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Texture provides valuable insights into building materials, structure, style, and historical context.
However, traditional deep learning features struggle to address architectural textures due to complex
inter-class similarities and intra-class variations. Toovercome these challenges, this paper proposes a
Dual-stream Multi-layer Cross Encoding Network (DMCE-Net). DMCE-Net treats deep feature maps
from different layers as experts, each focusing on specific texture attributes. It includes two
complementary encoding streams: the intra-layer encoding streamefficiently captures diverse texture
perspectives from individual layers through multi-attribute joint encoding, while the inter-layer
encoding stream facilitatesmutual interaction and knowledge integration across layers using a cross-
layer binary encoding mechanism. By leveraging collaborative interactions between both streams,
DMCE-Net effectively models and represents complex texture attributes of architectural heritage
elements. Extensive experimental evaluations on architectural heritage datasets and three texture
databases demonstrate that DMCE-Net achieves superior performance compared to existing deep
learning methods and handcrafted features, providing reliable texture representations.

Architectural heritage1 is a vital component of human culture and history,
and its preservation, particularly through digital means, is of utmost
importance. These structures embody profound cultural, historical, and
artistic values. By applying texture analysis to architectural images, we can
not only provide quantitative support for academic research but also offer
the public a deeper and more nuanced understanding of their historical
significance2. Texture3 is a crucial visual feature of building surfaces, offering
key insights into a structure’s materials, design, style, and even its historical
context. For instance, surface features such as bricks, stone, wood, and
carvings—commonly found in ancient buildings—reflect distinct crafts-
manship and techniques. Texture4 analysis not only aids in extracting
detailed surface information but also helps in identifying various archi-
tectural elements and their stylistic characteristics. Moreover, this process
contributes to the intelligent processing of large-scale datasets. Related
intelligent applications5,6, such as visual question-answering systems7,8 and
cross-modal fusion9 can assist non-experts in accurately classifying and
recognizing architectural heritage. Ultimately, these technologies provide
more refined and effective tools for the preservation of cultural heritage.

As illustrated in Fig. 1, visual texture10 refers to the structured patterns
on an object’s surface, which may appear either regular or random. These
patterns result from the complex interplay of surface details, inherent
structures, lighting conditions, and material properties, conveying vital

information about the object’s composition, shape, and structural char-
acteristics. The surfaces of architectural heritage structures are particularly
rich in intricate texture details. Robust texture analysis methods are crucial
for effectively addressing the fundamental challenges posed by inter-class
similarity and intra-class variability in the classification of architectural
heritage elements (AHE). However, designing effective texture features
remains a significant challenge in image analysis, as texture images often
exhibit a wide variety of complex, both regular and irregular, patterns.
Moreover, these textures are highly sensitive to changes in imaging condi-
tions, including illumination, scale, rotation, viewpoint, and blur. To tackle
these issues, a wide range of texture recognition methods have been pro-
posed and applied across diverse domains in recent years. Broadly, these
methods can be divided into two main categories: those based on hand-
crafted features, developedwith deep expertise fromdomain specialists, and
those that utilize deep features learned automatically by deep neural
networks.

The binary pattern method11,12 captures local texture features by ana-
lysing the difference between neighboring pixels and the central pixel. As
one of the most successful handcrafted texture descriptors, it offers several
advantages, including a simple theoretical implementation, low feature
dimensionality, and robustness to monotonic illumination changes. In
recent years, deep neural networks have exhibited remarkable performance
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advantages in image classification. Consequently, researchers have
increasingly explored their applications in texture attribute analysis within
thedomainof texture classification. Specifically, Zhai et al.13 proposed adeep
structure-revealed network (DSR-Net) which leveraged the spatial depen-
dencies captured by the deep network as a structural representation for
texture recognition. Khwaja et al.14 proposed a LM trained multi-layer
perceptron neural network structure optimization algorithms for defective
texture classification.Amulti-scale boosting feature encodingnetwork15was
proposed to address the challenge of scale variation and improve texture
recognition accuracy. Literature16 analysed the impact of global pooling
measurements anddevelopedRANKGP-CNN,demonstrating that layers at
different depths could provide high-quality texture information.Wu et al.17

designed a trimmed texture convolutional neural network for automatic
texture exemplar extraction across a variety of texture objects, scales, and
regularities under diverse conditions.

Recently, researchers have started integrating the strengths of hand-
crafted features into neural networks, leading to the development of a series
of advanced hybrid frameworks. Lee et al.18 combined the advantages of
hand-crafted feature preprocessing and shallow neural networks to develop
ILBPSDNet for real-time character recognition. Reference19 analysed deep
convolutional neural networks to extract precise and robust latent features
based on entropy for texture representation and plant species identification.
Florindo et al.20 proposed ELMP-Net, which constructs a two-layer map-
ping and uses the learned parameters to transform the original image,
achieving competitive performance compared to state-of-the-art approa-
ches. The author also designed fractal pooling21, which uses fractal dimen-
sion of the featuremap to capturemore complex,multiscale, and non-linear
relationships. In addition, the tailored design of modules for texture attri-
butes has further broadened the potential applications of deep networks in
texture analysis. Chen et al.22 proposed deep tracing patterns that trace
features generated along the convolutional layers, achieving a highly dis-
criminative and robust global feature representation for texture descriptors.
Lyra et al.23 employed a hierarchical application of deep filter bankmodules
combined with Fisher vector pooling, proposing a multilevel pooling
scheme for texture classification and Brazilian plant species identification.
Pavlopoulos et al.24 designed a fuzzy neural network classifier that enhances
the effectiveness of texture feature analysis in ultrasonic liver images. Sai-
hood et al.25 proposed a guided attention-based fusion method for lung
nodule classification by leveraging multi-orientation local texture features,
enabling the extraction of more fine-grained discriminative information
within the nodule volume. This approach not only improves classification
performance but also provides strong support for the practical needs of
medical experts. Reference26 proposed a coarse-to-fine contrastive
self-supervised learning framework for pixel-level texture analysis of

low-resolution remote sensing images. Reference27 proposed a dual-branch
hybrid encoding embedded network to extract diverse pathological texture
features, enabling efficient classification of histopathological images. Moi-
nuddin et al.28 designed a texture-compensated multi-resolution convolu-
tional neural network to prevent over-smoothing and preserve both
structural and textural information. Reference29 proposed a structure-aware
infrared and visible image fusion network, which effectively mitigates the
loss of texture details in the fused images. It is evident that deep network
frameworks demonstrate remarkable performance advantages in thefield of
texture analysis, thereby offering a solid theoretical foundation for their
application in related domains.

In recent years, the application of texture feature analysis30–32 has
become increasingly widespread in the study of ancient relics. Andreetto
et al.33 proposed an automatic 3D modeling approach for textured cultural
heritage objects to address the cost challenges associated with cultural
heritage modeling. Reference34 developed deterioration identification
models for stone cultural heritage based on hyperspectral image texture
features to distinguish between various types of deterioration. Earl et al.35

presented the archaeological applications of polynomial texture mapping, a
technique that allows for the recording and representation of subtle surface
details. Reference36 trained convolutional neural network (CNN) on
Cypriot-built heritage to classify the architectural style of built heritage in
3D. Fan et al.37 proposed to combine attached textual descriptions to per-
form intangible cultural heritage image classification. Li et al.38 proposed
LBCapsNet to extract features from images of porcelain artifact fragments,
effectively handling unique textures and providing technical support for the
digital preservation and restoration of cultural heritage. Clearly, texture
analysis holds substantial potential in the classification of AHE. With the
rapid advancements in image processing technology and deep learning,
researchers can gain deeper insights into the evolution, structural char-
acteristics, and possible damage of buildings by classifying and analysing
images of architectural heritage, thereby offering a scientific foundation for
conservation and restoration efforts.

