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Machine learning assisted real-time
acoustic monitoring of laser cleaning in
Heritage conservation
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Laser-assisted cleaning has become an indispensable tool in heritage conservation due to its
precision, control, and environmentally friendly nature. However, the complexity of deposition layers
and the fragile condition of original surfaces necessitate careful monitoring to avoid irreversible
damage. This work explores the integration of machine learning-assisted real-time acoustic
monitoring in laser cleaning processes to enhance conservation efforts. By combining acoustic
signalsgeneratedduring laser-material interactionwithmachine learning,weelevate theprecisionand
reliability of laser cleaning in the delicate context of cultural heritage restoration.

Over the past 30 years, laser-assisted removal of unwanted material has
become a common cleaning tool in Heritage conservation, often replacing
conventional methods based on chemicals and mechanical action. This is
due to its unique advantages, including selective and gradual material
removal, high precision and control, and its environmentally friendly
nature1,2. However, this delicate and irreversible process requires careful
selection of irradiation parameters and a thorough understanding of abla-
tion mechanisms, especially given the complex nature of deposition layers
and the fragile condition of original heritage surfaces.

Self-limitingprocesses control thenear-infrared (NIR) laser cleaningof
black pollution crusts from stonework, ensuring that the cleaning inter-
vention halts immediately after the unwanted crust is removed. Conse-
quently, laser cleaning has become increasingly popular in restoration, as it
effectively and safely reveals the original surfaces of cultural heritage assets,
such as theAcropolis Sculptures inAthens2,3. Successful applications of laser
cleaning have also been reported for various materials1–7, including the
removal of burial crusts from stone sculptures and leather objects, cleaning
soiling from paper, and eliminating corrosion layers from historical metal
objects5. Additionally, it has proven effective in removing tarnishing from
gilded silver threads6, among other uses.

Laser cleaning is particularly valuable in addressing a wide range of
cleaning challenges. These often involve situations in which self-limiting
conditions may not apply, i.e., challenges in which the critical parameters
needed to remove unwanted material are very close to, or even exceed, the
thresholds that could damage the original substrate7. One of the most
challenging areas of laser cleaning research is the removal of aged or poly-
merized varnish and overpainting layers from artworks, particularly those
that are painted. These layers are composed of polymeric materials that are

transparent to near-infrared (NIR) laser radiation. In contrast, most
degraded polymeric overlayers highly absorb ultraviolet (UV) laser radia-
tion,making themaneffective alternative for layer-by-layer ablation and the
controlled removal of unwanted materials. However, the fact that varnish
films and paint layers exhibit very similar optical properties, absorbing UV
radiation highly, poses limitations to their laser cleaning, as self-limiting
conditions donot apply. For this reason, a critical assessment of the cleaning
process and real-time monitoring of its progress are crucial.

Over the years, several imaging and spectroscopic techniques have
been explored to assess the results and monitor the cleaning process in
heritage conservation. Imaging techniques offer a non-destructive andnon-
invasive approach and are themost widely used. Colorimetry,multispectral
reflectography, and optical coherence tomography (OCT) have been
employed to assess the color8,9 and stratigraphy10 of the objects under study
and during restoration. Microscopies, including optical microscopy (OM),
scanning electronmicroscopy (SEM), and atomic forcemicroscopy (AFM),
have also been used to investigate the surface morphology of the treated
objects11. In parallel, the need for minimal chemical alteration to the
underlying original surfaces has influenced several studies that employed
spectroscopic techniques, such as Raman spectroscopy and Fourier
Transform Infrared Spectroscopy (FTIR)12, as well as gas chromatography/
mass spectrometry (GC-MS), to investigate the chemistry of the cleaned
surfaces. Significant research has also been focused on the complementary
application of imaging and chemical techniques for a thorough approach to
cleaning assessment13.

