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Multi-objective band selection algorithm
based on NSGA-II for pattern
segmentation of textile
hyperspectral images
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China is the birthplace of silk weaving, possessing a rich heritage of silk artifacts. Textile patterns
exhibit unique artistic value and carry profound historical and cultural significance. Through
automated segmentation of the patterns, we can provide technical support for the preservation,
inheritance, and innovative application of cultural heritage. Edges are critical for image segmentation.
Hyperspectral images enable precise identification of material and dye variations via continuous
narrow-band spectral resolution, overcoming the limitations of RGB images in low-contrast edge
detection. However, the redundant bands adversely affect results. To address the issue, we propose
the edge-oriented multi-objective optimization of the band selection (EOMOBS) algorithm.
Furthermore, to overcome texture noise interference, insufficient spectral information utilization, edge
breaks, andpoorparameter adaptability in existingmethods,weproposean improvedCannyoperator
for the selectedbands.Whenapplied to textile pattern segmentation, themethodachieves93.74%PA
and 73.19% IoU, significantly outperforming sixteen alternative methods.

China is the first country in the world to have invented silk weaving. From
the legendary Lei Zu raising silkworms to various weaving techniques.
Among them, traditional silk textile categories such as damask, gauze, silk,
satin, brocade, embroidery, and sheer textile are both interrelated and dis-
tinctive, forming a systematic craftsmanship system that has been passed
down to this day. The patterns on these textiles are not only decorative
elements but also important material carriers of the political systems, cul-
tural beliefs, religious concepts, and folk traditions of specific historical
periods1. Digitalized traditional patterns not only provide scholars and
artists with important materials and data resources for research and crea-
tion. Scholars can use digitalized pattern data to conduct studies on artistic
styles, historical evolution, and other aspects, thereby promoting artistic
research and academic exchanges. Zhang et al. created a database of Qing
Dynasty embroidery patterns to analyze their co-occurrence features1.
These patterns also serve as a crucial source of design inspiration, offering
designers rich cultural connotations and creativematerials.With digitalized
patterndata, designers cancarryout innovativedesigns, integrate traditional
patterns with modern design, and create works with contemporary char-
acteristics. Li et al. established an information database to provide reference

and assistance for foreign designers in need2. Additionally, digitalized tra-
ditional patterns support anddrive thedevelopment of the cultural industry:
by utilizing digitalized pattern data, a wide variety of cultural products can
be developed, boosting the prosperity and growth of the cultural industry3.
In summary, the digital constructionof traditional patterns holds significant
importance and necessity in cultural inheritance, artistic research, design
innovation, and cultural industry development. Through the digital
extraction of textile patterns, a database of traditional textile patterns can be
constructed to achieve cultural inheritance, protection, and reconstruction,
and to deeply integrate with modern culture to give it new vitality.

Hyperspectral imaging is an analytical technique that captures both
spatial and spectral reflectance data of objects optically. To date, hyper-
spectral imaging technology is one of the most secure detection technolo-
gies, because it is not limited to the detection object and the detection
environment. Hyperspectral imaging does not touch or damage the object
being examined. Therefore, hyperspectral imaging analysis technology has
been widely applied to the research in the field of cultural heritage protec-
tion, including the identification of painting pigments4, the discrimination
of the age of cultural relics5, the digital restoration of ancient paintings6, the
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excavation of implicit information in paintings7, and other aspects. Pattern
segmentation constitutes a critical technical component in the digital pre-
servation of cultural heritage8. However, for textiles with patterns and
backgrounds of similar colors, RGB images relying solely on three broad
bands often fail to effectively distinguish regions with similar colors but
differentmaterials or dyes, resulting in segmentationdifficulties. In contrast,
hyperspectral images (HSI) leverage their fine spectral resolution from
continuous narrow bands to accurately identify characteristic spectral dif-
ferences between various materials and dyes, thereby overcoming the
technical limitations of RGB images in segmenting patterns with similar
spectral features and enabling precise extraction of low-contrast textile
patterns.