This paper presents the design of a deep network framework aimed
at capturing multi-view texture attribute information to address the
challenges of subtle inter-class differences and significant intra-class
variations in texture analysis. The proposed framework is applied to the
classification of AHE. Specifically, we introduce the Dual-streamMulti-
layer Cross Encoding Network (DMCE-Net), with the following key
contributions:
1. To effectively address the inherent challenges of high inter-class

similarity and significant intra-class variability in AHE, the proposed
DMCE-Net introduces two complementary feature encoding streams:
an intra-layer encoding stream and an inter-layer encoding stream.

Fig. 1 | Texture images of architectural heritage elements. This figure presents representative texture image samples, illustrating the visual diversity and material
complexity of architectural heritage elements.
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2. The intra-layer encoding stream is dedicated to capturing multi-level
texture information from the perspective of individual expert layers
and achieves efficient fusion of diverse texture representations through
a novel multi-attribute joint encoding strategy.

3. The inter-layer encoding stream focuses on facilitatingmutual learning
among texture cues across different expert layers and introduces a
cross-layer binary encoding mechanism to enable effective integration
of multi-level texture perspectives

4. Extensive experiments on AHE dataset and three challenging texture
databases demonstrate that the proposed MCBE-Net achieves a
compact and highly discriminative texture representation. Further-
more, it surpasses state-of-the-art methods in classification perfor-
mance, exhibiting particularly remarkable advantages in AHE dataset.

The remainder of the paper is organized as follows: Section “Methods”
introduces the related methods, including the basics of CNN, the archi-
tecture and strategyof theproposedDMCE-Net.Results are given in Section
“Results”. The discussion is drawn in Section “Discussion”.

Methods
Review of CNN
Classical deep neural networks tackle complex problems by alternately
connecting convolutional and pooling layers followed by one or more fully
connected layers at the end. They learn features by training network para-
meters on large datasets. The core concept is to extract local features from
the image using convolution operations and progressively capture higher-
level, more abstract features through the cascade of multiple convolutional
layers, thereby enabling effective image understanding and classification.

The convolutional layer is the core building block of a neural network.
It extracts local features from the input image using convolutional kernels,
followed by element-wise nonlinear activation. The activation of the ith
feature map in the lth layer can be expressed as:

Fl
i ¼

X
j

gðwl
i;j*F

l�1
j þ bliÞ ð1Þ

where * is the convolutional operation. Fl�1
j 2 Rp× q is the output of

ðl � 1Þth layer, and it is also the input to the lth layer. wl
i;j is the i

th con-
volutional kernel of the lth layer. bli is the corresponding bias. gðgÞ is non-
linear activation function.

Then the feature map vector of the lth layer is represented as:

Fl ¼ gðwl*Fl�1 þ blÞ ð2Þ

where wl is a set of convolutional kernels in the lth layer. Fl�1 is the feature
map vector of the ðl � 1Þth layer, and bl is the corresponding bias vector of
the lth layer.

Typically, a pooling layer is applied after the convolutional layer.
Poolingoperations are a crucial localmechanism inneural networks, helping
to reduce overfitting and enhance generalization. By effectively aggregating
local information, theypreserve the invariance of deep features to translation
and slight local distortions. The pooling operation is represented as:

Zl
i ¼ PpðFl

iÞ ð3Þ

where Zl
i is the i

th pooling feature map of the lth layer. PpðgÞ is the type of
pooling operation, such as max, average, and spatial pyramid pooling.

As illustrated in Fig. 2, CNNs extract deep features of an image in a
hierarchical, layer-by-layer manner. The convolutional operations in the
lower layers capture relatively simple, low-level features, while deeper layers
progressively capture more abstract and semantic information. Unlike
general images, texture images have distinct characteristics. On one hand,
most of the recognizable features in texture images are low-level features
derived frombasic pixel information. On the other hand, textures, as crucial
elements reflecting the local structure and surfacepatternsof an image, often

display contradictory properties, such as both regularity and randomness,
making their underlying attributes difficult to capture. This creates chal-
lenges for neural networks designed for general image processing when
tasked with texture analysis.

Considering the unique nature of texture images, this paper proposes a
deep network framework with adaptability to texture attributes, motivated
by the following key factors:
1. In neural networks, lower-layer convolutional kernels typically capture

relatively simple image attributes, and these basic low-level features are
essential for texture recognition. Traditional networks that rely solely
on deep features are not well-suited for texture analysis. Therefore,
designing effective methods to properly harness the key texture
information contained in shallow featuremaps is crucial for the texture
recognition tasks.

2. Although classical pooling schemes are effective local operations, they
are not well-suited for texture attributes that depend on pixel-level
information. The traditional Local Binary Pattern (LBP) approach
offers an efficient technique for capturing texture features. Therefore,
integrating the concept of binary patterns into the information
processing of deep feature maps is crucial for effectively capturing
texture attributes within deep learning frameworks.

3. The neural network framework is capable of extracting texture features
at various levels. Convolution operations in the lower layers capture
relatively simple texture features, while deeper layers use higher-level
convolutional kernels to combine and abstract more complex texture
patterns. In recent years, the concepts of dual-stream and cross-layer
encoding have attractedwidespread attention in computer visionfields
such as object tracking39,40 due to their powerful capability of
representing multi-level abstract features. However, these approaches
have been scarcely explored in the field of texture analysis. Texture is
both a local perceptual feature and a global property. Therefore,
achieving dual-stream feature learning across different regions and
levels, while considering both the fine details and overall patterns of
textures, is crucial for improving the recognition of complex textures.

Intra-layer encoding stream
In deep neural networks, convolutional kernels at different depths capture
feature attributes at progressively higher levels of abstraction. Shallow fea-
ture maps primarily represent simple low-level features, while deeper fea-
ture maps extract increasingly abstract and intricate texture patterns.

To preserve feature attributes as comprehensively as possible, this
paper extracts K layers of feature map tensors from the deep network
framework (e.g., AlexNet41, VGGNet42), eachdenoted asFk.k ¼ 1; 2; � � � ;K
is the index of themapping layer. Here, we treat the deep featuremaps from
different layers as domain experts, each possessing unique preferences for
specific feature perspectives and contributing discriminative texture cues
from various depth levels. Taking VGG19 as an example, we extract feature
maps fromK ¼ 4 layers ofVGG-VD19 (i.e., “conv2-2”, “conv3-4”, “conv4-
4”, and “conv5-4”), denoted as follows: F1 2 R112 × 112 × 128 F2 2
R56 × 56 × 512 F3 2 R28 × 28 × 512 and F4 2 R14 × 14 × 512. It is evident that the
spatial dimensions of different convolutional layers vary, which presents a
challenge for the encoding mechanisms proposed in this paper.

To address this, bilinear interpolation is applied for down-sampling,
ensuring that feature maps from different layers are unified to a consistent
spatial resolution, denoted as s×s. For VGG19, s is set to 14. Furthermore, to
reducebothcomputational complexity and featuredimensionality, anexpert-
level average reduction strategy is employed, as shown inFig. 3. Following this
operation, the number of feature maps for each layer is reduced and denoted
as N. This reduction is applied to the feature maps corresponding to each
expert perspective. The resulting processed featuremaps can be expressed as:bF1 2 Rs × s×N ,bF2 2 Rs× s×N ,bF3 2 Rs× s ×N and bF4 22 Rs× s×N .

