro-
pose that incorporating structural priors into existing restoration models
may equip them with analogous inferential capabilities for damaged
inscription character inpainting. To achieve this, we have to establish a
model to represent the association between the structure of Chinese char-
acters and visual features. Due to the great success of the vision-language
model CLIP in text recognition and detection tasks8–11, we want to use the
CLIPmodel to obtain the Chinese character structural information. For this
purpose, we decompose Chinese characters into components and their
spatial structure combination relationships, forming ideographic descrip-
tion sequences (IDS) as a source of structural information. Following this
line, we pretrain a CLIP model to achieve cross-modal alignment between
Chinese character images (visual modality) and their corresponding
structural text (i.e., IDS, textual modality). Therefore, the pre-trained CLIP
can provide structural priors to compensate for insufficient visual features
from damaged inscription character images, which can produce more
plausible restorations.

To faithfully reconstruct the original inscription character style,
including strokemorphology and thickness,we introducea style embedding
module to enhance the original visual features. In particular, instead of
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trying to disentangle style and content in Chinese characters, it matches
styles via similarity and uses a linear classifier for style prediction and
selection. Subsequently, the chosen style features are integrated into the
original features to enhance stylistic representation.

Unlike natural images, the glyph structure of inscription images is
compromised and they lack the continuous textures or color transitions
found in natural images, which lead to insufficient feature information for
inscription image restoration. Moreover, the limited inscription image data
and the diversity of font styles make it difficult for traditional image
restoration methods to be directly transferred and applied to such tasks.
Therefore, we propose the glyph structure-guided inpainting network
(CINet), which leverages the spatial and structural relationships between
Chinese character components for restoration. Specifically, we establish a
deep association between the image and structural components using the
CLIP model, mapping the structure of the IDS latent space from the CLIP
text encoder as prior information, which can guide the Chinese character
structural branch (CSB) of CINet to generate a complete glyph structure
representation. Additionally, we establish an interaction between the
damaged image features and the structural information of Chinese char-
acters, which enhances the inpainting branch (IB) in understanding the
character structure. Furthermore, we introduce a style embedding module
to maintain consistency in the restoration style.

Our contributions can be summarized as follows:
(1) We propose a learning paradigm for acquiring the structural repre-

sentation of Chinese characters. By decomposing a Chinese character
into a series of components and structural sequences, the CLIP model
is employed toperformcross-modal alignmentbetween the inscription
image and the structural sequence. Through this alignment, the CLIP
text encoder gains the ability to model Chinese character structures,
supplies structural priors when the image is compromised.

(2) We propose a dual-branch glyph structure-guided inpainting network
(CINet). The two branches collaborate through feature sharing,
interaction, and fusion, strengthening the synergy between the two
modalities and enhancing the network’s sensitivity to glyph structures
and restoration performance.

(3) We introduce a style embedding module to enhance the network’s
sensitivity to different Chinese character styles. Experimental results
show that theCINet addresses varying levels of damage andminimizes
data dependency, making it particularly suitable for inpainting
inscription images.

Methods
Overview of related methods
Image inpainting involves reconstructing damaged regions by utilizing
contextual cues and surrounding features. Deep learning has driven the

development of numerous image inpainting methods, including local
completionbasedonconvolutional neural networks12,GANs1, anddiffusion
models13,14. Zhu et al.14 recently introduced GSDM, a two-stage diffusion
framework guided by global structure, which integrates structure prediction
and content generation for improved text-image inpainting. Although
existingmethods have achievednotable progress in content generation, they
remain limited in structural modeling, especially in capturing long-range
dependencies and complex structural relationships. To address this, recent
studies have increasingly adopted self-attention mechanisms to enhance
global structure perception. Self-attention, a key component of transformer
architecture15, has proven to be highly effective in modeling global depen-
dencies and has shown substantial success in image inpainting tasks. As a
result, there has been growing research16–18 focused on enhancing trans-
formers to improve reconstructionquality.Onenotable approach, proposed
by Deng et al.17, is the Tformer network, which leverages Transformer
modules. This network adopts a U-Net-like architecture and integrates an
innovative linear attention mechanism with a gating module. This design
reduces the computational complexity of traditional self-attention while
preserving the ability tomodel long-range dependencies, greatly improving
image inpainting and supporting large-scale and real-time tasks. A similar
framework, Uformer, proposed by Wang et al.19, replaces global self-
attention with a local enhanced window Transformer module and intro-
duces a learnablemultiscale restorationmodule, which ensures high-quality
image restoration details while alleviating the computational burden. To
strike a balance between computational complexity and restoration quality,
Huang et al.20 developed amethod that enhances Transformer performance
in high-resolution image restoration. They designed a cross-channel
attention mechanism to model global dependencies, implementing sparse
attention distribution by replacing Softmax with ReLU, thus mitigating
performance bottlenecks due to high computational complexity. To further
enhance the preservation of restoration details, Chen et al.18 proposed the
M×T framework, combining Mamba with Transformer to leverage their
synergy for improving detail recovery and ensuring global semantic con-
sistency in image inpainting tasks. In addition to self-attention, researchers
have exploredvariousotherattentionmechanisms to further enhance image
inpainting. Cheng et al.21 introduced a lightweight framework that incor-
porates an attention module into group convolutions. This model uses a
rotationmechanism to assign attention weights between groups, enhancing
the interaction between global and local information, making it especially
suitable for resource-limited applications. Wang et al.22 proposed three
attention networks aimed at boosting image restoration performance. Chen
et al.23, aiming to process global information more effectively, reduced the
resolution of damaged images and used a U-Net-like architecture for global
feature capture. They also added a second branch with multiscale channel
attention for local restoration and fused the outputs of both branches to

Fig. 1 | Examples of improperly restored images.
a Preserve meaningless strokes. b Disordered
structure. The first row displays the original images,
while the second row shows the corresponding
incorrect inpainting results.
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improve the final restoration quality. The research above highlights the
pivotal role of attention mechanisms in image restoration. By modeling the
relationships between global and local features, attention mechanisms
effectively leverage contextual information to restore damaged regions.
While natural images provide rich information with diverse colors and
textures, supporting robust attention mechanisms use, inscription images
typically feature simpler backgrounds with fewer usable features, making
inpainting more challenging. Therefore, to address the lack of contextual
information in inscription images, it is essential to introduce additional
reference data during the inpainting process to improve restoration quality.

Due to their age, many crucial glyph structures in inscription images
may have been damaged. The goal of inpainting is to restore the complete
inscription image, even when structural information is missing. This
requires a deep understanding of Chinese character structure and ensures
that the restored characters maintain the same style as the original. To
provide a comprehensive overview, the following section discusses
restorationmethods for inscription images, extending the related research
on calligraphy and document image restoration. Existing work primarily
relies on image features for inpainting. For instance, Sun et al. proposed
the RubGAN model3, which utilizes a dual discriminator design: one
focuses on detailed information, while the other captures global features.
By working together, these discriminators help the generator produce
restoration results with richer details andmore coherent structures. Chen
et al.24 enhanced the GAN framework by incorporating dilated
convolutions25 into the generator, expanding the receptive field and
improving the model’s feature extraction capabilities. While these
methods are effective for lightly damaged inscription images, they fall
short when dealingwith severe damage, as relying solely on image features
provides insufficient information, leading to reduced restoration perfor-
mance. To overcome this limitation, some researchers6,7,26 have attempted
to incorporate additional prior information to improve inpainting per-
formance. Shi et al.7 proposed a method that uses character skeletons as
priors to restore real-world inscription images. Built on a GAN frame-
work, this method leverages multiscale feature fusion to enhance detail
restoration. Li et al.26 introduced a network similar to font style transfer,
incorporating template images to provide structural information and
using a style encoder for style consistency. Shi et al.6 proposed a parallel-
task framework for denoising inscription images, where image and ske-
leton features are fused using spatial and channel attention mechanisms
and reinjected to preserve glyph structures. Song et al.27 incorporated a
self-attentionmechanism into theGANgenerator to better capture global
information, employing multiple loss functions to improve handwritten