Although abundant spectral bands ofHSI provide rich information for
pattern segmentation of textiles, the existence of redundant bands affects the
final decision. Moreover, high-dimensional hyperspectral data causes the
Hughes phenomenon or the curse of dimensionality, making the analysis
more difficult9. Specifically, the use of full-band modeling analysis not only
increases the computing cost and leads to poor real-time performance but
also causes problems such as high complexity, poor stability, andoverfitting.
Feature extraction and feature selection are considered two efficient ways to
solve the above problems10. Feature extraction maps the raw high-
dimensional data into low-dimensional data after a series of feature trans-
formations. However, this method can sometimes disrupt the physical
integrity of the original data, potentially leading to information loss critical
for segmentation tasks11. Feature selection, also known as band selection
(BS) in HSI, aims to find a band subset that contains several of the most
representative bands from the full bands12. BS retains the attributes of the
original data and prevents the damage of physical information, which
facilitates interpretation and practical application13.

However, out of hundreds of bands, only a few bands have significant
pattern/background variability due to the phenomena of “same material,
different spectra” and “same spectra, different material” in some bands.
Therefore, selecting effective spectral bands is crucial for pattern segmen-
tation tasks. Existing BS methods can be divided into three groups: super-
vised, semi-supervised, and unsupervised14. Since it is difficult to get the
labels of hyperspectral images, unsupervised band selection is more prac-
tical. Up to now, a lot of unsupervised band selection methods have been
proposed.Many unsupervised BSmethods reformulate as a single-objective
optimization problem, focusing either on preserving essential information
or minimizing redundancy. It is difficult for single-evaluation-criterion
methods to comprehensively evaluate bands frommultiple perspectives. In
contrast, the multi-objective optimization (MO) BS methods can evaluate
the bands separately from different perspectives to obtain an optimal
solution that balances all the objectives simultaneously.

The problem of hyperspectral band selection is indeed challenging due
to the high dimensionality and the complex, often nonlinear, interactions
between the spectral bands. As the number of available bands grows, the
number of possible combinations increases exponentially, making the
search space vast and computationally expensive. Additionally, with the
increase in the number of MO problems’ objectives, the solution of the
compromised state becomes more and more complex. In the process of
solving MO problems, researchers found that swarm optimization algo-
rithms can search in parallel and deal with a set of possible solutions
simultaneously.When the components of a set of Pareto solutions cannot be
improved at the same time, it can approach the Pareto front (PF) and solve
multi-objective complicated problems. The non-dominated sorting genetic
algorithm (NSGA-II)15 proposed is one of the most efficient algorithms in
solving multi-objective optimization problems. NSGA-II solved the main
issues of NSGA and introduced an improved version with the O(MN2)
computational complexity.

Current research on image segmentation primarily includes
threshold16, clustering17, watershed18, morphological19, edge detection20,
superpixel21, region22,23, graph-based24, and neural network25 methods. In
computer vision, image boundaries can be defined as abrupt changes in
brightness, color, or texture between adjacent regions26. Edges serve as the

most crucial basis for image segmentation, and edgedetection algorithms, as
classical segmentationmethods, offer the advantages of high computational
efficiency, simple principles, and easy implementation. These methods
obtain object contours through detected edges to accomplish segmentation.
Therefore, effective edge detection algorithms are particularly valuable for
image segmentation. Generally, most edge detection methods for color or
HSI can be categorized into monochromatic approaches and vector-valued
techniques. Monochromatic methods apply grayscale edge detectors to
individual bands and then combine all edge maps through summation,
thresholding, or logical operations27. Alternatively, HSI may be reduced to
one or more dimensions to apply traditional grayscale or color edge
detectors28. These approaches may lead to information loss and frequently
generate false edges through simple combinations. Unlike monochromatic
methods, vector-valued techniques treat each pixel as a spectral vector and
employ vector operations for edge detection. Generally, vector-valued
methods outperform monochromatic approaches as they account for
spectral correlations between bands.