To ensure that the network effectively captures the texture cues per-
ceived by each expert perspective layer, this paper introduces the intra-layer
encoding stream. In this stream, each layer’s feature map undergoes inde-
pendent intra-layer binary encoding strategy based on the local mean,
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allowing for the extraction of local texture attributes. Notably, this proposed
strategy offers a simple yet efficient means of representing local texture
information. It is applied to each local feature map bFk

i in
layerk; k ¼ 1; 2; 3; 4, and get the intra-layer sign binary mapping
Intra SMk

i , formulated as follows:

Intra SMk
i ¼ signðbFki �meanðbFki ÞÞ ð4Þ

wheremeanðgÞ is the adaptive encoding threshold, is equal to themeanof all
points in the local feature map bFk

i . It is worth noting that in this study, the
mean value is consistently used as the threshold for binary encoding. The

main reason lies in its statistical significance - the mean serves as a global
measure of central tendency, making it a suitable reference for partitioning
when the distribution of texture attributes is approximately symmetrical.
This choice also offers the advantages of simplicity in implementation and
computational efficiency. And signðgÞ is the sign function, defined as

signðxÞ ¼ 1; x > 0

0; otherwise

�
ð5Þ

Then for the layer k; k ¼ 1; 2; � � � ;K , we can get four independent
intra expert perspectives sign mapping tensor, denoted as

Fig. 3 | The illustration of Expert Perspective Feature Mapping Layer. This figure
illustrates the basic structure of the Expert Perspective Feature Mapping Layer. The
gray blocks represent Convolution followed by ReLU activation, the orange blocks

indicate Pooling operations, the light blue blocks denote Fully Connected layers
followed by ReLU, the green block corresponds to the Softmax layer, and the dark
blue blocks represent the resulting Expert Perspective Feature Mappings.

Fig. 2 | Typical architecture of CNN.This figure illustrates the standard architecture of a convolutional neural network (CNN), widely adopted for image classification. The
model consists of an input layer, a sequence of convolutional and pooling layers, and one or more fully connected layers leading to the final classification output.
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IntraSMk; k ¼ 1; 2; � � � ;K . To enable the effective fusion of multiple
independent sign mappings, this paper proposes a novel multi-attribute
joint encoding strategy, as illustrated in Fig. 4. This strategy re-encodes the
signmappings derived fromdifferent expert layers into a unified, integrated
sign pattern code. To facilitate histogram-based feature statistics, the
resulting sign pattern code is further converted into its decimal form,
computed as follows:

Intra SMPi ¼
PK
k¼1

2k�1gIntra SMk
i

¼ 20gIntra SM1
i þ 21gIntra SM2

i þ � � � þ 2K�1gIntra SMK
i

ð6Þ

It is worth noting that, for histogram representation, formula (6)
converts the binary-coded Intra SM into its decimal formIntra SMP, where
the weight 2k�1 is primarily used to facilitate the conversion from binary
code to decimal value.

Furthermore, we utilize the histogram of Intra SMPi to construct
feature histograms HðIntra SMPiÞ and concatenate the histograms of I
channels to form the intra-layer sign encoding feature vector, represented as:

HS Intra ¼ ½HðIntra SMP1Þ;HðIntra SMP2Þ; :::;HðIntra SMPIÞ� ð7Þ

Inspired by Completed Local Binary Pattern (CLBP)12, in addition to
the intra-expert perspectives sign mapping tensor, we also design an intra-
expert perspectives magnitude mapping tensor to provide complementary

Fig. 4 | The illustration of Intra-layer Encoding Stream. This figure presents the
core structure of the Intra-layer Encoding Stream. First, each convolutional layer’s
feature map is independently processed using an intra-layer binary encoding
strategy based on local mean values, aiming to capture fine-grained local texture

patterns. Second, this process yields four independent intra expert perspectives sign
and magnitude mapping tensors. Last, we concatenate the intra-layer sign and
magnitude encoding feature vectors to obtain the final feature vector.
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local texture information. Specifically, the intra-layer magnitude difference
mapping Intra MDk

i is defined as follows:

Intra MDk
i ¼ absðbFk

i �meanðbFk
i ÞÞ ð8Þ

where absðgÞ is the absolute value operation.

Furthermore, to obtain the binary encoding, the mean of Intra MDk
i

is used as the encoding threshold forIntra MDk
i , which is defined as fol-

lows:

Intra MMk
i ¼ tðIntra MDk

i �meanðIntra MDk
i ÞÞ ð9Þ

Fig. 5 | The illustration of inter-layer encoding stream. This figure presents the
core structure of the inter-layer encoding stream. First, the interaction differences
between adjacent expert perspective layers are computed to capture cross-layer
feature variations. Then, a cross-layer binary encoding mechanism is applied to

generate the corresponding inter-layer sign andmagnitude pattern codes, which are
used to construct the inter-layer sign and magnitude encoding feature vectors.
Finally, these feature vectors are concatenated to form the final inter-layer feature
representation.
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where tðgÞ is the binarization threshold function, defined

as tðx � cÞ ¼ 1; x > c
0; otherwise

�
.

Similar to the previous step, the resulting magnitude pattern code is
also converted into its decimal form, which is computed as follows:

Intra MMPi ¼
PK
k¼1

2k�1gIntra MMk
i

¼ 20gIntra MM1
i þ 21gIntra MM2

i þ � � � þ 2K�1gIntra MMK
i

ð10Þ
Furthermore, we compute the histogram of Intra MMPi to construct

feature histogramsHðIntra MMPiÞ, and concatenate the histograms across
I channels to form the intra-layer magnitude encoding feature vector,
denoted as:

HM Intra ¼ ½HðIntra MMP1Þ;HðIntra MMP2Þ; :::;HðIntra MMPIÞ� ð11Þ

It is noteworthy that histogram fusion is adopted for feature vector
construction due to its statistical integration capability at the distribution
level. By aggregating histograms obtained from multiple binary encoding
patterns, the fusion process effectively balances local variations and miti-
gates the bias associated with any single encoding scheme. Consequently,
the resulting feature distribution becomes more representative and robust,
reducing the impact of sample-specific randomness and enhancing the
discriminative power across diverse samples.

As shown in Fig. 4, we concatenate the intra-layer sign andmagnitude
encoding feature vectors to obtain the final feature vector, denoted as:

H Intra ¼ ½HS Intra;HM Intra� ð12Þ

Intra-layer encoding stream
To facilitate mutual learning and interaction of key texture attributes across
different expert layers, this paper introduces the inter-layer encoding
stream. In contrast to the intra-layer encoding stream, it effectively captures
hierarchical representations and models cross-layer dependencies within
deep feature mappings. Specifically, the inter-layer encoding stream
incorporates a cross-layer binary encoding mechanism, which leverages
binarymutual encodingbetweendifferent expert layers to extract inter-layer
binary mappings.

We begin by defining the interaction differences between adjacent
expert view layers, denoted as Dk

i ¼ bFk
i � bFkþ1

i . Based on the sign of these
interactiondifferences, a binarymutual sign encoding is then constructed, as
formulated below:

Inter SMk
i ¼ signðDk

i Þ ¼ signðbFki � bFkþ1
i Þ ð13Þ

where k; k ¼ 1; 2; � � � ;K , bFk
i and bFkþ1

i are the adjacent different expert
mapping layers. signðgÞ is the sign function, defined in formula (5).
Inter SMk

i is the resulting inter-layer binary mapping.
As shown in Fig. 5, if four layers of deep feature mappings bFk

i ; k ¼
1; 2; 3; 4 are selected, they will yield three inter-layer binary mapping

Fig. 6 | The texture samples of four databases. This figure presents representative
texture image samples from the four datasets employed in this study. a It shows
samples from the AHE database, containing diverse architectural heritage textures
with varying material properties and surface patterns. b It displays samples from the
UIUC database, which includes textures captured under uncontrolled imaging

conditions with significant variations in scale and orientation. c It presents samples
from the UMD database, characterized by complex environmental conditions. d It
shows samples from the CUReT database, featuring textures affected by specular
reflections and self-shadowing.
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InterBMk; k ¼ 1; 2; 3. To achieve more compact and effective cross-layer
feature dependencies, the cross-layer binary encoding mechanism re-
encodes the generated inter-layer sign binary mappings into a multi-bit
binary code, denoted as