Chinese character inpainting. These methods improve restoration accu-
racy by extracting skeleton information or using attentionmechanisms to
enhance the utilization of image features. However, they are fundamen-
tally constrained by their reliance on image features, limiting their ability
to restore glyph integrity when the image data quality is poor. In addition,
variational autoencoders (VAEs)28, commonly used for image inpainting
and reconstruction, encode images into a latent space for progressive
reconstruction. Pathak et al. further proposed the context encoder net-
work (CENet)29, which combines VAEs with generative adversarial net-
works (GANs) to improve performance. A recent study by Zhao et al.30

proposed a cross-autoencoder framework for inscription image inpaint-
ing,which employs dilated convolutions and channel attention for parallel
feature encoding, and uses shared-parameter decoders optimized with
multiple loss functions to improve inpainting performance. In related
research, Zhang et al.4 expanded the dataset by modeling noise in calli-
graphy images and used GANs to remove noise patches. Souibgui et al.5

proposed a document restoration network based on a conditional GAN
with a U-Net architecture, designed to handle watermarks, ink stains, and
uneven backgrounds in document images. Lugo-Torres et al.31 applied a
CycleGAN framework2 to address uneven backgrounds in document
images (e.g., stains and creases), improving the readability of the docu-
ments. In summary, while existing methods for inscription image
inpainting have advanced, relying solely on image features is insufficient
for restoring glyph integrity and accuracy. Therefore, integrating glyph
structure information into restoration networks is essential for improving
the performance of inpainting methods, especially when dealing with
severely damaged inscription images.

Overall architecture of the proposed method
To enhance the model’s ability to extract discriminative features in severely
damaged scenarios, we propose the CINet, a cross-modal glyph structure-
guided inpainting network. As illustrated in Fig. 2, the CINet consists of a
backbone network (EB), an inpainting branch (IB), a Chinese character
structural branch (CSB), and a pretrained text encoder (ETEX). The CINet
integrates the character structure information from the CSB into the IB
through a cross-attentionmechanism, allowing the IB to focus on damaged
areas and thereby achieving more accurate restoration results. ETEX is
derived from a pretrained CLIP model on large-scale data. The structural
vector served as a cross-modal structural prior, learned from extensive the
pretraining data rather than the limited samples of the current inpainting
task. Moreover, this prior has already been well aligned with the visual
features of complete Chinese characters during pretraining and

Fig. 2 | Overall framework of CINet. The architecture of CINet, which consists of an inpainting branch and a Chinese structure branch for structural awareness.
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demonstrates strong invariance to font style variations.As a result, evenwith
a limited number of training examples, CINet can reliably obtain accurate
structural information via the CSB branch, thereby significantly improving
the feature representation and inpainting performance of the IB branch. To
clarify the explanation of this process, we formalize it as follows.

x̂ ¼ IB EB xn
� �

;CSB xn
� �

; Semb

� � ð1Þ

where xn represents the damaged image, while IB, EB, and CSB denote the
functions describing the IB, EB, and CSB, respectively. Semb represents the
style embedding.

Pre-training CLIP for glyph structure representation
Chinese characters have significant structural characteristics, and their glyphs
are composed of multiple components arranged according to specific spatial
relationships (suchas left and right, upanddown). For example, the character
“构” consists of the components “木”, “勹”, and “厶”, arranged in a left-right
and semi-enclosing structure. To formalize the structural representation of
Chinese characters, the Unicode standard defines IDS. IDS consists of
structural symbols (e.g., � and � to represent structures) and component
symbols (e.g.,木,勹, and厶 to represent components) definedbyUnicode. It
encodes Chinese character components and their hierarchical relationships,
thereby achieving the standardized decomposition of glyph structures.

For inscription image inpainting, although different fonts exhibit sig-
nificant visual variations, their fundamental structures typically remain
consistent. However, relying solely on visual features makes models sus-
ceptible to style interference, hindering the learning of unified and stable
structural representations. To address this, we introduce a structure-aware
cross-modal alignment mechanism inspired by CLIP. Although CLIP is
effective in semantic tasks such as retrieval and classification, it lacks
structural modeling capabilities, limiting its suitability for structure-
sensitive tasks involving Chinese characters. To improve structural under-
standing, we propose an alignment paradigm that replaces natural language
with sequential representations of Chinese character structures. These
sequences are then aligned with character images during training, guiding
the model to learn style-independent structural representations and
improving its ability tomodel glyph structures. In particular, when training
the CLIP model, we input Chinese character images and ideographic
description sequences (IDS) into the image encoder and text encoder,
respectively, as shown in Fig. 3. Specifically, we adopt the ResNet-50
architecture as the image encoder to extract the image feature vector (I), and
use a Transformer-based text encoder that models sequential dependencies
and projects its output through a linear layer tomatch the dimensionality of
I, resulting in the text feature vector (T).

We apply contrastive loss optimization to align a batch of M image
feature vectors and text vectors. The specific loss function is as follows,
where the first term represents the image-to-text loss, while the second term

represents the text-to-image loss.

Lclip ¼ �
1
2M

XM
i¼1

log
exp Ii � Ti

� �
PM

j¼1exp Ii � Tj

� �þXM
j¼1

log
exp Tj � Ij

� �
PM

i¼1exp Tj � Ii
� �

0
@

1
A ð2Þ

By training on large-scale image–IDS pairs, the CLIP model learns to
align the visual features of completeChinese characters with their structural
representations. This alignment can establish a stable structural prior after
training. On the one hand, the representation of IDS sequences remains
invariant to font style variations and exhibits strong consistency. On the
other hand, it is independent of the data scale in downstream restoration
tasks. Consequently, even when training data is limited, the model can rely
on the structural vector produced by the text encoder to provide high-
quality structural guidance for the inpainting network.

After training, the inference process is illustrated in Fig. 4. The CLIP
model first encodes theChinese character image using the image encoder to
obtain its image feature vector (I). Simultaneously, the K predefined can-
didate Chinese characters are decomposed into IDS and encoded by the
ETEX into a series of textual feature vectors T ¼ T1;T2; . . . ;TK

� �
. By

computing the similarity between the image and textual representations, the
model outputs the indexk� corresponding to the character categorywith the
highest similarity. Accordingly, the corresponding textural feature Tk
represents the structural informationof theChinese character. To clarify,we
provide the following formula.

k� ¼ argmax
k2 1;2...;Kf g

S I;Tk

� �
ð3Þ

where S denotes the cosine similarity calculation.

Backbone network
ResNet32, renowned for its innovative residual connection design, excels in
both global and local feature extraction and is widely used in visual tasks33,34.

Fig. 3 | CLIP model for Chinese character recog-
nition. The model comprises two encoders: an
image encoder for character images and a text
encoder for ideographic description sequen-
ces (IDS).

Fig. 4 | The inference process of Chinese character recognition. Chinese character
categories are determined by computing the cosine similarity between the output
vectors of the image and text encoders.
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Therefore, we select ResNet-50 as the backbone for the backbone feature
extraction.

Fbon ¼ ResNet50 xn
� � ð4Þ

where Fbon represents the extracted the backbone features.
Next, we respectively use three 3 × 3 convolutions to obtain the initial

feature F img 1 of the inpainting branch and the initial feature Ftex 1 of the
structural branch.

Feature sharing module
Benefiting from the introduction of the CSB, the IB becomesmore sensitive
to glyph perception, thereby significantly improving the inpainting results.
Notably, the IB focuses on restoring pixel-level details, while the CSB
emphasizes the semantic features of the overall glyph structure. To align the
featureswith the needs of different tasks, we design a feature sharingmodule
(FSM) to address potential inconsistencies, as shownby thepinkdashedbox
in Fig. 2. First, the FSM applies three convolutional layers (with a kernel size
of 3 × 3) to each task branch to extract task-specific features. Then, the
extracted features are concatenatedusing the concatenationoperation (Cat).
Finally, a 3 × 3 convolutional layer is applied to the concatenated features to
fuse them, resulting in the sharing featureFfus as shown inEq. (5), which can
enhance the interaction and correlation between the initial features of the
CSB and IB branches.