The traditional Canny edge detection method, renowned for its low
BER, high localization accuracy, and effective suppression of false edge
points29, is widely used in image processing.However, as it is only applicable
to single-channel grayscale images, it fails to utilize the multi-channel
spectral information in hyperspectral images effectively. Additionally, the
traditional Canny algorithm requires manual threshold setting, hindering
adaptive edge detection. To address this, we propose an improved Canny
algorithm for hyperspectral images. After band selection, the improved
Canny algorithm is used for edge detection in textile hyperspectral images
for pattern segmentation. The main contributions of this article can be
concluded as follows:

(1) We propose a band selection algorithm for HSIs, which is called edge-
oriented MO of band selection (EOMOBS), which specifically focuses
on edge detection. This model simultaneously involves two factors,
including information and redundancy, which can better describe the
characteristics of the bands in HSI. Edge-oriented evaluation
mechanism is constructed to select the final solution from the Pareto
front, so the selected band subset is more conducive to edge detection.

(2) Wepropose an improvedCanny algorithm for edge detection in textile
HSIs. The method fuses information from multiple channels from
EOMOBS throughvector calculationand automatically selects optimal
high and low thresholds according to image characteristics, offering
better adaptability than the traditional Canny operator. When applied
to textile pattern segmentation, it achieves excellent segmentation
results.

Methods
This section describes the process ofmulti-objective optimization to select a
hyperspectral band subset for pattern segmentation, as shown in Fig. 1.
Firstly, HSIs of textiles are collected. Secondly, a multi-objective model for
band selection is constructed, which involves two objectives in terms of
information content and redundancy. Thirdly, the NSGA II algorithm is
used to optimize the MO problem, and a group of Pareto solutions is
obtained. Then, an evaluation mechanism based on edge-oriented is
developed to identify the optimal solution from the Pareto solutions for the
edge detection task. The Edge-Oriented EvaluationMechanism is crucial as
it leverages the Fisher score in an unsupervised way, defining scatter
matrices to model edge compactness and edge-background separability.
This enables quantitative assessment of band subsets’ suitability for edge
detection, ensuring the selected subset optimizes subsequent edge extrac-
tion. Finally, the improved Canny algorithm was proposed for HSI edge
detection, whose edge detection process proceeds as follows: first, it applies
bilateral filtering to reduce noise in hyperspectral images while preserving
edge details, and is then followed by histogram equalization on the
smoothed images to enhance contrast. Next, it performs spectral-vector
gradient calculation, fusing the multi-channel spectral information of
hyperspectral images via vector computation to generate gradient maps.
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Then, it performs Interpolation-based non-maximum suppression (NMS)
on the gradient magnitude to thin edges into a single-pixel width. Subse-
quently, it adopts Otsu-adaptive thresholding, automatically calculating
optimal high and low thresholds based on the gray-level distribution of the
NMS map. The NMS map then undergoes dual-threshold detection and

edge linking to obtain the edge map. To fill edge depressions and clarify
pattern contours, morphological dilation is applied to the edge map. Based
on this, noise and incomplete patterns are automatically filtered out
according to the area, length, and width of each connected component,
yielding a more precise outline of the complete pattern target. Finally, an α

Fig. 1 | The Research framework.
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channel (transparency channel) is added to the original RGB channels,
rendering the background transparent to effectively segment the foreground
pattern region.