Careful post-treatment assessment and monitoring during the
restoration process are becoming increasingly critical in the context of laser
cleaning. While laser cleaning offers precision, it also presents challenges,
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especially in finding the right balance between effective cleaning and pre-
serving the substrate. In industrial applications, the effectiveness of the
cleaning process is evaluated based on two key factors: temporal aspects,
such as cleaning time and removal rates, and spatial aspects, which focus on
the complete elimination of unwanted materials14–16. However, in heritage
conservation, the primary concern is to protect the integrity and chemistry
of the original surface.

Significant research has focusednot only on the ideal in-situ evaluation
of the results17–20 but also on real-time monitoring of the process21. In
contrast to industrial applications, where monitoring typically depends on
post-process assessments of cleaning effectiveness and removal rates, laser
cleaning of heritage objects requires a different focus. The most critical
factor is to identify the keyparameters to ensure irradiation stops at the right
time, thereby preserving the original surface. Having achieved this knowl-
edge, we will be then focusing our attention on developing the relevant
protocol to control (continue or terminate) the procedure.

Acoustic monitoring of the laser cleaning process offers unique
advantages, particularly because it provides real-time results21–25. Acoustic
signals are extremely sensitive tomaterial modifications as they are strongly
dependent on the effective optical absorption coefficient of the irradiated
region. This property renders acoustic emissions ideal for the accurate
detection of the transition between the unwanted layer and the substrate,
minimizing thus potential side-effects. On top of this, the technique is
completely insensitive to typical external optical noise and does not require
clear visual access, therefore, it can be employed outdoors even in dusty and
humid environments where the use of traditional optical equipment (e.g.,
spectrometers, cameras, etc.) is highly challenging. Early studies26–29 high-
lighted its potential, and recent research efforts have increasingly focused on
this concept22–25.

This method involves recording and processing the acoustic signals
generated when light interacts with matter. Previous studies23 have
demonstrated a correlation between the amplitude of the acoustic wave and
the amount and compositionof removedmaterial. This relationship enables
monitoring of the cleaning process progress, as the acoustic signal changes
graduallywhen the overlayer is reduced, followed by an abrupt change upon
reaching the substrate. One of the key advantages of this method is that the
acoustic signals can be easily andnon-invasively detected using non-contact
air-coupled ultrasonic transducers, which have a frequency response in the
MHz range. These transducers can be placed near the laser-treated surfaces,
enabling online and real-time measurements without interrupting the
cleaning process for analysis and data recording. The effectiveness of this
approachhasbeen testedona series of technical encrustedmarble coupons23

and varnished painting mock-ups25, which simulate various cleaning chal-
lenges. The relevant results have been cross-checked using other analytical
techniques. The proposed acoustic monitoring strategy enables the identi-
fication of the critical laser pulse responsible for complete encrustation
removal. This capability can assist conservators and restorers (C-Rs) in

monitoring laser treatments and making informed decisions regarding the
progress of the crust or overlayer removal process.

Artificial Intelligence and Machine Learning (ML) algorithms are
increasingly integrated into scientific research and industrial
applications30,31, offering powerful tools for data analysis, process optimi-
zation, and decision-making. ML models can identify patterns and corre-
lations within experimental data, and they have been employed to various
applications in cultural heritage research and conservation32–38, such as to
identify cracks34 and other deterioration features35, to identify rising damp
on monuments promptly36 or to study certain type of objects38 to
name a few.

Herein, we discuss the implementation of ML in monitoring the laser
cleaning process and ensuring a safe intervention on objects of heritage
value. Among the available ML algorithms, we choose the Random Forest
algorithm (RF), introduced byBreiman in 200139, as an extension to the “the
random subspace” method by Tim Kam Ho40, which does a random
selection of a subset of features to grow each decision tree. RF is an
explainable tree-based ensemble learning method that has emerged as one
of the most potent and versatile machine learning algorithms for classifi-
cation and regression tasks. Among its advantages, an RF algorithm can
handle high-dimensional datasets, model complex nonlinear relationships,
perform well with limited amounts of data, and provide insights through
feature importance metrics. When cleaning a surface, unwanted material is
removed, leading to changes in the surface properties, such as the absorption
coefficient of the surface material, which are reflected in the acoustic signal
of the following laser pulse. By using the amplitude at each time step of the
acoustic signal as the input feature for the RF, we can identify the time steps
that contain critical information about surface changes during cleaning,
making it essential for monitoring the cleaning process.