Ffus ¼ Conv3 × 3 Cat Fimg 1; Ftex 1

� �� �
ð5Þ

Character structure branch
TheCSB, consisting of a cross-attentionmodule (CATEX) and a text decoder
(DTEX) as shown in Fig. 2, is responsible for extracting high-quality glyph
structure information, helping the IBmore sensitively perceive the semantic
features of the glyphs during restoration process. Therefore, obtaining and
utilizing cross-modal glyph structure information is a critical task. Inspired
by the cross-modal learningbetween imagesand texts in theCLIPmodel,we
first pretrained a CLIP model for Chinese character image recognition.
Then, we applied the ETEX from the pretrained CLIP model to get Chinese
character structure representations for constraining the output features of
the CSB. This process forces the CSB to extract key glyph information from
the damaged images. Finally, the glyph representation is passed to the IB
through a cross-attentionmechanism, enabling the IB to incorporate glyph
constraints and ensure the accuracy of the restored character structure.

In the CSB, the process of glyph structure extraction is as follows. First,
the CATEX is used to obtain an enhanced feature Ftex 2 from the initial
feature Ftex 1 and the sharing feature Ffus as shown in Eq. (6). Then, the
DTEX is applied to map the enhanced feature Ftex 2 to Chinese character
structure feature (Tout). Finally, the similarity between the output feature of

ETEX and Tout is calculated to obtain structural information.

Ftex 2 ¼ CATEX Q1;K1;V1

� � ¼ Softmax
Q1K

T
1

σ

� 	
V1 ð6Þ

where Q1 ¼WQ
1 Ftex 1, K1 ¼WK

1 Ffus, V1 ¼WV
1 Ffus, with WQ

1 , W
K
1 and

WV
1 denoting learnable weight matrices, and σ is the scaling factor.

Since the CSB relies on features from the damaged character image, it
encounters limitations of accurately capturing the complete structural
information. To improve the representationofChinese character structures,
we leverage the ETEX output from the pre-trained CLIPmodel as structural
prior knowledge, which constrains the prediction vector from DTEX and
guides the CSB branch toward generating a more complete and accurate
glyph structure. The DTEX is based on a Transformer architecture15, as
illustrated in Fig. 5. Specifically, Ftex 2 is first processed by a multihead self-
attention mechanism (MSA), followed by a feed forward network and a
normalization layer. Finally, a fully connected layer outputs the Chinese
character structure prediction vector (Tout).

The loss functionLtex of theCSBconsistsof two components: the cross-
entropy loss Lrec and themean squared error lossLdis. Specifically, we utilize
the Eout provided by ETEX from CLIP as the target. By optimizing the
similarity between the Tout from DTEX and Eout, we aim to bring Tout and
Eout closerwithin the feature space.Moreover, we applyLdis to constrain the
distance between the Tout and Eout. The detailed formulas (7)–(9) are as
follows:

Lrec ¼ �
1
N

XN
n¼1

log
exp Tn

out � E
yn
out

� �
PC

j¼1 exp Tn
out � Ej

out

� �
0
@

1
A ð7Þ

Ldis ¼
1
N

XN
n¼1
jjEn

out � Tn
outjj22 ð8Þ

Ltex ¼ Lrec þ 0:01 � Ldis ð9Þ

where N represents the number of samples in a batch. C indicates the
number of Chinese character categories, while Eyn

out refers to the feature
vector corresponding to the ground-truth character label yn.

Inpainting branch
The inpainting branch (IB) is responsible for restoring the structure, style,
and details of Chinese characters. It comprises an image decoder (DIMG),
two cross-attention mechanisms (CAIMG and CAIMG_TEX), and a style
embedding module as shown in Fig. 2. First, the IB branch performs a
feature interaction between the initial feature Fimg_1 and the sharing
feature Ffus through the cross-attention (CAIMG), obtaining an enhanced
feature representation Fimg_2 as shown in Eq. (10). Then, the CAIMG_TEX

is employed to inject the cross-modal glyph structure feature extracted
from the CSB into the IB, helping it focus on the key parts of the
restoration and ensuring the accuracy of the restored Chinese character
structure. The feature F img 3 generated by the CAIMG_TEX is expressed by
Eq. (11).

F img 2 ¼ Softmax
Q2K2

T

σ

� 	
V2 ð10Þ

where Q2 ¼WQ
2 Fimg 1, K2 ¼WK

2 Ffus, V2 ¼WV
2 Ffus, with WQ

2 , W
K
2 and

WV
2 denoting learnable weight matrices.

Fimg 3 ¼ Softmax
Q3K3

T

σ

� 	
V3 ð11Þ

Fig. 5 | Text decoder of the Chinese character structure branch. It generates the
structural vector (Tout) of Chinese characters.
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where Q3 ¼WQ
3 Fimg 2, K3 ¼WK

3 Tout, V3 ¼WV
3 Tout, withW

Q
3 , W

K
3 and

WV
3 representing learnable weight matrices.

Due to the difficulty of decoupling the style and content features of
Chinese characters from the latent feature (i.e., F img 3), we don’t adopt
the decoupling approach35,36. Instead, we use the style embedding to
enhance the latent feature representation, where style loss optimization
encourages the style embedding module to learn more discriminative
style representations, as shown in Fig. 6. Specifically, we assign a unique
index to each style category and convert the style index into a style
embedding matrix (Iemb) through an embedding layer. We then com-
pute the similarity by performing a dot product between Iemb and the
transformed image features F0img 3 from the original features F img 3. The
formula is as follows:

Sdot Iemb; F
0
img 3

� �
¼ Iemb: AvgPool Sigmoid F img 3

� �� �� �
ð12Þ

Thedot product Sdot is awidely used and effective similaritymeasure in
deep learning. It is adopted in the self-attentionmechanism of Transformer
models15, as well as in various tasks such as sentence transformation and
sentiment intensity modeling37. Finally, the computed similarity is passed
through a fully connected layer to predict the font style, as follows:

Istyle ¼ FC Sdot Iemb; F
0
img 3

� �� �
ð13Þ

where Istyle corresponds to the logits output by the model, and FC �ð Þ
represents the output of the fully connected layer.

We apply the multiclass cross-entropy loss Lstyle to constrain the style
prediction, as shown in the formula (14):

Lstyle ¼ �
1
N

XN
n¼1

log
exp Instyle � Itntrue

� �
PC0

j¼1exp Instyle � Ijtrue
� �

0
@

1
A ð14Þ

where the numerator represents the similarity score between the predicted
style feature and the reference vector of its ground-truth category tn, and the
denominator is the sum of similarity scores between the predicted style
feature and the style vectors of all style categories C0.

The DIMG is a hierarchical feature fusion network, and its key design is
the multilevel feature fusion module (MFM), inspired by ref. 38. MFM
integrates both standard convolution and dilated convolution, effectively
extracting multiscale features, as shown in Fig. 7. The DIMG begins feature
fusion from the deepest layers and progressively fuses toward the shallower
layers. After each fusion level, the predicted results are resized to the original
dimensions through a 3 × 3 convolution and an interpolation operation.
This design of multiscale supervision can significantly enhance the
restoration performance. The decoding process is represented as follows:

x̂0 ¼ Conv3 × 3 MFMl Fl
bon; Fimg 3 þ Semb

� �� �� �
jl ¼ 3; 2; 1; 0

n o
ð13Þ

where x̂0 represents the final restoration result. Semb is obtained by trans-
forming the dimensions of Iemb.