Inter SMPi ¼
PK�1

k¼1
2k�2�Inter SMk�1

i

¼ 20�Inter SM1
i þ 21�Inter SM2

i þ � � � þ 2K�2�Inter SMK�1
i

ð14Þ

Furthermore, similar to intra-layer encoding stream, we employ the
histogram of Inter SMPi to build feature histograms HðInter SMPiÞ and
concatenate the histograms across I channels to construct the inter-layer
sign encoding feature vector, described as:

HS Inter ¼ ½HðInter SMP1Þ;HðInter SMP2Þ; :::;HðInter SMPIÞ� ð15Þ

Analogous to the intra-layer encoding stream, a binary mutual mag-
nitude encoding is devised to capture complementary information derived
from the magnitude differences between adjacent layers. Specifically, the
inter-layer magnitude difference mapping is defined as follows

Inter MDk
i ¼ absðbFk

i � bFkþ1
i Þ ð16Þ

Then the inter-layer magnitude difference mapping is defined as:

Inter MMk
i ¼ tðInter MDk

i �meanðInter MDk
i ÞÞ ð17Þ

where tðgÞ is the binarization threshold function. Similar to the previous
step, the corresponding inter magnitude pattern code is also converted into
its decimal form, computed as:

Inter MMPi ¼
PK
k¼1

2k�1�Inter MMk
i

¼ 20gInter MM1
i þ 21gInter MM2

i þ � � � þ 2K�1gInter MMK
i

ð18Þ
Furthermore, we compute the histogram of Inter MMPi to construct

feature histogramsHðInter MMPiÞ, and concatenate the histograms across
I channels to form the inter-layer magnitude encoding feature vector,

denoted as:

HM Inter ¼ ½HðInter MMP1Þ;HðInter MMP2Þ; :::;HðInter MMPIÞ�
ð19Þ

As shown in Fig. 5, we concatenate the inter-layer sign andmagnitude
encoding feature vectors to obtain the final feature vector, denoted as:

H Inter ¼ ½HS Inter;HM Inter� ð20Þ

Dual-streammulti-layer cross encoding network
To capture reliable texture cues and distinguish between inter-class simi-
larity and intra-class diversity, this paper proposes a DMCE-Net. It treats
featuremaps fromdifferent layers as expert representations,where the intra-
layer stream extracts texture attributes from individual experts, and the
inter-layer stream captures joint features through cross-layer interaction.
This framework enhances both the discriminative power and interpret-
ability of deep texture representations in complex visual scenes.

Our architecture systematically integrates complementary feature
representations through hierarchical feature integration. Specifically, we
construct a comprehensive final feature vector FH by concatenating the
intra-layer encoding feature vector H Intra and the inter-layer encoding
feature vector H Inter, formulated as:

FH ¼ ½H Intra;H Inter� ð21Þ

As shown in Fig. 4, for K ¼ 4, the intra-layer encoding stream
generates 4-bit binary codes using a multi-attribute joint encoding
strategy, resulting in an intra-layer encoding feature vector with a
dimensionality of 32N . Meanwhile, as shown in Fig. 5, the inter-layer

Fig. 7 | The impact ofN on the classification performance of DMCE-Net on the AHE database. This figure illustrates how varying the number of aggregated channels (N)
influences the classification accuracy of DMCE-Net on the AHE database.

Table 1 | The overall classification accuracy (%) on the AHE
database using different backbone network

Backbone
network

DMCE-Net Intra-layer
encoding stream

Inter-layer
encoding stream

VGG-VD19 95.27 ± 0.004 95.05 ± 0.004 92.93 ± 0.005

VGG-VD16 95.36 ± 0.004 95.16 ± 0.004 93.84 ± 0.005

AlexNet 93.99 ± 0.004 93.91 ± 0.005 92.95 ± 0.005
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encoding stream produces 3-bit binary codes via a cross-layer binary
encoding mechanism, yielding an inter-layer encoding feature vector
with a dimensionality of 16N . Therefore, the final feature vector has a
total dimensionality of 48N . This clearly indicates that the system

parameterN, determined by the expert-level average reduction strategy,
directly influences the output feature dimensionality of DMCE-Net. A
detailed analysis of N is provided in Section “Effect of parameters set-
ting” of this paper.

Fig. 8 | Category-wise classification results on the AHE database using VGG-
VD19 as the backbone network. This figure presents the classification accuracy for
each texture category in the AHE database, obtained using DMCE-Net with VGG-

VD19 as the backbone network. Red, green, and blue bar represent the classification
results of DMCE-Net, the intra-layer encoding stream, and the inter-layer encoding
stream, respectively.

Fig. 9 | The classification results of representation images on theAHEdatabase usingVGG-VD19 as the backbone network.This figure presents the classification results
of representative samples. The red text in the figure indicates misclassified results, while the black text represents correctly classified results.
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The technical advantages of the proposed DMCE-Net can be outlined
as follows:
1. The proposedDMCE-Net regards featuremaps fromdifferent layers of

a deep network as domain experts, each offering a distinct specialized
perspective. The dual-stream framework is designed to not only
preserve the independence of expert-specific features but also promote
mutual learning and interaction of texture attributes across hierarchical
levels. This design effectively addresses the challenges posed by inter-
class similarity and intra-class variability in texture representation.

2. In the intra-layer encoding stream, the proposed intra-layer binary
encoding strategy effectively harnesses the advantages of binary
encoding to capturefine-grained local texture attributes.Moreover, the
multi-attribute joint encoding strategy enables efficient fusion of
features from diverse expert perspectives, thereby enhancing the
overall expressiveness and robustness of texture representation.

3. In the inter-layer encoding stream, the proposed cross-layer binary
encodingmechanismcleverly facilitatesmutual learningand interactionof
texture attributes across different expert perspective layers, offering robust
technical support for the unified representation of cross-layer features.

In conclusion, the dual-stream mechanism of DMCE-Net facilitates
dual-stream learning across regions and layers, striking a balance between

finedetails andoverall patterns, and ensuring the collaborative optimization
of multi-level texture features. This offers a reliable technical approach for
the representation and recognition of complex textures.

Results
Experimental setup and database
In our experiments, we employ three widely-used CNN pre-trained fra-
meworks—AlexNet41, VGG-VD1642, and VGG-VD1942—to extract deep
feature maps. For AlexNet, feature maps are obtained from three con-
volutional layers: conv3, conv4, and conv5, with the input images resized to
227 × 227 × 3. ForVGG-VD16,we utilize intermediate convolutional layers
conv2-2, conv3-3, conv4-3, and conv5-3 to capture deep features. Similarly,
for VGG-VD19, feature maps are extracted from four layers: conv2-2,
conv3-4, conv4-4, and conv5-4. The input images for bothVGG-VD16 and
VGG-VD19 are resized to 224 × 224 × 3. All experiments are conducted on
a desktop running MATLAB 2024, equipped with a 2.6 GHz CPU and 64
GB of RAM, without GPU acceleration. All experiments in this study
employ an SVMclassifier. Specifically, we use a linear-kernel SVMbased on
the LIBSVM43 library with default parameter settings.

As shown in Fig. 6, the experiments in this section involve one chal-
lenging AHE dataset and three competitive texture classification datasets:
AHE44, UIUC45, UMD46, and CUReT47 database.

