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Identification of structural wooden components is crucial for heritage architecture conservation as it
elucidates the utilization patterns of forest resources and evolution of human civilization. This paper
proposes a computer vision-based in situ identification method for wooden components of Chinese
heritage architectures, using a dataset comprising 4050 images from 63 components of nine
buildings. The optimal algorithm, RepLKNet, trained on coniferous xylarium specimens, achieves
96.67% identification accuracy, with 98.33%, 93.33%, and 90% precision at 50%, 70%, and 90%
confidence thresholds, respectively. A minimum sample size of 25 species and 1500 images per genus
ensures test accuracy >90%. Impact of structural deterioration (decay and cracks) on accuracy is also
evaluated. Cracks significantly affect the wood recognition accuracy of historical components.
Performance degrades significantly when cracks span >30% of the image. Latewood integrity is also
critical to identification. The proposed method advances structural preservation strategies and

preventive maintenance practices in heritage architecture.

Wooden heritage architectures serve as crucial material embodiments of
human ingenuity, encapsulating profound historical, artistic, and sci-
entific significance'. Owing to the intrinsic properties of wood, envir-
onmental conditions, and anthropogenic influences, wooden heritage
architectures suffer from various types and degrees of deterioration with
age, including cracks and decay, which compromise their structural
integrity and safety. Accordance to the Principles for the Conservation
of Wooden Built Heritage’ and the Chinese national standard GB/T
50165-2020 - Technical Standard for Maintenance and Strengthening of
Historical Timber Buildings’, the conservation and reinforcement of
heritage wooden structures must prioritize preserving the original form,
structure, materials, and craftsmanship. Therefore, during the restora-
tion or replacement of original wooden components, the timber utilized
should, as far as practicable, be of the same species as the original.
Consequently, precise identification of wooden components is essential
for the effective maintenance and safeguarding of heritage wooden
structures’. Additionally, a comprehensive understanding of the timber
species used in the construction of wooden frameworks of historic
buildings is necessary to understand timber selection and utilization
across different epochs and regions, thereby offering insights into the

evolution of the utilization of forest resources in construction in human
civilization’.

Currently, wood identification in wooden heritage architectures pre-
dominantly relies on genus-level identification using the wood anatomy
method™”. This involves destructive sampling of wooden components,
damaging the selected elements. In particular, the samples are first trans-
ported to a laboratory, where sample preparation, softening, sectioning,
staining, microscopic observation, and characteristic analysis are performed
sequentially. This procedure is not only highly specialized and labor-
intensive but also time-consuming, often resulting in a prolonged identifi-
cation cycle®. For historical wooden structures, a comprehensive sampling of
all components increases the on-site workload significantly. Moreover,
owing to the unique historical value of heritage structures, extensive
destructive sampling is often impractical. Additionally, the accuracy of this
method depends significantly on the expertise and subjective judgment of
appraisers, introducing potential variability and bias into the identification
results.

Alternatively, in-situ wood identification in heritage architecture
remains a significant challenge, despite the development of advanced
techniques, such as DNA barcoding’™* and chemical fingerprinting".
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Although DNA barcoding is promising, it requires a laboratory environ-
ment and involves complex procedures, such as sampling, sample proces-
sing, and nucleic acid extraction. These requirements make it unsuitable for
in-situ identification and non-sampled sampling of wood components'.
Further, wood components in historical buildings often undergo dete-
rioration processes, such as decay and degradation, altering their chemical
composition. This degrades the effectiveness of chemical fingerprint mar-
kers owing to the unreliability of the original chemical profiles'’. Conse-
quently, non-sampled, efficient, and accurate wood identification methods
should be developed specifically for application in the field of heritage
conservation.

In recent years, computer vision technology has been applied to wood
identification, showcasing its significant potential in this task, driven by
rapid advancements in hardware and artificial intelligence algorithms. This
approach is characterized by its portability, accuracy, speed, and
cost-effectiveness'®"". Existing research on computer vision-based wood
identification has been predominantly focused on hardwoods, including
Dalbergia, Pterocarpus, and Swietenia, which are listed under the
Convention on International Trade in Endangered Species of Wild Fauna
and Flora (CITES)'®", as well as other commercially valuable timber
species'™™. In contrast, softwood identification has not been researched
adequately”””. This method typically relies on the construction of a large-
scale dataset, which is a complicated task in the context of wood identification
owing to the unique cultural value of heritage architecture and the limited
availability of its wooden components. Image data of wooden heritage
architecture is often extremely scarce, compromising the data volume
requirements essential for effective computer vision-based identification™.
Additionally, compared to modern wooden materials, the surfaces of wooden
heritage architectures frequently exhibit defects, such as decay, cracking, and
aging. These imperfections hinder image acquisition significantly and reduce
the accuracy of component recognition”*”. Although computer vision
methods have been employed for detecting deterioration (e.g., cracking) in
historic timber structures™, to our knowledge, this approach remains unex-
plored for wood species identification in heritage architectures.