We employ a multiscale supervision strategy to optimize the restora-
tion process, applying L1 loss on the outputs of each intermediate layer. The
final loss function Lmulti can be expressed as follows:

Lmulti ¼
X3
l¼0

wljjx̂l � xjj1 ð16Þ

where x̂1, x̂2, and x̂3 are the outputs of the intermediate layers.
In summary, the overall loss Ltotal for training CINet consists of three

components, defined as follows:

Ltotal ¼ Ltex þ Lstyle þ Lmulti ð17Þ

Results
Datasets and experimental settings
Due to the lack of publicly available inscription image datasets, we con-
structed a real-damaged inscriptiondataset (DID)by collecting images from

Fig. 6 | Structure of the style embedding module. It is used to capture the style
representation of the image.

Fig. 7 | The image decoder (DIMG) of the inpainting branch. The decoder mainly comprises multiple feature fusion modules (MFM) and an output layer, producing the
final restored image.
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a public database1.However, the types of damaged inscription images in this
dataset are relatively limited and do not covermore severe degradation that
may occur in practical scenarios. In addition, the dataset is relatively small,
making it insufficient to evaluate the model’s generalization ability. To
address this issue, we further constructed two synthetic datasets, namely the
Damaged Printed Chinese Characters Dataset (DPCCD) and the Damaged
Handwritten Chinese Characters Dataset (DHWD), to assist in analyzing
the model’s performance under various conditions. Furthermore, we
introduced a Printed Chinese Characters Dataset (PCCD) to train the
CLIP model.

We gathered inscription images from different dynasties to construct
the DID, resulting in a dataset of 3295 inscription images, as shown in
Fig. 8a. We use 2608 images for training and 687 for testing.

To construct the DPCCD, we collected 10 unseen styles (not part of
PCCD) to generate images for 3755 Chinese character categories, totaling
37,550 images. We introduced various damaged types and adjusted the
damaged areas to create diverse damaged images, as shown in Fig. 8b. Of
which, 31,920 images are used for training and 5630 for testing.

We collected 37,423 images of handwritten Chinese characters from 10
authors from HWDB1.139, forming the DHWD. We then generated
damaged images by applying various damage types and adjusting thedamage
areas. A total of 31,841 images are used for training and 5582 for testing.

We collected 120 styles and 3755 Chinese character categories
(GB2312 level-1 characters) fromapublic database2 to construct the PCCD,
resulting in 450,600 Chinese character images. The training set includes
110 styles, with 100 styles randomly selected to generate samples for 1126
Chinese character categories. Additionally, 2629 Chinese character cate-
gories are covered by all 110 styles. The total number of training samples
amounts to 401,790 images. The test set contains 10 unseen styles, with
11,260 Chinese character images generated as test samples.

We use several evaluationmetrics to assess model performance, where
the PSNR and SSIM are used to evaluate the pixel-level difference and
structural integrity, the LPIPS measures the perceptual difference, and the
FID quantifies the difference in data distribution between the reconstructed
and ground-truth image. To evaluate the model’s ability of restoring styles,
we train a style classifier on the test set and use it to calculate style scores
(StSc)40 for the inpainting images.

The model is implemented using the PyTorch framework and trained
on an i9-14900KFprocessorwith anNVIDIAGeForceRTX4090D (24GB)
GPU. The IB uses the Adam optimizer41 with a learning rate of 2 × 10�4,
while the CSB uses the Adadelta optimizer42 with a learning rate of 1.
Specifically, the DPCCD andDHWDuse 128 × 128 with a batch size of 32,
while DID uses 256 × 256 with a batch size of 8. The coefficients wl in the
loss function Lmulti are set to 0:5;0:3;0:2;0:1½ �. To provide a more detailed
description of the training process, we present the implementation pseudo
code in Algorithm 1.

Algorithm 1. Pseudo code of CINet method
Input: training dataset isDdata ¼ xi; yi

� �N
i¼1, batch sizeN is 8 and the

epoch is 200
Output: inpainting image x̂

1. Randomly initialize the model parameter θ.
2. For i ¼ 1 to epoch do
3. xN ; yN

� � Sample Ddata;N
� �

.
4. Fbon  EB xN

� �
5. Ffus; Fimg 1; Ftex 1  FIM Fbon

� �
6. Ftex 2  CATEX WQ

1 Ftex 1;W
K
1 Ffus;W

V
1 Ffus

� �
,

F img 2  CAIMG WQ
2 F img 1;W

K
2 Ffus;W

V
2 Ffus

� �
7. Tout  DTEX Ftex 2

� �
, Eout  ETEX yN

� �
8. F img 3  CAIMG TEX WQ

3 Fimg 2;W
K
3 Tout;W

V
3 Tout

� �
9. x̂ Dimg Fbon; Fimg 3; Semb

� �
, ŷ Tout × Eout

10. Update CSB
11. Update IB
12. end for

1 https://www.9610.com/index.htm 2https://www.foundertype.com/
index.php/FindFont/index

Comparison to state-of-the-art methods
In the inpainting of damagedChinese characters, the absence of strokes and
components significantly hinders the recovery of complete structural
information when relying solely on the degraded image. To address this
limitation, we utilize the known target character category during the
restorationprocess and employ a trained structural feature extractionmodel

Fig. 8 | Examples of real and synthetic datasets. a Examples of real-inscription dataset. b Examples of the synthetic dataset with various corrosion and damage shapes.
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to obtain a complete structural representation of the character. This
representation is subsequently fused with image features to guide the
inpainting of missing regions. Unlike conventional cross-style recognition
methods, our approach focuses on extracting stable and precise structural
features rather than depending on the model’s generalization ability to
unseen fonts. To ensure the reliability of structural representations, training
data should feature clear strokes, standardized structures, andhigh legibility.
The PCCD dataset, composed of high-quality printed Chinese characters
with complete and regular structures, provides ideal structural templates for
the model. In contrast, handwritten or inscription-based datasets often
exhibit considerable structural distortion and noise, making them less sui-
table for learning stable structural features and potentially degrading
restoration performance.

Although the core of our method lies in leveraging stable structural
features, we also evaluate the CLIPmodel across various font styles to gain a
more comprehensive understanding of its performance. Specifically, we
train the CLIP model using the PCCD, and the pretrained text encoder
generates high-quality Chinese character glyph structure representations
that are independent of character style. To evaluate the robustness of the
CLIP model in recognizing Chinese characters across different font styles,
we conduct tests on 1126 Chinese character categories and 10 font styles
(both seen and unseen). Notably, there is no overlap between these test sets
and the training set. The average recognition rate for the 10 seen font styles is
99.876%,while the rate for the 10 unseen font styles is 97.158% (as shown in
Table 1), indicating only a slight drop in performance. Among the unseen
fonts, one style achieves a recognition accuracy of approximately 82%,while
all others exceed 90%.Overall, themodel demonstrates strong robustness to
unseen font styles. Even in extreme cases where generalization is limited,
reliable structural information can still be retrieved during the inpainting
process by leveraging the known character category.

In damaged character scenarios, we rely on the known character
category to obtain a complete structural representation from the pretrained
model. Accordingly, the model must be capable of extracting consistent

structural features across different font styles. To validate this capability, we
select the same character rendered in multiple font styles, extract its struc-
tural features using the trainedmodel, and project the resulting features into
a two-dimensional space using t-SNE, as illustrated in Fig. 9. The t-SNE
visualization shows that different font styles of the same character form tight
clusters in the feature space, indicating that the structural representations
extracted by the model remain stable and consistent across font variations.
This property ensures that accurate structural information can still be
retrieved from the model to support the inpainting process, even when the
input image is damaged, provided that the character category is known.

Because inscription image inpainting is a small-sample problem, we
evaluate theperformanceof variousmethodsunder reduceddata conditions
from two perspectives: the insufficient number of glyph instance samples
(G) and style samples (S).We analyze the applicability of differentmodels in
small-sample scenarios.