Fig. 10 | The confusion matrix of DMCE-Net with VGG-VD19 on the AHE
database. This figure presents the confusion matrix of the proposed DMCE-Net
using VGG-VD19 as the backbone network on the AHE database. The results are
averaged over 50 random splits to ensure statistical stability and robustness. The

matrix illustrates the model’s classification accuracy across all categories, where
diagonal elements represent correct predictions and off-diagonal elements indicate
misclassifications.
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The AHE dataset44 is a specialized collection designed for the recog-
nition and classification of architectural components found in cultural
heritage sites. It contains high-resolution images of various elements—such
as columns, arches, windows, cornices, and decorative motifs—captured
from a wide range of historical buildings. The dataset poses significant
challenges due to variations in scale, viewpoint, illumination, occlusion,
weathering, and stylistic diversity across different architectural periods and
regions. AHE provides a valuable benchmark for developing and evaluating
computer vision algorithms aimed at the visual understanding and pre-
servation of historical structures. The UIUC database45 is a widely adopted
benchmark for evaluating texture classification algorithms. It comprises 25
texture categories, each containing 40 grayscale images with a resolution of
640 × 480 pixels. The images exhibit considerable variations in scale,
viewpoint, illumination, and minor deformations, making the dataset well-
suited for assessing the robustness and generalization capability of texture
analysis methods. The UMD texture dataset46 comprises 25 texture

categories, each containing 40 high-resolution images of 1280 × 960 pixels
captured under diverse viewpoints, scales, and lighting conditions. The
textures feature pronounced 3D structures, non-uniform patterns, and
natural appearances, making the dataset particularly well-suited for evalu-
ating the performance of algorithms in real-world texture recognition tasks.
The CUReT database47 comprises images from 61 texture categories, each
containing 92 samples of size 200 × 200 pixels, captured under diverse
combinations of illumination directions and viewing angles. The textures
span a wide range of real-world materials—including fabric, metal, wood,
and stone—and exhibit substantial variations in reflectance properties and
surface geometry.

In our experiments, 80% of the samples were randomly selected for
training, and the remaining 20% were used for testing. The final classifi-
cation accuracy was computed as the average over 50 independently ran-
domized dataset splits. Notably, the proposedmethod leverages pre-trained
deep backbone networks without the need for parameter fine-tuning or

Fig. 11 | Comparative analysis of the proposed DMCE-Net and its backbone
counterparts on the AHE database. This figure presents a comparative analysis
between the proposed DMCE-Net and its corresponding backbone networks on the

AHE database. DMCE-Net consistently outperforms the baseline networks,
demonstrating its enhanced capability in capturing fine-grained texture attributes
and improving overall classification accuracy.

Table 2 | Classification results of different feature components DMCE-Net with VGG on the AHE Dataset

Category DMCE-Net Intra-layer
encoding stream

Intra-layer sign
encoding stream

Intra-layer
magnitude
encoding stream

Inter-layer
encoding stream

Inter-layer sign
encoding stream

Inter-layer
magnitude encoding
stream

1 96.63 ± 0.013 96.46 ± 0.013 94.72 ± 0.017 96.05 ± 0.015 95.92 ± 0.014 94.53 ± 0.015 95.68 ± 0.013

2 87.47 ± 0.032 86.33 ± 0.036 82.14 ± 0.042 82.88 ± 0.037 83.84 ± 0.038 77.14 ± 0.039 83.41 ± 0.040

3 90.45 ± 0.018 90.92 ± 0.019 87.58 ± 0.022 87.69 ± 0.025 84.88 ± 0.020 79.62 ± 0.027 83.18 ± 0.021

4 96.04 ± 0.009 96.22 ± 0.008 93.57 ± 0.012 94.91 ± 0.011 93.65 ± 0.013 90.87 ± 0.014 93.34 ± 0.013

5 97.82 ± 0.013 98.07 ± 0.011 98.15 ± 0.013 97.82 ± 0.013 97.14 ± 0.015 95.48 ± 0.019 97.37 ± 0.014

6 96.77 ± 0.016 96.80 ± 0.014 95.45 ± 0.014 95.49 ± 0.014 92.92 ± 0.016 91.66 ± 0.021 92.20 ± 0.019

7 83.75 ± 0.046 82.30 ± 0.043 77.68 ± 0.050 77.16 ± 0.044 78.27 ± 0.045 70.35 ± 0.048 77.63 ± 0.038

8 97.10 ± 0.010 97.15 ± 0.010 95.62 ± 0.012 96.18 ± 0.012 95.63 ± 0.012 93.54 ± 0.014 95.42 ± 0.012

9 89.34 ± 0.045 88.39 ± 0.044 86.62 ± 0.045 85.41 ± 0.049 85.93 ± 0.047 81.67 ± 0.058 85.84 ± 0.048

10 98.69 ± 0.008 98.43 ± 0.009 97.80 ± 0.009 97.86 ± 0.011 98.25 ± 0.007 97.50 ± 0.009 98.41 ± 0.008

11 96.85 ± 0.013 96.19 ± 0.014 94.79 ± 0.016 95.68 ± 0.015 95.51 ± 0.013 94.39 ± 0.015 95.12 ± 0.016

Total 95.27 ± 0.004 95.05 ± 0.004 93.02 ± 0.005 93.53 ± 0.006 92.93 ± 0.005 90.08 ± 0.006 92.30 ± 0.006
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GPU acceleration. This characteristic results in low computational over-
head, thereby enhancing the method’s applicability, scalability, and ease of
deployment in resource-constrained environments.

Effect of parameters setting
Before performing the intra-layer and inter-layer encoding stream, the
proposed DMCE-Net normalizes feature maps from different depth levels
to a unified size of s× s×N through down-sampling and an expert-level
average reduction strategy. ForAlexNet, s ¼ 13; forVGG-VD16 andVGG-
VD19, s ¼ 14. The parameter N is empirically determined through pre-
liminary experiments. Taking VGG-VD19 as an example, Fig. 8 illustrates
the impact of N on the classification performance of DMCE-Net on the
AHE database.

As shown in Fig. 7, the classification accuracy increases significantly
as the value of N rises from 100 to 190. When N exceeds 190, the per-
formance improvement gradually becomes marginal, reaching its peak at
N ¼ 230. Since the value of N directly determines the final feature
dimensionality, we fix N at 230 in this study, considering both classifi-
cation performance and computational cost. Taking VGG-VD19 as an
example, the feature dimension of intra-layer and inter-layer encoding
feature vector are 32N ¼ 7360 and 16N ¼ 3680, respectively. Conse-
quently, the final feature vector of DMCE-Net has a total dimensionality
of 11040.

Ablation study on AHE database
To validate the effectiveness of the proposed DMCE-Net, as well as its two
individual encoding streams—the Intra-layer and inter-layer encoding
streams—this section evaluates both the overall classification performance
and the per-category results across variousAHE types on theAHEdatabase,
using three deep backbone networks: VGG-VD19, VGG-VD16, and
AlexNet.

Table 1 summarizes the overall classification accuracy of DMCE-Net
and its two individual encoding streams employing different backbone
networks on the AHE database. For each class, 80% of the sample images
were used for training, with the remaining 20% reserved for testing. The
reported results represent the mean classification accuracy and variance
computed over 50 random dataset splits. As shown in Table 1, DMCE-Net
achieves significantly higher classification accuracy compared to its two
individual encoding streams. Moreover, the intra-layer encoding stream
outperforms the inter-layer encoding stream by a notable margin. For
instance, when using VGG-VD19 as the backbone network, DMCE-Net
achieves a classification accuracy of 95.27%, which is 0.22% and 2.34%
higher than that of the intra-layer and inter-layer encoding streams,
respectively.

Figure 8 illustrates the classification accuracy ofDMCE-Net and its two
individual encoding streams for each category in the AHE database, using
VGG-VD19 as the backbone network. As shown, DMCE-Net shows gen-
erally higher classification accuracy across most AHE types. Specifically, for
category 10 (stained glass), DMCE-Net achieves the highest classification
accuracy of 98.87%, outperforming both the intra-layer and inter-layer
encoding streams by 0.43%. For the most challenging category, category 7
(flying buttress), DMCE-Net surpasses the intra-layer and inter-layer
encoding streams by 1.43% and 6.07%, respectively. Figure 9 illustrates
representative visual classification results for samples from distinct cate-
gories. It can be observed that DMCE-Net tends to outperform the indivi-
dual intra-layer and inter-layer encoding streams, particularly in handling
complex architectural textures. For example, in Class 8 (gargoyle), the
second and fourth samples exhibit pronounced variations in illumination
and viewpoint. In these challenging scenarios, relying solely on either the
intra-layer encoding stream or the inter-layer encoding stream result in less
reliable feature discrimination. By contrast, DMCE-Net, leveraging the
complementary strengths of both encoding strategies, achieves correct
classification. Notably, for the fourth sample in Class 8 (gargoyle), which
contains only aminimal region of discriminative texture features and a large
proportion of irrelevant background, none of the three methods yields
correct classification. This result highlights a limitation ofDMCE-Netwhen
confronted with samples characterized by extensive background inter-
ference and extremely sparse target features.