The two core novel aspects of our work can be concluded as follows.
First, we propose a hyperspectral image band selection algorithm named
Edge-orientedMulti-objectiveOptimization of Band Selection (EOMOBS).
Unlike existing band selection methods that often focus solely on infor-
mation or redundancy, EOMOBS simultaneously integrates both factors to
better characterizeHSI bands, and innovatively constructs an edge-oriented
evaluationmechanism to screen the optimal solution from the Pareto front,
ensuring the selected band subset is more favorable for subsequent edge
detection. Second, we develop an improvedCanny algorithm for textileHSI
edge detection: this method fuses multi-channel information from
EOMOBS via vector calculation and automatically determines optimal
high/low thresholds based on image intrinsic characteristics, addressing the
poor adaptability of traditional Canny operators, which rely on manual
threshold tuning, and achieving superior performance in textile pattern
segmentation. In the following text, the main modules of the proposed
method will be sequentially introduced.

Data acquisition and preprocessing
The hyperspectral images were acquired using a hyperspectral imaging
system, which consists of a Specim IQ hyperspectral camera (Specim Ltd.,
Oulu, Finland), two 300 W halogen lamp illumination units, and a com-
puter. The hyperspectral camera captures images with a spectral range of
400–1000 nm, a spectral sampling interval of 2.89 nm (totaling 204 bands),
and an image size of 512 × 512 pixels. The hyperspectral camera can
simultaneously capture both HSI and RGB images. The distance between
the lens and the textile surface was fixed at 600mm. The raw data obtained
from the hyperspectral imaging system are radiance images, which cannot
be directly used for spectral analysis. Additionally, variations in environ-
mental parameters and interference from dark current noise introduce
noise into the data. Therefore, preprocessing such as radiometric correc-
tion and denoising is required. The radiometric correction formula is as
follows:

R ¼ Rraw � Rdark

Rwhite � Rdark
� ρ; ð1Þ

where R represents the radiometrically corrected data, Rrow is the original
hyperspectral data of the textile, Rdark is the dark current data obtained by
turning off the lights and blocking the light, Rwhite is the data from the
standard reflectance panel, and ρ is the reflectance of the standard panel,
which has a reflectance of 99%.

MO band selection
MObandselectionmodel. BS is intended to select a subset of bands that
are informative and with low redundancy. Therefore, we first establish an
MOmodel for edge detection, which contains two subobjectives to select
a band subset with rich information and low inner redundancy. It is
defined as follows:

min FðxÞ ¼
f 1ðxÞ ¼

PK
i¼1

1
H xið Þ =K

f 2ðxÞ ¼
PK�1

i¼1

PK
j¼iþ1

JSS xi; xj
� �

= KðK�1Þ
2

8>>><
>>>:

: ð2Þ

Here, K is the number of bands in the selected subset x. f1(x) and f2(x) are
used to evaluate the information content and redundancy, respectively.
Specifically,H(xi) represents the information entropy of the ith band of the
selected subset. JSS(xi, xj) indicates the JSS similarity of the ith band and jth
band, which not only measures the spectral similarity but also accounts for
the dispersion of the spatial distribution of the selected bands. The two
subobjectives are detailed as follows.

Information Entropy. For the studies concerning BS, Information
Entropy is commonly used to describe the information richness. Let
bl
� �L

l¼1 2 RN × L represent an HSI with L bands, where each band bl has
N pixels. Thus, the entropy of a band can be calculated by

HðblÞ ¼ �
X
x2Xl

pðxÞ log pðxÞ: ð3Þ

Here, each band bl is regarded as a set of random variables x ∈ Xl with the
sample space defined on the entire image. p(x) stands for the probability
density function and can be obtained by

pðxÞ ¼ hðxÞ
N

; ð4Þ

where h(x) represents the number of pixels taking the value at x. In general,
the higher the entropy of a band, the richer the information it may contain.
In addition, since the entropy is usually insensitive to noise, it ismore robust
in processing the noise-polluted data.