First, reducing G refers to decreasing the number of damaged images
with diverse styles under the same IDS conditions. Table 2 summarizes the
performance of different methods as G decreases by a step of 2, from 5 to 1
(i.e., 5→ 3→ 1), keeping S constant (in this case, S = 2629). As shown in
Table 2, the evaluationmetrics for allmethods generally exhibit a downward
trend as G decreases, indicating that glyph structural features are crucial to
restoration performance. With only one instance, other models struggle to
learn sufficient structural features, resulting in suboptimal restoration. In
contrast, CINet performs the best in this scenario, demonstrating its ability
to effectively compensate for the lackof information causedby a single glyph
sample and showing better adaptability to scarce glyphs. Specifically,
compared to the second-place methods, our model outperforms CENet by
0.4442 dB in PSNR; outperforms GSDMby 0.0046 and 0.0205 in SSIM and
StSc, respectively; and reduces LPIPS and FID by 0.0051 and 0.6358,
respectively.

Second, the reduction of S refers to the decrease indegraded imageswith
identical styles but different IDS. Table 3 reports the performance of various
methods when G is 5, and the number of S decreases in an approximately

Table 1 | Recognition accuracy of 10 unseen styles (%)

Style Code FZZDXJW FZZhangMLBKSJW FZZhaoMFKSJW FZZhaoMFXSJW FZZHengWGBKSJW

Accuracy 99.911% 98.757% 93.517% 82.416% 99.023%

Style Code FZZhengYJW-R FZZhenSYJW FZZhiATJW FZZHJW XinhuaNewsType-Bold

Accuracy 99.911 99.911 98.313% 99.911% 99.911%

Fig. 9 | t-SNE visualization of feature distributions
for the same Chinese character.We use different
colors and shapes to distinguish Chinese character
classes. Same-class samples cluster tightly in the
feature space, indicating robust structural repre-
sentations by the model.
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halving pattern, from 1315 to 329 (i.e., 1315→ 657→ 329). As shown in
Table 3, with the reduction of S, the evaluation metrics for all methods
generally show a downward trend, indicating that style information also
influences restoration performance. However, our model, CINet, still
maintains optimal performance compared to all other methods. When
S = 329, although our method is 0.0167 lower than the best-performing
method in SSIM, it achieves a 0.0823 dB and 0.0202 increase in PSNR and
StSc over the second-best, along with reductions of 0.0010 and 0.0700 in
LPIPS and FID, respectively. This shows that even with insufficient style
information, our method can maintain excellent performance. As shown in
Fig. 10, CINet can effectively restores the image,while othermodels (e.g., DE-
GAN, FD-Net, RubGAN, and CENet) produce artifacts. Moreover, com-
pared to models such as RCRN, Tformer, and GSDM, CINet demonstrates
greater precision in restoring glyph structures (as highlighted by the red
boxes),while better preservingdetails andavoiding structural blurring or loss.

Tomore clearly and intuitively demonstrate the performance of CINet
under limited G and S samples, we present Table 4 and Fig. 11. Table 4
shows the inpainting effects of CINet as G and S decrease. It is evident that
even with a minimal number of glyph categories and style samples (G = 1,
S = 329), ourmodel still outperformsmost othermodels tested at G = 5 and
S = 2629 (as shown in Table 2). This proves the effectiveness and applic-
ability of ourmethodunder small-scale conditions. Figure 11a illustrates the
variation trend of S. Specifically, Table 4 divides S into three groups, with G
remaining consistent within each group, highlighting the variations in
metrics across these groups. Figure 11b illustrates the variation trend of G.
Here, Table 4 divides G into four groups, with S remaining unchanged
within each group, demonstrating how the metrics change across the
groups. Figure 11 visually demonstrates that CINet can maintain satisfac-
tory results even with insufficient S and G samples, showcasing stronger
robustness, particularly in SSIM, LPIPS, and StSc. Specifically, when G

Table 2 | Impact of reducing glyph instances on performance of the DPCDD Dataset

G of seen inpainting character PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ StSC ↑

G = 5 CIDG4 18.7166 0.9289 0.0742 11.0120 0.9041

DE-GAN5 18.0239 0.7739 0.1572 95.0079 0.6941

CycleGAN2 13.9018 0.8078 0.1583 45.0151 0.7137

RubGAN3 14.1066 0.8342 0.1336 20.7753 0.7698

FD-Net25 18.4013 0.8448 0.1352 63.6833 0.8092

RCRN7 19.9264 0.9300 0.0647 8.9237 0.9218

Charformer6 19.3447 0.9267 0.0702 13.5724 0.9133

Uformer19 18.2975 0.9129 0.0885 16.1491 0.8560

Tformer17 19.0662 0.9020 0.0635 5.0784 0.9140

CENet29 21.4248 0.9050 0.0836 34.0152 0.9126

GSDM14 21.8589 0.9508 0.0421 2.9016 0.9560

CINet(ours) 22.5642 0.9501 0.0365 2.5185 0.9728

G = 3 CIDG4 18.6069 0.9300 0.0766 10.7084 0.8995

DE-GAN5 17.9095 0.7792 0.1579 100.5968 0.7162

CycleGAN2 13.6177 0.8071 0.1609 27.9348 0.6124

RubGAN3 14.2907 0.8260 0.1366 27.4403 0.7593

FD-Net25 17.7863 0.8308 0.1539 73.4424 0.7723

RCRN7 19.6830 0.9286 0.0671 9.5869 0.9224

Charformer6 19.6244 0.9184 0.0726 13.0601 0.9140

Uformer19 18.1853 0.9109 0.0906 16.3983 0.8451

Tformer17 18.7107 0.9197 0.0657 5.7012 0.9057

CENet29 21.1021 0.8967 0.0879 35.9235 0.8927

GSDM14 21.5331 0.9485 0.0442 3.1541 0.9488

CINet(ours) 22.1492 0.9525 0.0387 2.6915 0.9680

G = 1 CIDG4 18.4636 0.9276 0.0781 10.9620 0.9060

DE-GAN5 17.8112 0.7765 0.1623 96.9172 0.6861

CycleGAN2 11.4235 0.7148 0.2517 80.3395 0.5531

RubGAN3 13.3369 0.8087 0.1519 35.3300 0.7259

FD-Net25 14.4154 0.7813 0.2068 118.5517 0.5700

RCRN7 19.5665 0.9215 0.0704 11.5964 0.9156

Charformer6 16.5597 0.7348 0.1592 48.1134 0.7972

Uformer19 17.9328 0.9027 0.0957 19.7934 0.8398

Tformer17 18.8557 0.8502 0.0669 6.0376 0.9110

CENet29 21.3248 0.8957 0.0895 46.9806 0.8909

GSDM14 21.2570 0.9458 0.0464 3.3881 0.9472

CINet(ours) 21.7690 0.9504 0.0413 2.7523 0.9677

The optimal results are shown in bold, and the sub-optimal results are underlined. G denotes glyph instance samples.
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changes (from 5 to 1), SSIM, LPIPS, and StSc vary smoothly. PSNR
decreases slightly (with a maximum change of 1.1614 dB), while FID
increases slightly (with a maximum change of 1.8070). When S changes
(from 2629 to 329), SSIM, LPIPS, and StSc show better robustness (with
maximum changes of 0.0349, 0.0233, and 0.0275, respectively). PSNR
decreases moderately (with a maximum change of 2.6331 dB), and FID
increases (with a maximum change of 3.2777).

Table 5 reports the influence of degradation levels on the effectiveness
of various inpainting methods. For slight degradation (10–20%), the loss of
image information is relatively small, allowing most methods to effectively
leverage the remaining features, thus achieving better performance. How-
ever, under severe degradation (30–40%), significant loss of image infor-
mation results in poor performance for methods that rely solely on image
features. In comparison, our method consistently produces higher-quality

results across all degradation levels. Notably, under conditions of severe
degradation, CINet compensates for the loss of image information by uti-
lizing glyph structure information, ensuring superior robustness. Specifi-
cally, under slight degradation conditions, most methods show good
performance in terms of PSNR and SSIM; however, CINet achieves higher
PSNR and SSIM values, with notable improvements in LPIPS and FID. For
example, under 20% degradation on the DHWD dataset, CINet attains a
PSNR of 28.5654 dB and an StSc of 0.8705, outperforming all other meth-
ods. CINet also achieves an FID score of 6.9545, which is 2.4368 lower than
the second-best method, GSDM. Under high degradation conditions, the
performance of most methods (e.g., RubGAN and FD-Net) significantly
declines, while CINet maintains relatively stable performance. Moreover,
CINet shows notable advantages in LPIPS and FID. For example, on the
DPCCD dataset with 40% degradation, CINet achieves an FID of 6.3836,

Table 3 | Impact of reducing style samples on performance of the DPCDD Dataset.