To further investigate the classification performance of the proposed
model, Fig. 10 presents the confusion matrix obtained by averaging the
results of 50 random experiments on the AHE dataset. Overall, the dis-
tribution of the confusion matrix exhibits generally good classification

Table 3 | Classification results of DMCE-Net with different
number of layers on the AHE Dataset

Category DMCE-
Net (k = 1,2,3,4)

DMCE-
Net (k = 1,2,3)

DMCE-
Net (k = 2,3)

1 96.63 ± 0.013 96.25 ± 0.017 94.79 ± 0.017

2 87.47 ± 0.032 83.69 ± 0.035 77.29 ± 0.048

3 90.45 ± 0.018 86.65 ± 0.026 76.62 ± 0.025

4 96.04 ± 0.009 94.26 ± 0.011 90.16 ± 0.014

5 97.82 ± 0.013 96.07 ± 0.017 94.36 ± 0.020

6 96.77 ± 0.016 93.61 ± 0.017 89.00 ± 0.021

7 83.75 ± 0.046 76.20 ± 0.042 70.05 ± 0.058

8 97.10 ± 0.010 95.64 ± 0.011 93.13 ± 0.017

9 89.34 ± 0.045 86.39 ± 0.042 81.08 ± 0.038

10 98.69 ± 0.008 98.33 ± 0.011 97.67 ± 0.012

11 96.85 ± 0.013 95.98 ± 0.012 93.97 ± 0.017

total 95.27 ± 0.004 93.04 ± 0.005 89.20 ± 0.007

Table 4 | Category-wise classification accuracy (%) of DMCE-
Net with different backbone networks on the UIUC dataset

Category DMCE-Net with
AlexNet

DMCE-Net with
VGG-VD16

DMCE-Net with
VGG-VD19

1 95.50 ± 0.07 100.00 ± 0.00 100.00 ± 0.00

2 97.25 ± 0.05 98.50 ± 0.04 99.00 ± 0.03

3 93.00 ± 0.09 100.00 ± 0.00 99.50 ± 0.02

4 99.75 ± 0.01 100.00 ± 0.00 100.00 ± 0.00

5 94.50 ± 0.08 100.00 ± 0.00 100.00 ± 0.00

6 90.25 ± 0.11 96.50 ± 0.06 97.75 ± 0.05

7 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

8 95.75 ± 0.06 100.00 ± 0.00 100.00 ± 0.00

9 94.50 ± 0.07 100.00 ± 0.00 100.00 ± 0.00

10 97.00 ± 0.05 99.75 ± 0.02 97.50 ± 0.05

11 97.75 ± 0.07 100.00 ± 0.00 99.50 ± 0.02

12 95.50 ± 0.07 98.25 ± 0.04 100.00 ± 0.00

13 98.25 ± 0.04 99.50 ± 0.02 97.75 ± 0.05

14 93.00 ± 0.09 96.25 ± 0.06 99.00 ± 0.03

15 97.50 ± 0.05 100.00 ± 0.00 100.00 ± 0.00

16 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

17 99.00 ± 0.03 100.00 ± 0.00 99.75 ± 0.02

18 98.50 ± 0.04 99.50 ± 0.02 99.75 ± 0.02

19 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

20 99.50 ± 0.02 100.00 ± 0.00 100.00 ± 0.00

21 99.00 ± 0.04 99.00 ± 0.03 100.00 ± 0.00

22 97.25 ± 0.05 100.00 ± 0.00 100.00 ± 0.00

23 93.75 ± 0.10 99.50 ± 0.02 98.25 ± 0.05

24 97.50 ± 0.05 100.00 ± 0.00 99.75 ± 0.02

25 99.50 ± 0.02 100.00 ± 0.00 100.00 ± 0.00
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performance across most categories, as indicated by the dominance of
diagonal elements. This suggests that the model is able to capture and
distinguish discriminative features among different classes. However, cer-
tain categories exhibit notable confusion, particularly Category 2 (87.47%)
and Category 7 (83.75%), whose classification performance is slightly
inferior compared to other categories. On one hand, the misclassification
rates of Category 2 and Category 7 are relatively high. Specifically, 6.08% of
the Category 2 samples were misclassified as Category 3, and 3.03% as
Category 7. Similarly, Category 7 showed 3.88% misclassification into
Category 2, and 4.57% intoCategory 3. These results indicate that themodel
encounters challenges in discriminating between these categories. Further,
among all samples predicted as Category 7, 3.02% actually belong to
Category 2. This bilateral misclassification highlights the overlap in feature
distributions between Category 2 and Category 7, which may lead to
ambiguous decision boundaries and increased risk of cross-category errors.

Figure 11 compares the classification performance of the proposed
DMCE-Net with its original backbone networks on the AHE dataset. As
observed, DMCE-Net shows consistent performance gains over its back-
bone counterparts. Specifically, DMCE-Net with VGG-VD19 outperforms
VGG-VD19 by 2.10%, while DMCE-Net with VGG-VD16 and AlexNet
show gains of 1.57% and 8.29%, respectively. These results demonstrate the
effectiveness of the proposedDMCE framework leverages texture cues from
different expert view layers via the Intra-layer and Inter-layer encoding
streams. Furthermore, the integration of the multi-attribute joint encoding
strategy and the cross-layer binary encoding mechanism offers a robust
approach for enhancing the representation and utilization of deep texture
features.

To further investigate the impact of different feature components on
classification performance, Table 2 presents the results of ablation experi-
ments based on various encoding streams. As shown in the table, DMCE-
Net achieves the highest average classification accuracy of 95.27% across all
categories, achieving higher accuracy than each individual encoding stream
or feature component. This result suggests that the dual-streammechanism
andmulti-feature representation contribute to enhancing the overall model
performance.

Fig. 12 | Comparison between DMCE-Net with various backbones and state-of-
the-art methods on the UIUC dataset. This figure compares the classification
performance of the proposed DMCE-Net, implemented with different backbone

networks, against several state-of-the-art texture classification methods on the
UIUC dataset.

Table 5 | Category-wise classification accuracy (%) of DMCE-
Net with different backbone networks on the UMD dataset

Category DMCE-Net with
AlexNet

DMCE-Net with
VGG-VD16

DMCE-Net with
VGG-VD19

1 97.50 ± 0.05 100.00 ± 0.00 100.00 ± 0.00

2 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

3 97.75 ± 0.05 99.75 ± 0.02 96.75 ± 0.06

4 100.00 ± 0.00 98.75 ± 0.04 100.00 ± 0.00

5 99.75 ± 0.02 99.75 ± 0.02 100.00 ± 0.00

6 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

7 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

8 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

9 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

10 99.00 ± 0.05 99.00 ± 0.05 98.50 ± 0.06

11 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

12 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

13 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

14 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

15 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

16 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

17 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

18 98.50 ± 0.04 100.00 ± 0.00 100.00 ± 0.00

19 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

20 96.50 ± 0.07 100.00 ± 0.00 100.00 ± 0.00

21 97.75 ± 0.05 100.00 ± 0.00 100.00 ± 0.00

22 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

23 98.75 ± 0.04 100.00 ± 0.00 100.00 ± 0.00

24 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

25 98.75 ± 0.04 100.00 ± 0.00 100.00 ± 0.00
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The Intra-layer Sign encoding stream andMagnitude encoding stream
yield classificationaccuracies of 93.02%and93.53%, respectively, both lower
than that of the full Intra-layer encoding stream. Similarly, the Inter-layer
Sign encoding stream and Inter-layer Magnitude encoding stream achieve
90.08% and 92.30%, respectively, which are also relatively lower than the
inter-layer encoding stream. These findings suggest that using Sign or
Magnitude features independently may lead to incomplete feature repre-
sentations, while their joint encoding is more effective in capturing dis-
criminative information. Furthermore, the inter-layer encoding stream
achieves an average accuracy of 92.93%, slightly lower than the Intra-layer
encoding stream, indicating that the cross-layer encoding serves as a
complementary feature extractor but may have limited standalone
effectiveness.