Traditional Chinese architecture has a long and illustrious history and
is characterized by the construction of wood structures, often in combina-
tion with earth, masonry, and stone. In particular, wood structures stand out
as one of the most distinctive and defining features of traditional Chinese
architecture. The selection, processing, and utilization of wooden heritage
architecture reflect the profound technical and cultural wisdom of ancient
craftsmen, who leveraged the inherent properties of wood adeptly. This not
only demonstrates the advanced wood construction technologies of the time
but also embodies the social consciousness and aesthetic value of the era.
Historical literature and field research have consistently indicated that the
Pinaceae family is extensively utilized in Chinese wooden heritage archi-
tectures, with a notably high prevalence*” ™. In this context, this study
focuses on four genera within the Pinaceae family—Abies, Larix, Picea, and
Pinus—which are commonly found yet frequently misidentified in such
wooden heritage architectures. These genera are selected as the primary
research subjects to explore the feasibility of in-situ wood identification
using computer vision technology. By leveraging this innovative approach,
this study aims to develop a low damage, efficient, and accurate method for
wood identification in heritage architecture, thereby contributing to the
preservation and comprehension of these invaluable cultural treasures.

To address the challenges of large-scale image collection and
database construction for wooden components in heritage architecture,
we screen and determine an optimized deep learning-based identifi-
cation model. The model is initially trained using an image database of
xylarium wood specimens. Subsequently, a test dataset comprising
images of wooden heritage architectures is created to evaluate the
performance of the model.

The objectives of this study are as follows:

* To investigate the viability of employing models trained on xylarium
wood specimens for component identification in wooden heritage
architectures using image recognition methods.

* To explores the minimum sample size required for xylarium wood
specimens to provide adequate statistical support for tree species
identification in future dataset expansions.

» To propose an image-based grading criterion for wood cracks and
decay, and evaluate the impact of these defects on model accuracy using
a deterioration simulation method.

Methods

The process proposed in this study is illustrated in Fig. 1. It consists of four
steps—dataset creation, model construction, on-site image capture, and
wood identification. Further, model performance is evaluated correspond-
ing to varying degradation levels.

Data preparation

The training dataset in this study originates from Zheng et al.”>, constructed
using xylarium wood specimens from the Wood Specimen Resource Center
of the National Forestry and Grassland Administration. Transverse end
surfaces of the specimens are polished using 240, 400, 600, and 800 iterations
of sanding to obtain clear surfaces for image collection. The cross-sectional
images with resolution of 2048 x 2048 pixels in PNG format, each repre-
senting 6.35 x 6.35 mm of tissue, are obtained using iWood™. Wood defects,
including surface cracks, blue staining, and knots, are avoided during image
collection of xylarium wood specimens. The training dataset includes four
genera of the Pinaceae family, i.e., Abies, Larix, Picea, and Pinus; 481
xylarium wood specimens; and 37709 images in aggregate distributed across
25 provinces of China™. Detailed species information and the origins of the
xylarium wood specimens are presented in Supplementary Tables
S1and S2.

Additionally, the image data are targeted and cleaned according to the
standardized selection criteria for cross-sectional images suitable for soft-
wood identification”. Figure 2 depicts examples of training samples.

The test dataset includes 63 sampling components obtained from nine
heritage architectures in China and contains 4050 images without any wood
defects. As evidenced in Table 1, the selected architectural sites include Jiexiu
Houtu Temple in Shanxi (JHT, constructed in 457 AD), Pagoda of Fogong
Temple in Shanxi (PFT, constructed in 1056 AD), Chongshan Temple in
Shanxi (CT, constructed in 1383 AD), the Forbidden City (FC, constructed
in 1420 AD), Dahui Temple in Beijing (DT, constructed in 1513 AD),
Chunyang Palace in Shanxi (CP, constructed in 1573 AD), Wanshou
Temple in Beijing (WT, constructed in 1577 AD), Financial Street in Beijing
(FS, constructed in 1912 AD), and Xuanwu Hospital in Beijing (XH, con-
structed in 1958 AD). The specifications of the comprehensive dataset are
listed in Table 2. All components are identified using traditional wood
anatomy methods, including sample preparation, slicing, staining, micro-
scopic feature observation, and final verification by experienced wood
anatomy experts based on the IAWA list’'. Detailed information regarding
the wooden components is in Supplementary Table S3.