S of seen
inpainting character

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ StSC ↑

S = 1315 CIDG4 18.1848 0.9260 0.0817 11.9105 0.8881

DE-GAN5 17.8320 0.8221 0.1605 93.2365 0.7121

CycleGAN2 13.8805 0.8070 0.1527 25.8557 0.6105

RubGAN3 13.8123 0.8128 0.1466 29.7008 0.7520

FD-Net25 18.2892 0.8401 0.1414 64.9951 0.8087

RCRN7 19.5924 0.9297 0.0675 9.1496 0.9187

Charformer6 16.0271 0.7506 0.1668 34.2922 0.6615

Uformer19 17.9640 0.9087 0.0915 15.8036 0.8504

Tformer17 18.4590 0.9192 0.0677 5.9465 0.9043

CENet29 20.9787 0.8981 0.0881 37.7460 0.9023

GSDM14 20.8786 0.9451 0.0491 3.5012 0.9455

CINet(ours) 21.5947 0.9493 0.0434 3.0026 0.9694

S = 657 CIDG4 17.7657 0.9203 0.0928 16.6527 0.8842

DE-GAN5 17.8188 0.7644 0.1651 95.8881 0.6941

CycleGAN2 12.1792 0.7576 0.1810 38.0451 0.5767

RubGAN3 14.0834 0.8071 0.1508 41.2603 0.7870

FD-Net25 17.7891 0.8367 0.1466 68.0548 0.7782

RCRN7 19.2927 0.9221 0.0734 10.7448 0.9169

Charformer6 14.1731 0.5614 0.2690 110.9627 0.4956

Uformer19 17.9784 0.9093 0.0930 17.7786 0.8448

Tformer17 18.6731 0.9143 0.0660 5.3971 0.8995

CENet29 20.6433 0.8925 0.0942 31.3222 0.8911

GSDM14 20.4847 0.9428 0.0520 3.7486 0.9320

CINet(ours) 21.0008 0.9282 0.0482 3.7203 0.9638

S = 329 CIDG4 17.4630 0.9020 0.1074 30.2657 0.8766

DE-GAN5 17.5614 0.8181 0.1652 97.7782 0.7025

CycleGAN2 11.3436 0.7212 0.2169 80.8598 0.5362

RubGAN3 13.0118 0.7793 0.1752 43.9956 0.7089

FD-Net25 16.3434 0.8015 0.1792 87.4964 0.6863

RCRN7 18.2356 0.9037 0.0924 18.2225 0.8922

Charformer6 14.4962 0.4556 0.2628 121.8568 0.6082

Uformer19 17.6506 0.8984 0.0973 21.1528 0.8320

Tformer17 18.0993 0.9106 0.0750 9.8653 0.9025

CENet29 20.0241 0.8293 0.1087 39.5338 0.8554

GSDM14 20.2234 0.9411 0.0548 4.2930 0.9281

CINet(ours) 20.3057 0.9244 0.0538 4.2230 0.9483

The optimal results are shown in bold, and the sub-optimal results are underlined. S denotes style samples.
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significantly outperforming the second-best method, Tformer (15.2614).
Additionally, its LPIPS and StSc scores are 0.0820 and 0.9014, respectively,
demonstrating clear superiority over other methods. To summarize, CINet
delivers excellent performance across different degradation levels (10–40%)
on the DPCCD and DHWD datasets, showcasing remarkable adaptability
to complex scenes. Figure 12 shows the restoration results of the DPCCD
and DHWD datasets. Our method restores the glyph structure more
accurately, while other methods exhibit distortion and artifacts. Further-
more, we useGrad-CAM for visualization (as shown in Fig. 13).We overlay
the heat maps generated by different methods onto the damaged images to
highlight the areas the model focuses on. Red areas indicate high attention,

while blue represents low attention. In CINet, the red-highlighted areas are
concentratedon theglyph structure ormissingparts, demonstrating that the
model correctly focuses on the restoration areas, thereby achieving better
results. In contrast, other models (e.g., Tformer) fail to adequately focus on
the glyph structure, or their highlighted areas do not concentrate on glyph-
related regions (e.g., CIDG, RCRN), leading to glyph distortion.

In Table 6, we report the performance of various methods on the DID
dataset. Our method outperforms others across most metrics, with the
exception of FID, where it ranks second, demonstrating significant advan-
tages in real-inscription image restoration. This makes our model more
suitable for real-world scenarios. Specifically, although CINet’s FID is
16.2541, which is only 0.4457 higher than the best-performing Tformer
(15.8084), it surpasses bothGSDMandTformer inPSNR, SSIM,LPIPS, and
StSc. CINet achieves SSIM and StSc values of 0.9564 and 0.9534, respec-
tively, outperformingTformerby 0.0115 and 0.0305. It also outperforms the
second-best method, GSDM, by 0.9711 dB in PSNR. Furthermore, CINet
has the lowest LPIPS score of 0.0370, which is significantly better than other
methods, such as CIDG (LPIPS = 0.0628) and Charformer (LPIPS =
0.2935). Figure 14 displays the restoration results, where CINet ensures
consistent restoration of the glyph structure, while comparisonmodels (e.g.,
Tformer) retain unnecessary strokes. GSDM performs well in handling
slight degradations but is less effective at removing spurious strokes, often
resulting in the retention of incorrect structural information. Figure 15
presents the Grad-CAM visualization results, showcasing how CINet
effectively focuses on the glyph structure, distinguishing real from fake
features. In contrast, other models (e.g., Tformer and CIDG) fail to con-
centrate on the glyph regions accurately and instead focus on irrelevant
areas, leaving meaningless strokes in the restored images.

Ablation study
Toevaluate the impactof different components on restorationperformance,
we analyze the performancefluctuations after removing eachmodule on the
DID dataset, as shown in Table 7. The results indicate that the removal of

Fig. 10 | Restoration results of different methods on damaged DPCCD images. The red boxes highlight regions for the comparison of local inpainting results across
methods.

Table 4 | Impact of reducingglyph instances and style samples
on CINet performance.

G of seen
inpainting
character

S of seen
inpainting
character

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ StSc ↑

5 2629 22.5642 0.9501 0.0365 2.5185 0.9728

1315 21.5947 0.9493 0.0434 3.0026 0.9694

657 21.0008 0.9282 0.0482 3.7203 0.9638

329 20.3057 0.9244 0.0538 4.2230 0.9483

3 2629 22.1492 0.9525 0.0387 2.6915 0.9680

1315 21.1227 0.9474 0.0461 3.3452 0.9634

657 20.3279 0.9416 0.0533 4.2516 0.9567

329 19.5161 0.9350 0.0610 5.5980 0.9405

1 2629 21.7690 0.9504 0.0413 2.7523 0.9677

1315 20.4333 0.9418 0.0511 4.1197 0.9568

657 20.2268 0.9414 0.0547 4.5300 0.9535

329 19.3160 0.9155 0.0646 6.0300 0.9437
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any module negatively affects CINet’s performance, underscoring the
importance of module cooperation in achieving high performance. When
removing a single component, the performance degradation is relatively
minor, with significant fluctuations occurring only in specific metrics. For
example, removing the FSM module leads to more noticeable increases in

LPIPS andFID,which rise by 0.0018 and 3.5012, respectively, while its effect
on SSIM is negligible. In contrast, removing the Semb has amore substantial
impact on StSc, reducing it from 0.9534 to 0.9301. Whenmultiple modules
are removed together, the performance degradation is much more pro-
nounced, highlighting strong synergistic effects among the modules. For

Fig. 11 | Impact ofG and S samples onCINet performance. a Impact of seen style samples (S) on performance. b Impact of seen glyph instance samples(G) on performance.
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example, in the CINet-FSM-CATEX-CAIMG-Semb-ETEX or CINet-FSM-
CATEX-CAIMG-Semb configurations, all metrics show a significant decline,
and the magnitude of this degradation is far greater than when removing a
single module. Specifically, when all modules are removed, PSNR decreases
by 1.2043 dB, andFID increases by 21.2852. It is noteworthy that evenwhen
all components are removed, the CSB branch, relying solely on CAIMG_TEX

to transfer glyph information to the IB branch, still performs reasonably
well, achieving a PSNR of 20.5643 dB and an FID of 37.5393. These results
outperform most of the comparison methods (as shown in Table 6),
highlighting the critical role of glyph information in inpainting inscription
images.