In summary, the complete DMCE-Net model, by jointly leveraging
Intra-layer and inter-layer encoding streams as well as integrating both Sign
andMagnitude features, achieves the highest classification accuracy among
the tested configurations. The ablation results demonstrate that individual
feature branches generally underperform compared to the combined
encoding strategy, particularly, the performance degradation is more pro-
nounced when using Sign or Magnitude features alone, emphasizing the
critical role of comprehensivemulti-feature integration and the cooperative
advantage brought by the dual-stream design.

To investigate the impact of the number of encoding layers on classi-
fication performance, Table 3 reports results on the AHE dataset using
different sets of convolutional layers as feature encoding sources:
k = 1,2,3,4；k = 1,2,3 and k = 2,3. The full configuration incorporating four
layers achieves the highest average accuracy of 95.27%, showing improved
performance over the three-layer (93.04%) and two-layer (89.20%) variants.
This clearly underscores the benefit of multi-layer encoding feature inte-
gration, where the combination of both shallow and deep representations
contributes to improved discriminative power. A class-wise analysis reveals
a general decline in accuracy as fewer layers are included in the encoding,
with Categories 2, 3, 6, and 7 exhibiting particularly notable drops. For
example, the accuracy for Category 3 decreases from 90.45% (four-layer) to
86.65% (three-layer), and further to 76.62% (two-layer). Amore severe drop
is observed for Category 7, which falls from 83.75% to 70.05%, suggesting
that deeper-layer features are especially critical for classes characterized by
high intra-class variability or inter-class similarity.

In summary, these results provide evidence for the effectiveness of the
complete four-layer DMCE-Net configuration, which enables more com-
prehensive capture of hierarchical texture attributes ranging from fine-
grained local patterns to high-level semantic abstractions. Such multi-level
encoding is shown to be essential for achieving robust and accurate classi-
fication across diverse texture categories.

Performance comparison on different texture datasets
The UIUC dataset poses significant challenges for texture classification due
to its uncontrolled acquisition conditions. Each class exhibits considerable
variations in scale, orientation, illumination, and viewpoint, while inter-
class similarity in visual patterns and structural appearance leads to limited
discriminative cues. Table 4 reports the classification results of DMCE-Net
using different backbone networks on the UIUC dataset, averaged over 50
random splits.

As shown,DMCE-NetwithAlexNet performs slightly below its VGG-
VD16 and VGG-VD19 counterparts. Specifically, the DMCE-Net with
AlexNet achieves perfect classification on three classes (Classes 7, 16, and
19), while the DMCE-Net with VGG-VD16 and VGG-VD19 correctly
classify 16 and 14 classes, respectively. The poorest performance forDMCE-
Net with AlexNet is observed on Classes 3 and 14. In contrast, DMCE-Net
with VGG-VD16 and VGG-VD19 achieves 100% and 99.50% accuracy on
Category 3, respectively. For Category 14, theDMCE-NetwithVGG-VD16
and VGG-VD19 outperform the DMCE-Net with AlexNet by 3.25% and
6.00%, respectively. Similar trends are observed across other categories in
the dataset. The primary advantage stems from the architectural depth of
VGG-VD16 and VGG-VD19, which contain 16 and 19 weight layers,
respectively—substantially deeper than the 8-layer structure of AlexNet.
This increased depth facilitates the extraction ofmore complex and abstract
hierarchical features, which is essential for capturing fine-grained texture
patterns. Moreover, in contrast to AlexNet’s use of large convolutional
kernels (e.g., 11 × 11 and 5 × 5), the VGG networks adopt uniform 3 × 3
kernels throughout. This design enables finer localization of texture details
and better preservation of discriminative micro-patterns, thereby improv-
ing overall texture classification performance.

Figure 12 illustrates the classification performance comparison
between the proposed DMCE-Net and state-of-the-art methods (including
VisGraphNet48, ELMP-Net20, Deep Fractal Interpolation49, DSTNet50,

Fig. 13 |Comparison betweenDMCE-Netwith various backbones and state-of-the-artmethods on theUMDdataset.Thisfigure presents a comparative evaluation of the
proposed DMCE-Net with different backbone networks against several state-of-the-art texture classification methods on the UMD dataset.
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DeCAF51 and FC-CNN52 with VGGM and AlexNet) on the UIUC dataset.
As illustrated in Fig. 10, the proposed DMCE-Net with VGG-VD19
achieves thehighest classificationaccuracyamong the comparedmethods at
99.50%, exceeding the versions basedonVGG-VD16 andAlexNet by 0.03%
and 2.56%, respectively. Compared to FC-CNNwith AlexNet, DMCE-Net
with AlexNet achieves an improvement of 5.84%. Moreover, DMCE-Net
generally outperforms several recently proposed deep networks for texture
classification. Specifically, DMCE-Net with VGG-VD19 surpasses Vis-
GrapNet, ELMP-Net, DSTNet, and DeCAF by 1.50%, 3.20%, 5.90%, and
5.30%, respectively.These results clearly demonstrate the effectiveness of the
proposed DMCE-Net in capturing discriminative texture features, attrib-
uted to its dual-stream design incorporating intra-layer and inter-layer
encoding streams.

The UMD texture classification dataset comprises texture images
captured under complex real-world imaging conditions, and is specifically
designed to comprehensively evaluate the robustness of texture classifica-
tion methods with respect to sampling environments, as well as their scale,
viewpoint, and illumination invariance. Table 5 summarizes the classifica-
tion performance of the proposed DMCE-Net using different backbone
networks across 25 texture categories in the UMD dataset. As observed,
DMCE-Net with AlexNet successfully classified 16 categories, with its
lowest accuracy recorded at 97.50% in Category 1. In comparison, DMCE-
Net with VGG-VD16 and DMCE-Net with VGG-VD19 both achieved
100% classification accuracy in Category 1. Moreover, DMCE-Net with
VGG-VD16 correctly classified 21 categories, whereas DMCE-Net with
VGG-VD19 failed to achieve perfect classification in only Category 3
(96.75%) and Category 10 (98.50%). These results clearly indicate that
DMCE-Net with VGG-VD19 and VGG-VD16 delivers superior classifi-
cation performance on theUMDdataset compared to its counterpart based
on AlexNet.

Figure 13 compares the classification performance of the proposed
DMCE-Net with state-of-the-art methods reported in the literature. As
illustrated in Fig. 13, DMCE-Net with VGG-VD16 achieved the best clas-
sification accuracy among the compared methods at 99.89%, slightly out-
performingDMCE-Net withVGG-VD19, and surpassingDMCE-Netwith
AlexNet by 0.52%. Moreover, DMCE-Net with AlexNet improved upon
FC-CNN with AlexNet by 3.47% in classification accuracy. Compared to
several recently proposed deep learning methods for texture image classi-
fication, the proposed DMCE-Net shows a measurable performance
advantage. For instance, DMCE-Net with VGG-VD16 outperforms Vis-
GraphNet, ELMP-Net, DSTNet, and DeCAF by 1.49%, 0.69%, 1.39%, and
3.49%, respectively. These results clearly indicate that the proposedDMCE-
Net effectively handles the complex imaging condition variations present in
the UMD dataset and generally outperforms several state-of-the-art deep
learning approaches in terms of classification accuracy. This can be pri-
marily attributed to the Dual-stream architecture of the proposed DMCE-
Net, which not only maintains the independence of expert-specific features
but also fosters mutual learning and interaction of texture attributes across
different hierarchical levels. This design effectively addresses the complex
imaging challenges posed by inter-class similarity and intra-class variability
in texture representation.