Previous works have applied ML to optimize laser parameters in
industrial cleaning applications41–44 or to monitor and control of the
breakthrough stage in laser drilling45 and evaluate the cleaning results44–47.
However, in Heritage science and conservation practice, the focus shifts
away from material removal efficiency, as seen in industrial applications.
The primary goal in heritage conservation is to determine the precise
moment to stop the cleaning process, thereby preventing damage to the
underlying historical surface that must be preserved and revealed. This
approach differentiates conservation work from industrial processes and is
consistently followed in this context.

This study presents the first feasibility study tomonitor the restoration
process of sensitive cultural heritage objects in real-time. It combines
acoustic wave signals produced during laser cleaning and explainable ML
algorithms to identify thepulse that completely removes theunwantedpaint
without damaging the substrate.

The methodology, including details on individual irradiation and
monitoring parameters, as well as processing procedures and machine
learning algorithms used in this study, is outlined in Fig. 1.

Fig. 1 | The methodology employed in this study. A brief schematic outline.
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Methods
Technical mock-ups
A series of technical mock-ups were created for data-gathering purposes
[Fig. 2 (left)]. The base was made from thin slabs of white marble sourced
from the Greek island of Thasos in the Northern Aegean Sea. Black acrylic
paint (Motip Matt Black Acrylic Varnish) was sprayed to the marble from
approximately 30 cm. The mock-ups were then left to dry naturally for at
least oneweekbefore conducting irradiation experiments. This black acrylic
overlayer, intended to simulate the “unwanted crust,” was applied in mul-
tiple layers, resulting in varying thicknesses ranging from 8 to 55 μm. The
mock-up design facilitated simple laser ablation processes characterized by
self-limiting conditions.

Cleaning methodology and criteria for quality assessment
Laser cleaning is affectedby several parameters that aredirectly related to the
materials involved2. The most critical parameters are the appropriate
wavelength, λ, and pulse duration, τp, of the laser system, the laser fluence, F,
and the number of laser pulses applied, N. The wavelength and the pulse
duration ensure the laser ablation mechanism is well-suited to the specific
material. F is the energy, E, per unit area, S, of the irradiated surface, F = E/S
(J/cm2). In addition to the laser fluence, we need to define the laser fluence
threshold, Fthr, i.e., the minimum fluence required to remove the unwanted
material, and the critical laser fluence, Fdamage, i.e., the fluence above which
the laser pulse causes damage to the underlying substrate. Finally,N refers to
the total number of sequential laser pulses required to remove the unwanted
material, which is closely related to the thickness of the unwanted layer or
crust and the selected laser fluence.

In this study, a QSNd:YAG laser system emitting at λ = 1064 nm, with
pulses of τp = 10 ns, was employed. The cleaning efficiency of the given
technical mock-ups has been well studied and characterized23. The laser
fluence threshold was found to be Fthr = 0.1 J/cm2, and the critical laser
fluence, Fdamage = 2.1 J/cm2.

During the data collection process, several values of F were carefully
chosen between the Fthr and the Fdamage thresholds to investigate the

cleaning process at different paces. Laser pulseswith low laserfluence slowly
remove the unwanted material; thus, a high number of laser pulses is
required to clean the surface, resulting in a slowpace. In contrast, laser pulses
with high laser fluence transfer more energy to the irradiated surface, thus
requiring fewer laser pulses to clean it, resulting in a high pace. Another
parameter that affects the pace of the cleaning process is the thickness, d, of
the unwanted material. The cleaning of materials with different thicknesses
requires varying numbers of laser pulses at the same laser fluence.