Wooden components of heritage architectures require specialized
sanding procedures, distinct from those for standard xylarium wood spe-
cimens, to minimize structural damage. In-situ specimen preparation
involves sequential polishing of transverse end surfaces using a specialized
1-cm-diameter grinder over 180, 240, 400, 600, and 800 sanding iterations.
This removes a surface layer of thickness = 0.5-1 mm from wooden com-
ponents, ensuring optimal visibility of their anatomical features while
maintaining structural integrity. Image acquisition is performed using
iWood, which is specifically designed to minimize damage to heritage
wooden components. All samples are identified at the genus level using
computer vision models, and the relevant identification results are com-
pared with those of the traditional wood anatomy method.

Deterioration classification

The primary forms of deterioration observed in wooden heritage
architectures include surface changes”, cracks”, mechanical
deformation®, mechanical damage, insect infestation™, decay™, and
biological growth. Certain deterioration patterns, particularly insect
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Fig. 1 | Workflow of wood identification for the components of heritage architecture.
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infestation, decay, and cracking, may become more pronounced in the
collected data. Given the prevalence and structural significance of key
degradation mechanisms in wooden components, cracks and decay are
selected for detailed analysis.

Wood identification accuracy is observed to be influenced significantly
by the degree of deterioration. Although previous studies have established
comprehensive grading systems for decay states™, these classifications are
primarily designed for macroscopic assessment and, therefore, are inade-
quate for the analysis of small regions captured in individual images. To
address this limitation, a comprehensive five-level classification system is
implemented based on crack and decay characteristics. The status and
description of crack and decay classification are listed in Table 3, and varying
degrees of cracks and decay are illustrated in Fig. 3.

Calculation of degradation area and degradation simulation
Traditional image-area quantification typically relies on manual pixel value
analysis of target regions™, which is extremely time-consuming. The
inherent morphological irregularities of wood deterioration patterns hinder
accurate area quantification using conventional methods. Semiautomated
annotation techniques offer a viable solution for enhancing computational
efficiency while maintaining the precision of measurement.

For deterioration data, we use the interactive semiautomatic annota-
tion tool (ISAT)” for semiautomatic labelling. This method is used in
conjunction with the segment anything model (SAM)* to identify instances
of deterioration types rapidly and accurately. Instance segmentation outputs
are processed using a threshold-based binarization algorithm, performing
deterioration area quantification via pixel analysis using numpy.sum
(threshold = 255) in Python. This computational pipeline enables the pre-
cise calculation of deterioration area percentages based on the distribution of
white pixels over segmented regions. The methodological workflow is
illustrated in Fig. 4, and the distribution of the samples and image numbers
over different deterioration levels is presented in Table 4.

The dataset comprises 860 images of cracks and 530 images depicting
decay in wood cross-sections, as detailed in Table 4. Although the latter
group is smaller, its distribution over severity levels (c1-c4) exhibits greater
uniformity compared to that of crack images, which predominantly cluster
at the c1 and c2 levels with significant underrepresentation at ¢3 and c4. To
investigate the impact of cracking on wood identification accuracy, a subset
of 3403 cross-sectional images obtained from 52 samples was selected for
simulated crack generation at the c3 and c4 severity levels. Subsequently, all
simulated images were used as test data and directly identified using the
trained model. As illustrated in Fig. 3, the crack features typically appear to
manifest as irregular black patterns in the cross-sectional images. The
simulation process employs an instance segmentation region and replicates
the crack morphology by setting the pixels of the instance segmentation
region to zero while preserving surrounding areas, as demonstrated in Fig. 5.

Model construction for wood identification

The resurgence of large-kernel models in computer vision, facilitated by
advancements in computational hardware, has yielded superior predictive
accuracy in recent studies”. Conventional deep learning models exhibit
receptive fields with limited effectiveness’*. In contrast, large-kernel
architectures provide substantially expanded receptive fields that approx-
imate human perceptual characteristics more closely. The deterioration
features of wood affect the abilities of different identification models to
varying degrees. A large receptive field is more likely to detect the length
correlation between wood features, facilitating accurate judgment. As a
representative implementation, RepLKNet” exemplifies the large-kernel
convolutional neural network architecture, with its structural configuration
illustrated in Fig. 6.