To evaluate the network’s adaptability and restoration performance
under different damage shapes, we simulate circular, rectangular, and
square damage patterns at a 20% degradation level on the DHWD and
DPCCDdatasets, with results shown inTable 8. The results are visualized in

Fig. 16. The findings indicate that CINet exhibits robust restoration cap-
abilities, showing minimal sensitivity to different damage shapes. This
reflects the model’s strong generalizability across various damage patterns.
Specifically, on the DHWD dataset, our model demonstrates consistent
performancewith onlyminorfluctuations across allmetrics. Themaximum
variations are 0.0027 for SSIM, 0.0057 for LPIPS, and 0.0052 for StSc.On the
DPCCD dataset, CINet similarly shows excellent robustness to different
damage shapes. Notably, the maximum fluctuations are 0.0044 for SSIM
(ranging from 0.9501 to 0.9545), 0.0027 for LPIPS (from 0.0365 to 0.0392),
0.4527 for FID (from 2.4913 to 2.9440), and 0.0059 for StSc (from 0.9728
to 0.9787).

More visualization results
To evaluate the generalization capability of the proposed method across
different Chinese calligraphy styles, we perform restoration experiments

Fig. 12 | Restoration results of different methods on DPCCD/DHWD. aVisualization of different methods on DPCCD. bVisualization of different methods onDHWD.

Fig. 13 | Visualization of Grad-CAM results on DPCCD. Red areas indicate high attention, and blue areas indicate low attention.
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Fig. 14 | Inpainting results of different methods on DID. Each row shows, from left to right: Damaged image, CIDG, DE-GAN, CycleGAN, RubGAN, FD-Net, RCRN,
Charformer, Uformer, Tformer, CENet, GSDM, Ours and Ground Truth.

Table 5 |Comparisonof differentmethodsunder varyingdegradation ratios (10–40%)ondamagedDPCCDandDHWDdatasets.

DataSet DPCCD DHWD

Damage Ratio 10% 20% 30% 40% 10% 20% 30% 40%

PSNR ↑ CIDG4 23.8485 17.9637 15.6344 14.3110 32.5975 27.0959 23.6979 21.1915

DE-GAN5 21.5729 17.4547 14.0916 12.4792 22.9489 19.0931 19.5765 16.1321

CycleGAN2 16.3694 15.0276 12.1797 11.4907 12.7699 12.5543 12.0983 8.7998

RubGAN3 16.0821 12.3080 10.6780 8.6255 23.6705 15.6063 14.6452 16.1002

FD-Net25 22.7529 17.5490 13.8879 12.5476 27.6416 20.4685 20.2979 16.8503

RCRN7 27.1793 20.0975 17.9561 16.3993 25.7484 21.5700 20.9555 20.3070

Charformer6 16.9728 13.9899 12.1706 11.1936 22.4961 18.9827 17.0869 16.0577

Uformer19 22.9206 18.1223 16.3102 13.8839 28.5608 26.2205 23.2619 20.9709

Tformer17 24.6870 18.5650 17.1622 15.3204 31.9444 27.9480 25.1058 22.4783

CENet29 26.9407 21.9001 18.1533 16.6877 32.0849 21.5519 18.0554 16.9368

GSDM14 27.3847 22.2099 18.9256 16.7105 31.3204 26.5663 25.1741 23.2469

CINet(ours) 27.0752 21.9040 19.0391 16.9545 33.6503 28.5654 25.3990 22.9516

SSIM ↑ CIDG4 0.9708 0.9235 0.8879 0.8198 0.9850 0.9563 0.9149 0.8585

DE-GAN5 0.5544 0.5088 0.4621 0.4013 0.9278 0.8537 0.7955 0.7236

CycleGAN2 0.8763 0.8457 0.7811 0.7586 0.7351 0.6979 0.4804 0.4396

RubGAN3 0.8735 0.7581 0.6889 0.5699 0.9192 0.7061 0.6686 0.6972

FD-Net25 0.9170 0.6117 0.4419 0.4107 0.9594 0.8551 0.8157 0.6964

RCRN7 0.9737 0.9409 0.9086 0.8795 0.9770 0.9425 0.9226 0.8992

Charformer6 0.8724 0.7155 0.7090 0.4127 0.9000 0.8268 0.6558 0.7311

Uformer19 0.9529 0.9097 0.8857 0.8134 0.9562 0.9466 0.9102 0.8515

Tformer17 0.9713 0.9281 0.8859 0.8519 0.9871 0.9692 0.9421 0.9059

CENet29 0.9495 0.8828 0.8373 0.7234 0.9796 0.9119 0.8459 0.6361

GSDM14 0.9684 0.9402 0.9161 0.8455 0.9811 0.9556 0.9389 0.9058

CINet(ours) 0.9788 0.9573 0.9142 0.8981 0.9880 0.9689 0.9423 0.9102

LPIPS ↓ CIDG4 0.0367 0.0897 0.1260 0.1766 0.0224 0.0576 0.0971 0.1448
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Table 5 (continued) | Comparison of different methods under varying degradation ratios (10–40%) on damaged DPCCD and
DHWD datasets.

DataSet DPCCD DHWD

DE-GAN5 0.1437 0.2223 0.3295 0.3940 0.1127 0.1941 0.2390 0.3010

CycleGAN2 0.1082 0.1273 0.1903 0.2079 0.2441 0.2608 0.3755 0.4007

RubGAN3 0.1211 0.2101 0.2566 0.3338 0.1342 0.3186 0.3171 0.2953

FD-Net25 0.0778 0.1996 0.3397 0.3966 0.0587 0.1782 0.2120 0.2979

RCRN7 0.0250 0.0616 0.0926 0.1177 0.0424 0.0901 0.1063 0.1320

Charformer6 0.1199 0.1937 0.2366 0.3058 0.1491 0.2436 0.3602 0.3049

Uformer19 0.0489 0.0909 0.1143 0.1777 0.0637 0.0722 0.1071 0.1511

Tformer17 0.0261 0.0643 0.0858 0.1203 0.0179 0.0368 0.0611 0.0914

CENet29 0.0403 0.0823 0.1268 0.1975 0.0328 0.1182 0.1842 0.3268

GSDM14 0.0281 0.0543 0.0760 0.1219 0.0297 0.0583 0.0810 0.1100

CINet(ours) 0.0186 0.0375 0.0590 0.0820 0.0200 0.0441 0.0723 0.1029

FID ↓ CIDG4 4.5217 21.9642 34.9379 69.1312 3.3452 15.5087 33.5072 61.3743

DE-GAN5 82.9050 106.0662 139.7068 176.1016 84.9855 103.6033 175.3730 145.0369

CycleGAN2 23.9995 26.4705 45.1659 41.9275 78.9258 70.8618 173.5766 157.7194

RubGAN3 30.1559 61.1383 81.5016 92.0147 128.6956 206.5620 255.3818 185.5508

FD-Net25 30.2129 91.9941 162.6583 203.0982 26.0509 89.4191 155.0165 124.9439

RCRN7 6.1782 9.7630 25.8691 38.6952 5.2834 11.5529 18.6234 30.3388

Charformer6 49.3760 76.0000 100.5720 148.0570 211.4300 257.8482 286.1490 281.6109