JSS similarity. In addition, since the range of each band of the hyper-
spectral image is narrowed and the spectrum is the same kind of wave in a
certain range, there is a remarkable feature that high similarity exists
among adjacent bands (see Fig. 2). Reducing the intra-correlation of the
selected bands is another essential goal for BS. The commonly used
measures of similarity between bands include spectral angle, Euclidean
distance, and Kullback-Leibler (KL) divergence, which generally expand
the bands into 1-D vectors andmine the linear correlations between them
from the spectral dimension, with limited attention to the complex
nonlinear properties.

InMOBS, the correlation between twobandswasmeasured both in the
spectral and spatial dimensions, which can be simply conceptualized as

JSSðbi; bjÞ ¼ Sspectralðbi; bjÞ× Sspatialðbi; bjÞ: ð5Þ

Here, Sspectral and Sspatial represent the spectral similarity and spatial similarity,
respectively, and are defined as

Sspectralðbi; bjÞ ¼ expð�kbi � bjk2=2σ2Þ; ð6Þ

Sspatialðbi; bjÞ ¼ expð�∣Ibi � Ibj ∣
2=2ψ2Þ: ð7Þ

Specifically, the spectral similarity of the bands, bi and bj, is derived from
their spectral distance. Themore similar they are in the spectrum, the larger

Fig. 2 | Similarity for the current band (band index 20) with other bands.
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the Sspectralðbi; bjÞ is, and takes values between 0 and 1. The computation of
spatial similarity is predicated on the assumption that the bands of HSIs are
arranged in order of imaging wavelength, where bands in close spatial
proximity should exhibit similar feature representation capabilities.
Therefore, the distribution of BS results should be as sparse as possible. In
(7), theband indices, Ibiand Ibj, areused to reflect the location informationof
bands.The closer the locationsofbi andbj spatially, the larger theS

spatial(bi,bj)
is. Besides, σ and ω are the kernel parameters that are set as σ ¼ 1

L

PL
l¼1 k

bi � bl k and ψ ¼ 1
L

PL
l¼1∣Ibi � Ibl ∣, respectively. This scheme of JSS rela-

tions has been previously used for hyperspectral spectral-spatial hypergraph
construction30, demonstrating its effectiveness in evaluating band similarity.
By minimizing the f2(x) in (2), a subset of bands with lower spectral
similarity and the sparser spatial distribution can be obtained.

Edge-oriented evaluation mechanism. According to different appli-
cation requirements, the optimal solution selection methods of PF are
different. At present, the optimal solution is usually selected by trial-and-
error31, decision-maker (DM)32, clustering33, and the knee-point-based
selection method34. Most of these methods are based on classification
performance, so the selected band subset is suitable for classification
tasks, but not for edge detection tasks.

The Fisher score is one of themost widely used supervised FSmethods
based on the Fisher theory35. In general, Fisher score uses the ratio of
between-class scatter (which evaluates the separability of different classes)
and within-class scatter (which models the compactness within each class)
tomeasure the discrimination of the given feature according to the available
labeled samples. In this article, an unsupervised trace ratio criterion is
defined in the context of the Fisher score with edges. For HSI, the pixels
within edges are considered to belong to the same class; the pixels within the
background are considered to belong to another class.

Let p1 denote an edge pixel and p0 denote a background pixel, where

pk ¼ xðkÞ1 ; xðkÞ2 ; . . . ; xðkÞn1

n o
; ðk ¼ 0; 1Þ. Here, xðkÞi denotes the i th pixel in

pk, andnk is thenumberof pixels inpk. Tomodel the compactnesswithin the
edge and evaluate the separability between edge and background, the
within-edge scatter matrix SWEP and the between-edge and background
scatter matrix SBEP can be written as follows:

SWEP ¼
X1
k¼0

Xnk
i¼1

ðxki �mkÞðmk
i �mkÞ

T
; ð8Þ

SBEP ¼
X1
k¼0

nkðmk �mÞðmk �mÞT ; ð9Þ

wherem is the mean vector of edge pixels and background pixels;mk is the
mean vector of the kth pixel. The typical Fisher score is designed in the form
of an unsupervised trace ratio criterion with edge. An edge-oriented
evaluationmechanism is designed for optimal result selection in this article.
The EOMOBS algorithm evaluation mechanism can be defined as follows:

f ¼ traceðSBEPÞ
traceðSWEPÞ

; ð10Þ

where trace() denotes the trace of a matrix.