In this experiment, mock-ups characterized by a thickness, di, of black
crust are irradiated with a given laser fluence, Fi, and a given number of
applied laser pulses,Ni. With this method, we collect data (acoustic signals)
from groups of approximately 150 identical irradiated spots, all with the
same overlayer thickness, di, laserfluence, Fi, andnumber of laser pulses,Ni.
In Fig. 2, we present a schematic outline of the developedmock-ups and the
various groups considered in this work, including thickness, laser fluence,
and the number of laser pulses.

Successive laser pulses lead to increasingly removing the unwanted
material from the surface of themock-ups, as can be seen in Fig. 2 (right). At
this point, it is essential to highlight that an uncontrolled cleaning process
can damage the underlying surface in the context of laser cleaning in
Heritage conservation.

To avoid damaging the substrate, we introduce the definition of the
cleaning pulse, which is the pulse that sufficiently cleans the surface without
damaging the substrate and is defined as the pulse that removes at least 75%
of the irradiated area. The ratio of cleaned to irradiated areas, which reflects
cleaning efficiency, has been set at 75% to prevent overexposure of the
central area due to the Gaussian profile of the laser system used. Addi-
tionally, this percentage facilitates an automated scanning procedure that
requires substantial overlap between adjacent irradiated spots. We deter-
mine the ratio R between the cleaned area, Scleaned, and the irradiated area,
Sirradiated, by processing the collected imageswith the ImageJ software. Inour
experiments, we irradiate a few additional laser pulses after identifying the
cleaning pulse to investigate the material’s response beyond effective
cleaning.

Fig. 2 | Left: Photographs of the developed mock-ups and schematic outline indi-
cating the different groups of parameters that were varied in this study; thickness of
the graffiti overlayer (di), laser fluence values (Fi), and number of applied laser pulses
(Ni). Right: Images of the evolution of the cleaning process upon successive laser

pulses on the same spot. A schematic outline of the calculation of the ratio R, which
reflects cleaning efficiency, and its value calculated for spots #11 and #12 is also
shown. The diameter of the irradiated area is 4 mm.
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In Fig. 2, right, we present the digital microscope images taken after
each of the laser pulses at a given spot with a paint thickness of d = 33 μm,
irradiated with a laser fluence of F = 0.7 J/cm². The white area (exposed
marble) is the cleaned area, while the black area is the total irradiated area.
It’s evident that the surface undergoesmodification after thefirst irradiation
pulse; however, the graffiti paint layer requires additional pulses for its
gradual removal. In this instance (Fig. 2, right), the marble is revealed after
the eighth (#8) pulse. By Pulse #11, 53.9% of the irradiated area has been
cleaned, and by Pulse #12, 89.5% has been cleaned. Consequently, Pulse #12
is identified as the cleaning pulse.

Experimental setup
Aschematic representation of the experimental setup is shown inFig. 3. The
setup combines laser ablation and acoustic recording modalities. In all
experiments, the relative position of the irradiated spot to the laser focusing
lens is 32 cm. The acoustic piezoelectric transducer is located approximately
6 cm above and to the right of the spot at a 45-degree angle.

ΑQ-SwitchedNd:YAG laser (LITRONLasers, TRLi 850 Series, Rugby,
Warwickshire, England) was employed for performing the laser irradiation
treatments. The laser system operated at the fundamental wavelength of
1064 nm, emitting pulses of 10 ns andwith a variable repetition rate ranging
from 1 to 4 Hz. The energy fluence values on the mock-ups ranged from
0.2 J/cm² to 1.2 J/cm² and were estimated by measuring the spot size
(~0.26 cm²) of the focused beam on black photographic paper. All the
irradiation experiments were performed in dry conditions.

Optical imaging of the ablated regions was performed by utilizing a
portable digital microscope (Dino-Lite Edge AM4113TFV2W) with a
magnification in the range of ×50 to ×200. The depth of the laser-induced
craters and the thickness of the over-layers were measured by means of a
Portable Surface Roughness Tester profilometer (Mitutoyo America Cor-
poration, Surftest SJ-410 Series, Aurora, IL, USA).