The structure of RepLKNet is relatively simple. Following the input of
the image data, the image is processed by the stem module, which consists of
two convolutional layers and two depth-wise separable convolutions. The
four subsequent stages include a preponderance of RepLK Blocks and
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Fig. 2 | Image examples of the training samples in
this study.
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Table 1 | Wood sample sources of historical heritage architectures for image collection

Genus No. of samples Architecture Component type Region

Abies 3 FS, XH - Beijing

Larix 16 CT?, CP?, FT?, FS®, XH, WT?, FC Rafter, purlin Beijing, Shanxi Province
Picea 3 CcT® flying rafter Shanxi Province

Pinus 41 JHT?, CT?, DT?, XH, FC?, Column, Eaves board, rafter, beam, tile fillet, purlin  Beijing, Shanxi Province

“National important cultural relic of China.

CT Chongshan Temple, CP Chunyang Palace, DT Dahui Temple, FC the Forbidden City, FS Financial Street, FT Pagoda of Fogong Temple, JHT Jiexiu Houtu Temple, XH Xuanwu Hospital, WT Wanshou

Temple.

ConvFFN modules. The majority of large kernels are reflected in the RepLK
Block. Finally, the model performs downsampling using the transition
module.

Maximum mean discrepancy
The maximum mean discrepancy (MMD) is a common statistical tool used
to determine the similarity between two datasets*. It is defined as follows:

MMDR, Q) = |- ax) -3 () 1)
P =

H

In Eq. (1), P and Q denote the two datasets to be compared and are
represented by X = {x,x,,...,x,} and Y = {y,,y,, ..., y,}, respectively.
H represents the reproducing kernel Hilbert space (RKHS). @ denotes the
feature-mapping function mapped to RKHS.

Evaluation standards
Identification performance is evaluated in terms of the accuracy of the
model, which is defined as follows:

TP+ TN
TP + TN + FP + EN

@

accuracy =

A true positive (TP) indicates that the target is identified correctly as a
positive sample, and a false positive (FP) suggests that the target is identified
asa positive sample even though it is a negative sample. A false negative (FN)
indicates that the target is identified to be a negative sample despite actually
being a positive sample. A true negative (TN) suggests that the target is
correctly identified as a negative sample.

However, accuracy, by itself, does not sufficiently reflect model
performance comprehensively in this context as the identification of
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wooden components typically requires multiple image acquisitions per
sample. To address this requirement, we introduce confidence metrics
to quantify model performance at the sample level. Sample confidence
and precision are mathematically defined by Eqgs. (3) and (4), respec-
tively. A classification is considered to be correct when the sample
confidence value exceeds the empirically determined thresholds of 0.5,
0.7, 0r 0.9.

Correct images

Confidence = ATimnges 6
sample precision = %ﬁ};”;ﬁl“ w

Experimental configuration

The aforementioned steps are implemented on a workstation (CPU: Intel
Xeon Silver 4210 R @ 2.4 GHz, RAM: 64 GB, and GPUs: NVIDIA GeForce
GTX3090). All model implementations are based on Python 3.8, Cuda 11.8,
and PyTorch 2.0.

Results

Validation of dataset distribution of wooden components and
xylarium specimens

Wooden component data of heritage architectures are predominantly
influenced by sample degradation levels. In contrast, intact wooden com-
ponents exhibit consistent anatomical characteristics. Based on this obser-
vation, we hypothesize that the distributions of xylarium wood specimens
and wooden component datasets may be similar. To validate this hypoth-
esis, MMD testing is conducted to quantify the distributional differences
between the two aforementioned datasets. The features of both datasets are
extracted using a pre-trained ResNet model. Subsequently, MMD testing is
performed, and the results are presented in Table 5. To visualize the

Table 2 | Sampling size of images collected from the
components of heritage architectures

Genus Samples numbers Image numbers

Absent of defect Crack Decay
Abies 3 198 12 0
Larix 16 707 103 114
Picea 3 215 59 24
Pinus 4 2930 686 392
Total 63 4050 860 530

distribution differences between the datasets clearly, t-distributed stochastic
neighbor embedding is used to project the features into a two-dimensional
space and plot them in a coordinate system. The resulting visualization is
depicted in Fig. 7.

As MMD approaches zero, the distributional similarity between the
two datasets increases. The MMD values for all four genera (Abies, Larix,
Picea, and Pinus) are observed to be less than 0.006, indicating a low degree
of distributional difference. This observation is further supported by the
feature distribution visualization depicted in Fig. 7. A small subset of Abies
and Larix data points in the wooden component dataset are observed to
exhibit divergence from the xylarium wood specimen dataset. In contrast,
the distributions of Picea and Pinus exhibit a nearly complete overlap.
Specifically, the xylarium wood specimen dataset encompasses the feature
space of the wooden component dataset completely for these two genera.
Given the small degree of distributional difference, a wood identification
model trained on xylarium specimens exhibits strong potential for appli-
cation in wooden component identification in heritage architectures.