To further evaluate the effectiveness of the proposed DMCE-Net in
handling complex texture classification tasks, comprehensive experiments
were conducted on the CUReT dataset. In addition to its diverse and
challenging imaging conditions, CUReT includes a substantial number of
images affected by specular reflections and self-shadowing, which introduce
additional complexity and serve as rigorous benchmarks for assessing the
robustness of texture analysis approaches.

Figure 14 presents the confusion matrix of DMCE-Net with different
backbone networks on the CUReT dataset. As illustrated in the figure,
DMCE-Net shows generally good classification performance across the
majority of texture categories in the CUReT dataset. Even for samples

Fig. 14 | Confusionmatrix ofDMCE-Net with different backbones on theCUReT
dataset. This figure shows the confusionmatrices of the proposed DMCE-Net using
three different backbone networks on the CUReT dataset. a It corresponds to
DMCE-Net with AlexNet, b shows the results with VGG-VD16, and c presents the
results with VGG-VD19.
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exhibiting high inter-class similarity, the model achieves superior clas-
sification accuracy. In particular, for Category 12, DMCE-Net with all
three backbone networks (i.e., AlexNet, VGG-VD16, and VGG-VD19)
achieves a classification accuracy of up to 99%. However, each of them
misclassifies 1% of the samples as Category 31. Similarly, the classifi-
cation accuracies for Category 31 are 98%, 99%, and 98% for DMCE-Net
with AlexNet, VGG-VD16, and VGG-VD19, respectively, with 2%, 1%,
and 2% of the samples being incorrectly classified as Category 12. Figure
15 presents example samples from both Category 12 and Category 31,
which visually exhibit extremely high inter-class similarity. A similar

observation can be made for Category 61 and Category 44. These find-
ings highlight the substantial challenge posed by the extreme inter-class
similarity and intra-class variability inherent in texture image classifi-
cation. The proposed DMCE-Net appears to mitigate this issue by
leveraging complementary information derived from expert-specific
feature mappings at different depths through intra-layer and inter-layer
encoding streams. This design enables more efficient capture of local
texture details and allows the model to maintain robust classification
performance even under conditions of high inter-class similarity and
intra-class variation.

Fig. 15 | Some sample instances from Category 12 and Category 31 of the CUReT dataset. This figure displays representative image samples from Category 12 and
Category 31 of the CUReT dataset. These two categories are selected to illustrate the visual similarity that often leads to misclassification.

Fig. 16 | Comparison betweenDMCE-Net with various backbones and state-of-the-artmethods on theCUReT dataset.This figure presents a comparative analysis of the
proposed DMCE-Net, implemented with different backbone networks, against several state-of-the-art texture classification methods on the CUReT dataset.
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Figure 16 presents a comparison between the highest classification
accuracy previously reported in the literature on the CUReT dataset
(includingMWSN53, SSR54, WMACapsNet55, FC-VGGVD52, FC-VGGM52,
FC-AlexNet52 and Vision Transformer56) and the accuracy achieved by the
proposed DMCE-Net. As shown in Fig. 16, DMCE-Net with AlexNet
achieves the highest classification accuracy among the compared methods
on the CUReT dataset, reaching 99.82%, which constitutes a 2.02%
improvement over the baseline AlexNet. Similarly, DMCE-Net with VGG-
16 outperforms the original VGG-VD16 by 2.59%, while DMCE-Net with
VGG-VD19 delivers a 3.47% performance gain compared to its corre-
sponding backbone. These results demonstrate that the proposed DMCE-
Net provides an enhancement in texture representation by leveraging
mutual learning and cross-encoding mechanisms among expert-level fea-
ture mappings at different network depths. In addition to improvements
over its own backbones, DMCE-Net also exhibits clear performance
advantages compared with other state-of-the-art deep learning methods.
For instance, the classification accuracy of DMCE-Net with AlexNet sur-
passes that of the Vision Transformer by 32.24%. This performance gap is
primarily due to the fact that Vision Transformers are better suited for
modeling global relationships, whereas texture recognition typically relies
on strong local structural awareness. This underscores our choice of con-
volutional neural networks as the foundational backbone in the proposed
framework. The proposed DMCE-Net with AlexNet also surpasses FC-
AlexNet by 6.75% in classification accuracy. Moreover, it outperforms
MWSN, SSR, andWMACapsNet by 2.48%, 1.20%, and 0.92%, respectively.
These experimental provide additional evidence supporting the effective-
ness of DMCE-Net’s architectural design. Through the integration of intra-
layer and inter-layer encoding streams, themodel facilitatesmutual learning
and joint representation across deep expertmappings. By incorporating the
intra-layer binary encoding strategy,multi-attribute joint encoding strategy,
and cross-layer binary encoding mechanism, DMCE-Net enables com-
prehensive and fine-grained learning of diverse texture attributes. Conse-
quently, it contributes to improveddiscriminative capacity, indicating that it
can serve as a promising framework for texture analysis and related
applications.

Table 6 presents a comparison of the classification accuracy and
average running time between representative binary pattern–based
methods (including LBP57, CLBP12, SWOBP58, and MCLBP+M59) and
deep learning–based approaches. As observed, the proposedDMCE-Net
consistently achieves higher classification accuracy than both categories
of methods. In terms of computational efficiency, the feature extraction
time of DMCE-Net depends on the choice of backbone network. When
employing the lightweight AlexNet backbone, DMCE-Net achieves
shorter running time than all binary pattern–based methods, while
remaining slightly slower than FC-AlexNet, FC-VGGM, and FC-
VGGVD. These results indicate that DMCE-Net is capable of delivering

competitive computational efficiency while maintaining superior clas-
sification performance.

Discussion
To address the challenges of complex inter-class similarity and intra-class
variability commonly encountered in architectural textures, this paper
proposes a DMCE-Net. The proposed framework treats different feature
mapping layerswithin the deepbackbone as expertmodules, each capturing
distinct domain-specific representations. A dual-stream architecture is
introduced, wherein the intra-layer encoding stream facilitates the joint
representation of independently learned expert knowledge, while the inter-
layer encoding stream enables mutual learning and integration across these
expert modules. Comprehensive experiments conducted on the AHE
dataset demonstrate that DMCE-Net effectively addresses the intricate
texture classification tasks associated with architectural relic surfaces. In
addition, evaluation on three benchmark texture classification datasets
further validates the robustness of DMCE-Net in handling significant inter-
class similarity and intra-class variation acrossdiverse texture scenarios.The
integration of a dual-stream architecture, multi-attribute joint encoding
strategy, and cross-layer binary encoding mechanism provides a strong
theoretical foundation for the effective capture of deep texture attributes.
However, this result also highlights a limitation of DMCE-Net when con-
fronted with samples characterized by extensive background interference
and extremely sparse target features, which may lead to reduced dis-
criminative power. The demonstrated capability of DMCE-Net in texture
analysis has the potential to significantly advance various texture classifi-
cation applications. Future work will focus on extending this framework to
broader domains, such as remote sensing and fine-grained visual
recognition.

Data availability
The datasets analyzed during the current study are publicly available at the
following sources: The AHE dataset is available at https://old.datahub.io/
dataset/architectural-heritage-elements-image-dataset. The UIUC dataset
can be accessed at https://slazebni.cs.illinois.edu. The UMD dataset is
available at https://users.umiacs.umd.edu/~fer/High-resolution-data-base/
hr_database.htm. The CUReT dataset is available at https://www.cs.
columbia.edu/CAVE/software/curet/.
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