The laser-induced acoustic response on the examined mock-ups was
detected by an air-coupled transducer (NCT1-D7-P10, The Ultran Group,
State College, PA, USA; nominal central frequency: 1MHz; focal distance:
10mm; numerical aperture: 0.31) placed at approximately 45 degrees in
respect to the horizontal plane and in an out-of-focus position around 4 cm
away from the irradiation region to avoid signal saturation effects. The
signals were subsequently enhanced by two radio frequency amplifiers (TB-
414-8A+ , Mini-Circuits, Camberley, England; gain:31 dB) connected in
series prior to their digitization by an oscilloscope (DSO7034A, Agilent
Technologies, Santa Clara, CA, USA; bandwidth: 350MHz; sample rate: up
to 2 GSamples/s) which, in turn, was connected to a laptop computer
equipped with custom-made software controlling the measurement

procedures. The recorded waveforms were sampled at 1000 points over a
50 μs temporal window (corresponding to a 20 MSamples/s sampling rate)
and bandpassed between 0.5 and 2MHz to reduce mainly high-frequency
noise before being saved to the computer as ASCII files. Recording syn-
chronization was achieved through the trigger output of the laser source,
which was connected to the oscilloscope’s second channel.

During data collection, a total of 1131 spots were irradiated on the
studiedmock-ups of blackpaint overlayers of various thicknesses. Each spot
was exposed to varying sets of laser fluence, Fi, and number of laser pulses,
Ni. The recorded waveform corresponding to each laser pulse incidence
represents the detected acoustic pressure amplitude as a function of time,
where positive and negative values can be interpreted as the compression
and rarefaction regions of the propagatingultrasonicwave, respectively. The
peak-to-peak amplitude, quantified as the difference between themaximum
and minimum pressure values, has been demonstrated21 to be directly
proportional to the effective optical absorption coefficient at the irradiation
wavelength of 1064 nm under typical energy fluence conditions. This
relationship arises due to the localized thermoelastic expansion and sub-
sequent generation of broadband ultrasonic waves following transient
optical energy deposition. Therefore, the peak-to-peak amplitude para-
meter, alongwith the acoustic perturbation’s time-of-flight, carries essential
information on the optical absorption and structural characteristics of the
irradiated region, enabling the precise real-time monitoring of the laser
cleaning process when processed with the proposed machine learning
models. For each laser ablation pulse, the corresponding acoustic signal
responses were recorded. Simultaneously, the cleaning result was visually
assessed anddocumentedwith a portable digitalmicroscope. This approach
allowed for a detailed analysis of the surface interactions that occurred with
each individual ablation pulse.

In Fig. 4, the acoustic signals recorded upon irradiation on the same
spot for successive pulses are shown. The results are in agreement with the
fact that upon ongoing irradiation, the peak-to-peak amplitude is much
smaller, and there is a further shift to the right. After Pulse #12, a noticeable
drop in amplitude can be observed.

Data pre-processing
Wepreprocess the recordedsignals to guarantee a common startingpoint in
time and a consistent duration. This standardization process ensures that
our data representation remains independent of the setup used (such as the
distance between the cleaning surface and the ultrasonic detector), the
thickness of the paint being removed (which also affects the distance from
the cleaning point to the ultrasonic detector), and thefluence of the cleaning
laser pulse.Additionally, events occurring on the surface during the cleaning

Fig. 3 | Schematic representation of the
experimental setup.
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process are recorded simultaneously across all signals. In other words,
among two aligned and trimmed acoustic signals, each time step reflects the
same effects on the cleaning surface. Thus, the amplitude of each time step
can be used as a descriptor of the cleaning process.