In-situ wood identification of components in heritage
architectures

The development of computer vision-based identification methods for
wooden heritage architectures presents significant challenges owing to two
primary constraints—difficulty of implementing destructive sampling
owing to unique cultural values and the scarcity of relevant wooden com-
ponents. To address these limitations, we develop optimized wood identi-
fication models using xylarium wood specimen image databases. The
corresponding models exhibit robust generalizability based on validation
using unknown modern wood samples™. They are subsequently adapted
and applied to the wood identification of components in heritage
architectures.

Comparative analysis is performed on five deep learning models—two
traditional models (ResNet and SeResNet), two reparameterization-style
models (RepVGG and RepLKNet), and a large kernel-style model (Con-
vNeXt). As summarized in Table 6, RepLKNet exhibits superior perfor-
mance, with remarkable generalizability across our dataset. Surprisingly,
although ResNet’s accuracy is lower than that of RepLKNet, it outperforms
RepVGG, which is better for xylarium wood specimen validation®,
demonstrating strong robustness. Meanwhile, ConvNeXt, which uses a
large kernel similar to RepLKNet, delivers mediocre performance among
the five models, with a testing accuracy of only 94.42%.

Statistical analysis of model performance metrics (mean precision,
mean recall, and mean F1 scores) in this study reveals significant variations,
primarily attributable to the higher identification error rates for Picea and
Abies. Within the wooden components of heritage architectures, these two
genera are less commonly used, resulting in uneven data distribution and
limited sample size in our experimental dataset. In contrast, all models
exhibit high identification accuracy for frequently used timber materials
(e.g., Pinus and Larix), thereby validating the effectiveness of the proposed
identification method.

Table 3 | Criterion for crack and decay grading of image data acquired from wooden heritage architecture

Deterioration Crack Decay
Level Level of crack Features Level of decay Features
Level-0 c0: Material in no crack was found within the view of the collector d0: Material in no decay was found within the view of the collector
good condition good condition
Level-1 c1: Minor crack the area of crack not exceeding 10% of the area within  d1: Minor decay the area of decay not exceeding 10% of the area
the collector’s field of view within the collector’s field of view
Level-2 c2: the area of crack between 10% and 30% of the d2: the area of decay between 10% and 30% of the
Obviously crack collector’s field of view Obviously decay collector’s field of view
Level-3 c3: Serious crack  the area of crack between 30% and 60% of the d3: Serious decay  the area of decay between 30% and 60% of the
collector’s field of view collector’s field of view
Level-4 c4: the area of crack of 60% or more of the area withinthe  d4: Damaged the area of decay of 60% or more of the area within the
Damaged crack collector’s field of view decayed collector’s field of view
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Fig. 3 | Image illustration of wood crack and decay at different levels collected from the components of wooden heritage architectures. ¢ Represent crack levels 1-4

(c1-c4); d represent decay levels 1-4 (d1-d4).
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Crack level: ¢2
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Fig. 4 | Workflow of calculating the proportion of wood deterioration area (crack as illustration) using an Interactive Semi-Automatic Annotation Tool (ISAT).

Table 4 | Distribution of sample and image numbers across
different deterioration levels of crack and decay for the
components in heritage architecture

Sample numbers Image numbers

Crack Decay Crack Decay
Level-1 39 38 631 245
Level-2 27 29 157 136
Level-3 B 20 19 91
Level-4 - 12 - 52
Total - - 860 530

Figure 8 presents the confusion matrix and the corresponding con-
fidence levels for the classification outcomes obtained using RepLKNet.
Notably, the model achieves recall rates exceeding 99% for Pinus and Larix
(Fig. 8a), i.e., the two most commonly used genera in Chinese heritage
architecture. In contrast, the classification performances for Abies and Picea
yield lower recall rates of 58.08% and 83.52%, respectively. This perfor-
mance discrepancy can be primarily attributed to misclassifications asso-
ciated with specific samples, as detailed in Table 7.

In practical identification scenarios, the reliability of a model cannot be
evaluated based solely on its accuracy. Comprehensive performance analysis
requires individual sample confidence calculations, as shown in Fig. 8b. As
presented in Table 8, among the 60 samples without deterioration, 54 (90%)
correspond to confidence levels exceeding 90%, while the sample precision
increases to 93.33% when a 70% confidence threshold is applied. In addition,

only two of the 41 Pinus wood samples correspond to confidence levels
below 90%. Using a 50% confidence threshold, which is a commonly
adopted and relatively lenient criterion, the model achieves a sample clas-
sification accuracy of 98.33%. Only the confidence level of MY02 is lower
than this requirement. Given the high sample precision obtained in this
study, the RepLKNet model exhibits strong potential for application in the
identification of wooden heritage architectures. This scheme addresses the
limitations of computer vision methods. e.g., requiring large-scale image
databases, effectively while simultaneously achieving rapid in-situ wood
identification for heritage architectures and reducing reliance on destructive
sampling and the time cycle of wood identification.