Uformer19 10.3924 16.8941 21.4015 54.7658 30.4457 34.1864 56.2771 74.2093

Tformer17 2.1062 5.5788 8.6455 15.2614 5.8980 12.1144 30.1857 47.7919

CENet29 16.7125 31.2776 69.0545 114.4214 13.7978 77.7357 71.3762 246.1889

GSDM14 10.9715 12.9593 13.1736 23.9740 12.4396 9.3913 24.4904 53.6999

CINet(ours) 1.5773 2.5201 4.9128 6.3836 2.4655 6.9545 14.0550 23.4199

StSc ↑ CIDG4 0.9803 0.9266 0.8609 0.7492 0.9753 0.8271 0.6994 0.5699

DE-GAN5 0.9471 0.6147 0.3757 0.2718 0.2187 0.0919 0.1299 0.0889

CycleGAN2 0.7652 0.7020 0.6268 0.5583 0.1383 0.1329 0.1284 0.1125

RubGAN3 0.7822 0.6957 0.5368 0.3265 0.7899 0.4962 0.5573 0.3581

FD-Net25 0.9524 0.8131 0.3726 0.2606 0.4633 0.2030 0.2132 0.0980

RCRN7 0.9876 0.9362 0.8686 0.8226 0.4025 0.2874 0.2994 0.2583

Charformer6 0.8821 0.7877 0.6966 0.6332 0.5176 0.4686 0.1700 0.2569

Uformer19 0.9268 0.8323 0.8266 0.6666 0.5441 0.4140 0.3812 0.3108

Tformer17 0.9812 0.8948 0.8686 0.7867 0.8789 0.7768 0.6754 0.4973

CENet29 0.9838 0.9082 0.8259 0.6297 0.9162 0.6541 0.4912 0.1362

GSDM14 0.9883 0.9512 0.8948 0.8220 0.9636 0.8225 0.6748 0.4575

CINet(ours) 0.9902 0.9684 0.9385 0.9014 0.9679 0.8705 0.7306 0.6023

The optimal results are shown in bold, and the sub-optimal results are underlined.

Table 6 | Comparison of performance on real-inscription images.

DID PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ StSc ↑

CIDG4 19.7501 0.9407 0.0628 25.5439 0.9098

DE-GAN5 19.9100 0.9076 0.1430 122.9757 0.8952

CycleGAN2 16.9535 0.8826 0.1056 43.6596 0.6900

RubGAN3 17.6579 0.5975 0.1841 115.0252 0.8180

FD-Net25 18.9690 0.8811 0.1743 147.9551 0.8355

RCRN7 18.7303 0.9123 0.1003 78.1304 0.8559

Charformer6 18.1647 0.4742 0.2935 204.4901 0.7948

Uformer19 18.5368 0.9312 0.0585 18.5603 0.8355

Tformer17 20.0371 0.9449 0.0475 15.8084 0.9229

CENet29 20.4213 0.8961 0.1285 92.8850 0.9112

GSDM14 20.7975 0.9347 0.0917 81.6815 0.9199

CINet 21.7686 0.9564 0.0370 16.2541 0.9534

The optimal results are shown in bold, and the sub-optimal results are underlined.
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Fig. 15 | Grad-CAM visualization results on DID. Red areas indicate high attention, while blue areas indicate low attention.

Table 7 | Ablation experiments of different components.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ StSc ↑

CINet 21.7686 0.9564 0.0370 16.2541 0.9534

CINet-FSM 21.6633 0.9551 0.0388 19.7553 0.9476

CINet-Semb 21.3994 0.9534 0.0382 16.6070 0.9301

CINet-ETEX 21.5526 0.9551 0.0381 18.8814 0.9505

CINet-CAIMG 21.7001 0.9550 0.0373 16.2934 0.9491

CINet-CATEX 21.4337 0.9438 0.0389 16.4120 0.9389

CINet-CATEX-CAIMG 21.3917 0.9533 0.0382 16.5173 0.9345

CINet-FSM- CATEX-CAIMG 21.6970 0.9483 0.0387 26.5635 0.9461

CINet-FSM- CATEX-CAIMG-Semb 21.5443 0.9216 0.0386 32.5536 0.9389

CINet-FSM- CATEX-CAIMG-
Semb-ETEX

20.5643 0.9335 0.0431 37.5393 0.9127

The optimal results are shown in bold, and the sub-optimal results are underlined.

Fig. 16 | Restoration results of ourmethod onDHWD/DPCCD for different damage shapes. The left side of the dashed line shows examples of different damage shapes,
and the right side shows the restoration results of our method.
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during the testing stage onYanZhenqing’sEpitaphofGuoXuji (Yan script),
Ouyang Xun’s Jiuchenggong Liquan Inscription (Ou script), and Liu
Gongquan’s Diamond Sutra (Liu script) (see Fig. 17). The DID training set
contains only Yan script samples, with no Ou or Liu script samples.
Moreover, for the Yan script, the training and testing sets are strictly non-

overlapping. The visualization results demonstrate that CINet can accu-
rately inpaint glyphs and maintain style consistency in both unseen fonts
(Ou and Liu scripts) and seen fonts with different samples (Yan script),
evidencing its effectiveness and robustness under varying font style
scenarios.

Fig. 17 | Visualization of restoration results for Yan,Ou, and Liu scripts.The first row shows the damaged images, and the second row shows the results obtained using our
proposedmethod. aVisualization of the testing results for Liu scripts. bVisualization of the testing results for Ou scripts. cVisualization of the testing results for Yan scripts.
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To further validate the advantages and limitations of the proposed
method, we select a 40% degradation ratio from the DPCCD dataset as the
testing scenario, which provides a challenging setting and effectively eval-
uates themodel’s inference ability under conditions ofmissing information.
As shown in Table 5, under the 40% damage condition, CINet still achieves
the best performance in all indicators.However, the visualization results (see
Figs. 18, 19) show that some characters are still not fully restored. Specifi-
cally, samples with successful inpainting (see Fig. 18) generally retain most
of their crucial structural elements, enabling the model to accurately infer
missing parts based on existing structural information. In contrast, failed
inpainting cases (seeFig. 19) often exhibit substantial loss of core strokes and
numerous strokes or overlapping components, which significantly increase
the restoration difficulty and lead to missing strokes, structural distortions,

or incorrect completions, as highlighted by the green boxes. This indicates
thatwhile theproposedmethodperformswell overall, it still faces challenges
and has potential for improvement in inpainting Chinese characters with
severe key structure loss and multiple overlapping components.

Discussion
Wepropose CINet, a specialized image inpainting network built with an in-
depth understanding of Chinese character structures. CINet adopts a dual-
branch architecture. The first branch, the CSB, generates high-quality
representations of Chinese characters. Specifically, we utilize the text
encoder from the CLIP model, pretrained for Chinese character image
recognition, to provide additional supervisory information to the CSB. The
second branch, the IB, incorporates a cross-attention mechanism to inject

Fig. 18 | Visualization of successful restoration examples. a DPCCD image with 40% degradation ratio. b Ground-truth images. c Inpainting results of our method.

Fig. 19 | Visualization of failed restoration examples. a DPCCD images with 40% degradation ratio. b Ground-truth images. c Inpainting results of our method.
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key glyph information, guiding the inpainting task. This enables the model
to bemore sensitive to glyph features and compensates for the limitations of
relying solely ondegraded image feature extraction. The cross-modal design
of CINet also effectively addresses the challenge of insufficient inscription
image data. Additionally, to improve the network’s ability to capture and
preserve style, we integrate a style embedding module. This enhances the
model’s precision in maintaining style consistency during inpainting. We
demonstrate the superiority of CINet across multiple datasets, especially in
scenarios with limited data and complex degradation, showing greater
robustness and adaptability.

Data availability
TheDID,DHWD, andDPCCDdatasets are available via the following link:
https://github.com/liuyunjing0306/CINet.

Code availability
The code for this study is available via the following link. https://github.com/
liuyunjing0306/CINet.
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