We start by identifying the time step corresponding to the global
minimum amplitude of each acoustic signal as the “reference time step”
(RTS), and we use it to align and trim the duration of each acoustic
signal. The duration of the acoustic signal is defined to be 10 μs, con-
sisting of 2 μs before the reference time step and 8 μs after it. This
duration is sufficient to capture all the characteristics of the acoustic
wave generated at a given spot during the cleaning process. By aligning
the recorded signals based on their RTS, we observe a loss of information
on the time delay of each signal reaching the sound detector. This time
delay has a physical meaning since it contains valuable information on
the amount of paint removed by each laser pulse. During the cleaning
process, each laser pulse removes a portion or layer of the unwanted
paint. Consequently, each subsequent laser pulse initiates an acoustic
signal deeper within the cleaning spot. This means that the acoustic
signal from each later laser pulse takes longer to reach the sound
detector, resulting in a time delay in the recorded signals. We define the
time shift of each acoustic signal as the time duration between the RTS of
each signal and the RTS of the signal of the first laser pulse. We extract
the time shift of each signal and treat it as an additional input feature in

the machine learning algorithm alongside the 200 time steps (10 μs at
0.05 μs per time step) of each acoustic signal.

In Fig. 4, we present the preprocessing of the acoustic signals of a set of
sequential laser pulses at a given cleaning spot. On the left, we present the
raw recorded signal of each laser pulse, and on the right, the aligned and
trimmed signal with the corresponding extracted time shift.

Machine learning
We analyze our data using an explainable, tree-based machine learning
algorithm, specifically the Random Forest (RF).We chose an RFmodel due
to its ability tohandle complexdata andperformwell evenwith limiteddata.
Additionally, anRFmodel canoffer insights into how the cleaningprocess is
captured in an acoustic signal. Figure 5 shows a schematic representation of
the training process.

The aligned and trimmed acoustic signals from the 1131 cleaned
spots were divided into a test set of 120 spots, serving as the hold-out set
to evaluate the performance of the trained model, and a training set of
1011 spots to train it (Fig. 5). To eliminate the dependence of themodel’s
performance on a specific training set, we employed a 100-fold cross-
validation technique by further splitting the initial training set into 100
random folds, each consisting of 891 training spots and 120 validation
spots. Then, we train an RF model on each fold. This method helps the
model remain resilient to potential outliers in the data and provides a

Fig. 4 | The recorded and the preprocessed acoustic signals of successive laser
pulses. From left to right: Each recorded signal is aligned based on the time step of its
global minimum amplitude (the reference time step), and its duration is trimmed
between 2 μs before and 8 μs after the reference time step. The duration between the
reference time step of each pulse with respect to the reference time step of the first

pulse is extracted as the time shift of the acoustic signal (blue). From top to bottom:
The signal before effective cleaning (cyan, pre-cleaning pulses #1-#11), the signal of
the cleaning laser pulse (red, #12), and the signal after the defined critical cleaning
level (green, post-cleaning pulses #13-#14).
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statistical estimation of its errors. To maintain consistency, we keep all
the acoustic signals of an irradiated spot in one set, either the training,
validation, or test set. We train each RF model using the amplitude at
each of the 200 time-steps of the aligned and trimmed acoustic signal and
the time shift of each signal as input features (totaling 201 features) to
predict whether the next laser pulse will be the cleaning one [see Fig. 4].
During the training process, the recorded acoustic signal of each con-
secutive pulse on an irradiated spot is preprocessed by extracting its time
shift and aligning it and labeled as either a cleaned pulse or not. Next, the
training dataset is created, where the amplitude of the 200 time steps of
an acoustic signal and its time shift are used as inputs to predict the label
(cleaned or not cleaned) of the next pulse. For each spot, the RFwill try to
identify the one cleaning signal among several pre- and post-cleaning
pulses. The RF was used as implemented in the Scikit-Learn library48.
Notably, the algorithm has no information regarding the fluence of the
laser pulse and the thickness of the unwanted paint.