Minimum number of samples and images required to establish an
effective wood identification model

Although image data from xylarium wood specimens is demonstrated to be
effective for wood identification, this methodology typically requires the
collection of a substantial number of specimens. In this context, the limited
availability of xylarium wood specimens is a major hindrance. A critical
research question concerns the minimum specimen and image require-
ments for achieving reliable wood identification accuracy (>90%). Previous
studies have investigated the required numbers of xylarium wood specimens
and images separately”’, but we believe that the two should be
interconnected.

Before determining the minimum number of xylarium wood speci-
mens required for the proposed method, an adequate image dataset must be
established. The number of images that can be acquired varies significantly
with specimen dimensions, necessitating initial categorization of specimens
by genus and evaluating corresponding image quantities. Subsequently, the
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Fig. 5 | Image simulation of wood crack.
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Table 5 | Maximum Mean Discrepancy (MMD) testing results
for xylarium specimen dataset and wooden component
dataset

Abies
0.0052

Pinus
0.0004

Picea
0.0056

Larix
0.0016

Genus
MMD

xylarium wood specimens are selected in sequence, a model is established on
this basis, and the final results are derived, as illustrated in Fig. 9. The analysis
reveals a positive correlation between specimen quantity and model accu-
racy, achieving optimal performance (96.2%) at 40 xylarium wood speci-
mens per genus. Notably, the accuracy consistently exceeds 90% when the
number of xylarium wood specimens per genus exceeds 20, whereas the rate
of precision improvement diminishes beyond this threshold. Consequently,
20 xylarium wood specimens per genus are established as the minimum
requirement for reproducible results in this study.

Although model accuracy generally improves with increasing volume
of training data, this relationship is not strictly linear, particularly for ani-
sotropic wood materials. The trend observed in Fig. 9 exhibits a deviation
from the expected correlation between image quantity and model accuracy,
warranting further investigation to establish a definitive relationship. To
examine this relationship systematically, comparative analyses are con-
ducted using 20, 25, 30, and 35 xylarium specimens with corresponding
training datasets comprising 1500, 2000, 2500, 3000, and 3500 images,
respectively. Given the variability in physical size among xylarium wood

specimens, individual specimens may yield fewer images than the calculated
average. In such cases, e.g., when selecting a 2000-image dataset from 20
xylarium wood specimens, specimens with limited image availability (<100
images) are supplemented using random image selection from other
xylarium wood specimens within the same genus to maintain dataset
integrity.

As depicted in Fig. 10, the number of xylarium wood specimens in the
model affects the accuracy of the image directly. By controlling the number
of images in each category and comparing different xylarium wood speci-
men sizes, the overall accuracy is observed to increase with an increase in the
number of xylarium wood specimens as well as the number of images.
Notably, for 2000 and 2500 images, the models trained on 25 xylarium wood
specimens are observed to outperform those trained on 30 xylarium wood
specimens marginally. However, this relationship is reversed at higher
image quantities, with the 30-specimen model exhibiting superior accu-
racy. Analysis of fixed specimen quantities reveals that models trained on
20 or 25 xylarium wood specimens attain performance plateaus at ~2000
images, suggesting that this image volume sufficiently captures repre-
sentative features of these specimen sets. Beyond this threshold,
improving the accuracy using only additional images without incorpor-
ating new xylarium wood specimens becomes difficult. The 20-specimen
model exhibits overfitting beyond 2500 images, despite achieving accu-
racy exceeding 90%. Based on these findings, we recommend a minimum
dataset size of 1500 images obtained from 25 xylarium wood specimens
per genus as the optimal size for maintaining an accuracy exceeding 90%
while preventing overfitting.
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Fig. 7 | Comparison of feature distributions between xylarium specimen dataset and wooden component dataset.

Table 6 | Comparison of results of different models

Mean Mean Mean Mean

accuracy precision recall F1 score
ResNet 95.38% 87.54% 85.09% 84.93%
SEResNet  94.27% 86.9% 78.02% 81.37%
RepVGG 94.37% 85.72% 80.1% 80.84%
ConvNeXt  94.42% 86.38% 79.53% 81.39%
RepLKNet  96.66% 90.3% 85.13% 86.04%

Bold values represents the testing accuracy of the optimal algorithm.

Effect of deterioration in wooden components on identification
accuracy

During prolonged service, wooden components of heritage architectures
exhibit inherent susceptibility to hygrothermal fluctuations, sustained creep
deformation under mechanical loads, and microbiological degradation
mechanisms, cumulatively manifesting as characteristic deterioration pat-
terns, including crack propagation, dimensional instability, and
biodeterioration™.

In this subsection, the confidence levels of the deteriorated samples are
systematically evaluated and compared with those of the non-deteriorated
specimens, as illustrated in Figs. 11 and 12. The test data were derived from
the degradation data presented in Table 4. Given the limited sample sizes for
deterioration levels ¢3 and c4, we employed simulated data for extensive
validation. The samples exhibiting severe cracks (c3 and c4) are observed to
exhibit substantially reduced confidence levels, which significantly affect the
identification accuracy of the model, as depicted in Table 9. In contrast, the
decayed samples exhibit minimal confidence reduction. These findings
align with those of previous research that identified tracheid morphology
transitions between earlywood and latewood as primary identification
features”. The current study further emphasizes the critical role of the

anatomical feature integrity of latewood within growth rings for accurate
wood identification.

Discussion

In this study, a deep learning-based in-situ wood identification framework is
proposed for wooden components of heritage architectures. The proposed
model is trained on an image database comprising images of xylarium wood
specimens and directly applied to wood identification, effectively avoiding
the database construction limitations. Simultaneously, the model is suc-
cessfully applied for the rapid in situ identification of wood in heritage
architectures, reducing the reliance on destructive sampling and shortening
the identification cycle. The optimal algorithm, RepLKNet, achieves an
accuracy of 96.67%. The sample precisions are 93.33% and 90% at 70% and
90% confidence levels, respectively. This proves the viability of employing
models trained on xylarium wood specimens for component identification
in wooden heritage architectures using image recognition methods. How-
ever, certain specimens exhibit low identification confidence scores, which
requires further discussion.

During the identification of Picea, 22 images are erroneously identified
as Pinus, whereas the other eight images are incorrectly identified as Larix.
Sample WAO5 exhibits the lowest confidence level (<70%) among Picea
samples, and 16 images in aggregate are incorrectly identified as Pinus
(Table 7). This is attributed to the small difference between wood structure
characteristics of Pinaceae wood in cross-sectional images, and the simi-
larity between the gradual trends of variation in the morphology of tracheids
during the transition from earlywood to latewood for Picea and Pinus.
Therefore, from the perspective of traditional wood anatomy, Picea and
Pinus need to be identified using the main characteristics of the cross-field
pitting pattern in the radial section.

Abies exhibits the lowest recall rate of only 58.08%. The erroneous data
for Abies mainly originates from two samples, MY02 and MY13. Analysis of
identification results revealed that Abies specimens were predominantly
misclassified as Picea. Previous computer vision studies have demonstrated
that the key diagnostic features distinguishing Abies from Picea lie in
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Table 7 | Wood identification results with an accuracy rate of less than 90% for the components of heritage architectures

Samples Genus Image numbers Confidence Distribution of predicted results
Abies Larix Picea Pinus
CSSs02 Pinus 16 56.25% 0 7 0 9
CSS03 Pinus 14 78.57% 0 3 0 11
WAO1 Picea 28 89.28% 0 0 25 3
WAO05 Picea 41 60.97% 0 0 25 16
MY02 Abies 92 39.13% 36 0 53
MY13 Abies 68 61.76% 42 0 23
Table 8 | Sample precision of the RepLKNet model at the O~ Sample numbers: 20
confidence of 50%, 70% and 90% respectively for the 967 o= Sample numbers: 25
components of heritage architectures Ve Sample numbers: 30 )\
94 - ~A~ Sample numbers: 35
Genus Sample precision @ =V
90% confidence 70% confidence %f "
Abies 33.33% 33.33% g
Larix 100% 100% E
Picea 50% 75%
Pinus 95.12% 97.56%
Average 90% 93.33%
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95.0- 94.94 94.86- T ~95.21
93.04"
92.5- 9%/ ‘ ' tracheid morphology during the transition between earlywood and late-
. 90.0- | | viflood atnd ththe gl"oavi'th .rings ar}lld .thzir a(ijacent trac;beidsszi. Hg\/\srzvi‘;’ as
° shown in the optical micrographs in Supplement igs. S1 and S2, Abies
% 87.5- and Picea displ};y very sim;glarptracheid };rlljorpholggyy angd growth ring pat-
8 84.03 terns in cross-sections, which can lead to confusion in computer vision-
5 85.0- based identification.
<% 82 5- 82, The minimum size for the number of xylarium wood specimens and
: the number of images required to construct an effective model are observed
80.0- to be 25 xylarium wood specimens and 1500 images per genus, respectively.
This ensures real-world test accuracies exceeding 90%. The minimum
77.5- specimens and images should preferentially exclude deteriorated samples
250 without strict image quantity constraints for each specimen. Some existing