Subsequently, we fine-tuned the hyperparameters of the RF, including
thenumberof estimators, i.e., thenumberof decision trees, testing the values
[50, 100, 200, and 300], themaximumallowed depth of each tree, testing the
values [1, 4, 8, 12, 16, 20, and 22], and themaximumnumber of samples per
leaf of each tree, testing the values [4, 5, 10, and 20].We define the accuracy
of predicting the cleaning pulse of a given spot as the optimization metric.
Based on the model’s performance on the validation set, i.e., how many of
the 120 signals of the cleaning pulses were correctly classified as cleaning
signals, we found that the optimal RF model consists of 100 estimators and
has a maximum depth of 12 with a maximum number of samples per leaf
equal to 10.

After completing the training, the model is ready to monitor the
cleaning process and assist conservators in real-time. The trained model
then takes the preprocessedacoustic signal of a pulse,which is the amplitude
over 200 time steps and its time shift, and predicts in real-time whether the
next pulse is a cleaning pulse, informing the conservator. If the model

predicts that the next pulse is not the cleaning one, the conservator can re-
irradiate on the same spot. The new acoustic signal is recorded, pre-
processed, and classified, creating a sequential real-timemonitoringprocess.

Results
Cleaning pulse prediction accuracy
After the training process, the algorithm was evaluated on the 120 test set
spots. The results, including the mean accuracy (the average accuracy of all
the trained RF models on the 100 validation sets), the number of errors on
both the validation and the test sets, together with the corresponding
standard deviation across the 100 folds, are presented in Table 1.

Themean accuracy and its standard deviation for all RFmodels on the
test set are (97.5 ± 0.8)%, indicating that they perform well on unseen data,
regardless of the pulse fluence and the thickness of the unwanted paint.
Additionally, themean accuracy and its standard deviation of (98.8 ± 1.3)%
on the validation set further confirm the robustness of the model’s perfor-
mance. All errors correspond to predictions where the model identified a
pulse after the actual cleaning pulse as the cleaning one, indicating that the
model tends to pose a minimal risk of over-cleaning.

It is important tonote that if the algorithmpredicts thepulse just before
or just after the designated cleaning pulse, it will still be considered a suc-
cessful prediction. This approach is taken because the goal of this tool is not
to replace heritage scientists but to assist them in making better, more
informed decisions.

In our case, we applied a self-limiting criterion, which eliminates the
risk of damaging themarble substrate. However, we successfully classified a
single pulse from the group that met our predetermined threshold. Given
this achievement, we are optimistic that in a laser cleaning scenario where
the self-limiting criteria do not apply, we will still be able to accurately
predict the onset of cleaning while safeguarding the substrate.

The level of precision required for a clean mock-up, where there is no
unwanted paint layer to remove, has not been investigated in terms of data
collection from this type of irradiation. It was deemed unnecessary to
explore this aspect, as the tool will not be utilizedwhen the surface is already
clean. Human supervision will always play a key role in this process.

Feature importance
Oneof themost significant advantages of theRF algorithm is that it provides
insights into which features are most important in the decision-making
process.

In Fig. 6, we present the feature importance, based on the mean
decrease in impurity, in making decisions as calculated by the Random
Forest algorithm. The algorithm demonstrates that the time shift of each
pulsewith respect to thefirst pulse at that spot plays themost significant role
in identifying the cleaning pulse. In addition, the amplitude of the acoustic
signal around the first maximum, the global minimum, and the second
maximumis essential for predicting the cleaningpulse. This observation can
be understood by considering that the volume fluctuations during the
acoustic effect are primarily responsible for the maxima and minima
highlighted inFig. 6.The remainderof thewaveform is generally regarded as
reflections originating from within (the bulk) or outside the material,
arriving later at the detector.