10 15 20 25 30 35 40 45 50

Sample numbers per genus

Fig. 9 | The relationship between wood identification accuracy and sample numbers.

studies controlled the number of images collected and trained models on a
large number of xylarium wood specimens; however, they collected very few
images per specimen'’. Restricted image sampling may lead to the inade-
quate representation of specimen characteristics because collectors cannot
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reliably determine whether minimal images capture the full features of a
specimen sufficiently. Moreover, this methodology requires a substantial
number of xylarium wood specimens and is challenging to replicate. Owing
to the difficulty in obtaining xylarium wood specimens with clear back-
grounds in plant taxonomy, we believe that the principle of “collecting as
many images as possible” should be followed to reduce the need to collect a
large number of xylarium wood specimens. Although the acquisition of an
excessive number of images could theoretically induce overfitting, the
practical threshold for such occurrences remains substantially high and
scales with specimen quantity. This image acquisition principle enhances
the reproducibility of computer vision-based wood identification methods
and ensures consistent and reliable application outcomes.

Wood deterioration is observed to affect the identification accu-
racy. Wood decay refers primarily to the biochemical degradation of
wood, mediated by microbial enzymatic activity””. Among these
microorganisms, fungi constitute the most significant degradative
agents, categorized as white and brown rot based on their distinct decay
mechanisms®. Research on the decomposition of coniferous wood has
established the following characteristic patterns—brown-rot fungi
depolymerize cellulose selectively while leaving a modified lignin
matrix, whereas white-rot fungi exhibit simultaneous lignocellulosic
degradation through oxidative enzymatic systems*. The growth of
fungi causing rot decay is limited and slower in latewood than in
earlywood because of narrower cell lumen, thicker walls, and higher
density of latewood”. Meanwhile, during the sanding of the surface of
wooden components of heritage architectures, latewood cells with
higher strength are exposed more easily than their earlywood coun-
terparts because of the shallow sanding depth. For these reasons, the
state of preservation and presentation of latewood cells within growth
rings of wood components is more favorable. This explains the limited
influence of the deterioration type of wood decay on identification
accuracy.

In particular, when the cracked region exceeds 30% of the image
area, the recognition accuracy of the model decreases significantly. The
impact of cracks on identification accuracy is particularly significant
and can be primarily attributed to the compromised integrity of late-
wood features. Most cracks in wooden components of heritage archi-
tectures are dry shrinkage cracks, which are caused by the dry
shrinkage and wet swelling characteristics and anisotropy of wood*.
Wood is a natural anisotropic material with hygroscopic and deso-
rptive capabilities and undergoes drying and wetting with changes in
environmental temperature and humidity. At the microscopic level,
drying cracks often appear first in wood ray tissues because they
comprise mostly thin-walled cells with low strength that are not closely
connected with the surrounding cells. When wood shrinks, ray cells
undergo significant deformation and are damaged by drying stresses,
resulting in cracking'”**. The cell walls of latewood are usually thicker,
and the amount of drying deformation is larger than that in earlywood
cells. The ray tissue of latewood is first destroyed by shrinkage stress,
which produces small cracks. Subsequently, these cracks gradually
expand along the ray tissues, leading to a gradual increase in depth and
width*>*. This phenomenon results in frequent crack formation within
the latewood regions, compromising the identification accuracy of
the model.

Future works should focus on optimizing the efficiency and accuracy of
the proposed method, particularly for components with varying types and
levels of deterioration, while extending its applicability from softwood to
hardwood component specimens. Specifically, we intend to enhance the
identification model by integrating an image inpainting algorithm,
addressing the insufficient identification accuracy for high-deterioration-
grade image data (e.g., severely cracked wood) to improve the analytical
capability of the model for degraded images. Simultaneously, we intend to
collect images of hardwood components, such as Phoebe, Quercus, and
Ulmus, which are commonly used in heritage architecture, systematically to
expand the dataset, thereby significantly strengthening the proposed

model’s scenario generalization capability. This approach aims to establish
adaptive conservation protocols for historic timber structures, ensuring
scientific preservation and targeted restoration strategies across diverse
material conditions.

Data availability
The datasets used and/or analysed during the current study are available
from the corresponding author on reasonable request.
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