Modeling the cleaning process
In this section, we present a simple analysis using two Logistic Regression
models and the first three most important features, as identified by the
Random Forest model. The first model uses only the time shift as input. In
contrast, the secondmodel considers the time shift and the amplitude of the
signal at its global minimum and its first maximum before the global
minimum. The model with only the time shift achieved an accuracy of
(60.0 ± 0.1)% (or 48 ± 2 errors in 120 spots, with all of them identifying a
pulse after the actual cleaning pulse as the cleaning one), showing that
although this feature is the most important, it alone is not enough to dis-
tinguish between a cleaning and a non-cleaning pulse. This is because the
time shift strongly depends on the thickness of the unwanted material,

Fig. 5 | Schematic representation of the 100-fold cross-validation training pro-
cess of the Random Forest algorithm.After optimizing the hyperparameters of the
model, we conclude with a model that features 100 estimators (decision trees), a
maximum depth of 12 for each tree, and a minimum number of samples per
leaf of 10.

Table 1 | Mean accuracy and standard deviation over the RF
models for the validation and the test set, and the
corresponding number of errors in predicting the cleaning
pulse of each spot

Validation Test

Prediction accuracy (98.8 ± 1.3)% (97.5 ± 0.8)%

Error predictions in 120 spots 2 ± 2 3 ± 1
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which is a critical factor in cleaning, but not the only one that determines the
process.

On theotherhand, the secondmodel,whichconsiders the amplitudeof
the acoustic signal at two critical moments (as shown in the primary ana-
lysis), achieves an accuracy of (92.5 ± 0.4)% (or 9 ± 1 errors in 120 spots,
with all of them identifying a pulse after the actual cleaning pulse as the
cleaning one).

These results demonstrate that combining the information capturedby
the acoustic signal (thephysical phenomenaon the cleaning surface)with an
estimation of the unwanted material thickness, from the time shift, can
effectively be used as the building blocks for amodel tomonitor the cleaning
process.

Discussion
This study aims to enable real-time monitoring of laser cleaning inter-
ventions by analyzing laser-induced acoustic signals using machine
learning algorithms. The results demonstrate that by processing the
generated acoustic waves with random forest algorithms, it is possible to
identify the pulse responsible for removing a specific amount of material
set at 75% of the irradiated surface. This critical pulse serves as a
threshold for terminating the process in a timelymanner, preventing any
damage to the underlying surface of historical or artistic significance.
While there have been studies on online monitoring for laser cleaning in
industrial applications, to our knowledge, this research is the first to
monitor laser cleaning interventions in the heritage field, where specific
rules and limitations apply, usingmachine learning algorithms. Our aim
is to determine the optimal moment to stop the irradiation andmove the
laser beam to an adjacent area.

TheRFmodel demonstrated robustness and accuracy in predicting the
cleaning pulse. Furthermore, it provides insights into how the cleaning
process is capturedby the acoustic signal. The time shift emerged as themost
significant feature inmonitoring the cleaning process. However, this feature
cannot be extracted from images. This finding underscores an additional
advantage of using acoustic signals for monitoring the cleaning process, as
they provide a highly informative feature for this purpose. Future work will
focus on using machine learning (ML) algorithms to identify the feature
importance that characterizes the acousticmonitoringof laser cleaning.This
will allow us to refine this application for multi-layered heterogeneous
contaminants and uneven surfaces, such as high-relief sculptures. We will
also address cleaning challenges related to various types of heritage mate-
rials, including varnished paintings, corroded metals, and biodeteriorated
stonework, among others. In this work, we have demonstrated a proof of
concept showing that the combination of acoustic signals and machine
learning allows for real-time monitoring of the cleaning process in heritage
conservation. In real-world scenarios, conservators can choose to use a pre-
trainedmodel as is, applying it under the same cleaning conditions inwhich

it was trained, or they can fine-tune it for their specific cleaning situations,
such as when using new materials, by collecting data from a few irradiated
spots. Once the model is fine-tuned it can process acoustic signals in real-
time and assist the conservator in deciding whether to continue or to stop
the cleaning process.

Data availability
The datasets generated during and/or analysed during the current study are
available from the corresponding author on reasonable request.
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