NSGA-IIMOBS algorithm and solution. To effectively detect the target,
this article adopts the virtual dimensionality (VD)method36 to determine
the number of bands without supervision. VD is a method for deter-
mining the number of bands based on the different features of the
spectrum in hyperspectral data under the Neyman-Pearson detection
theory. It can be seen that for different data, the number of selected bands
nBS by the VD method will change with the target signatures. Hyper-
spectral data records a scene from the observed area with a number of
spectral signatures. For the development of hyperspectral data, the VD

method is effective and suitable. Therefore, this article uses the VD
method to determine the number of selected bands.

The detailed process of the EOMOBS algorithm is as follows.
Step 1: Initialization.
Use theVDmethod to determine the numberof selected bands. Set the

initial parameters, such as the number of iterations, the number of popu-
lations, and algorithm parameters.

Apermutation encodingmethodbased on integer numbers is adopted,
and each chromosome represents a feasible solution to the problem to be
optimized. Each chromosome is encoded as a permutation of integers,
where each integer corresponds to a unique band index in theHSI. The total
number of bands is N. A chromosome is represented as [b1, b2, . . . , bK],
whereK is the number of selected bands and bi denotes the index of the i-th
selected band, where 1 ≤ bi ≤ N. This ensures that each chromosome
represents a feasible subset of bands without duplication. Initialize the
population Pt. Calculate the values of the proposed objective functions of all
individuals in the population Pt. NSGA-II uses nondominated sorting for
fitness assignments. All individuals not dominated by any other individuals
are assigned the front number 1.All individuals dominatedby individuals in
front number 1 are assigned front number 2, and so on, to determine the
Pareto grade of the individual.

Step 2: Evolution Produces the Next Generation of Population.
Selection is made using a tournament between two individuals. The

individual with the lowest front number is selected if the two individuals are
from different fronts. In order to ensure population diversity and make the
population evolve towards a better direction, the crowding degree is
introduced into the algorithm, which represents the density of other indi-
viduals around a certain individual in the same non-dominated level. The
individual with the highest crowding distance13 is selected if they are from
the same front, i.e., a higher fitness is assigned to individuals located on a
sparsely populated part of the front. In every iteration, the N existing
individuals (parents) generate N new individuals (offspring). Both parents
and offspring compete with each other for inclusion in the next iteration.

Step 3: Genetic Operation of Crossover and Mutation.
According to the adaptive crossover rate andmutation rate, the genetic

operation of crossover and mutation is carried out for the new population.
Crossover operation:
The selected bands are not repeated, so no duplicate numbers are

allowed in a chromosome. Partially mapped crossover (PMX) is one of the
most popular and effective crossovers for order-based GAs to deal with
combinatorial optimizationproblems. In viewof the operation, PMXcan be
regarded as a modification of two-point crossover, but additionally uses a
mapping relationship to legalize offspring that have duplicate numbers.

Mutation operation:
Each chromosome is subject to amutation probability pm to determine

whether elements on the chromosomewill undergomutation. If selected for
mutation, these elements will be replaced with other valid values within the
predefined range. If themutated value duplicates an existing element on the
chromosome, the conflicting element will be replaced through a matching
mechanism. This mutation operator enables the chromosome to acquire
values that were not originally present, thereby ensuring the mutual
exclusivity of the selected bands.

To sum up, the mutation operation further increases the particle
diversity, which helps to avoid falling into local optimality. Crossover
operation realizes the information sharing among the high-quality
individuals.

Step 4: Update the Alternative Solutions set.
After the new generation of population Pt is obtained, the fitness of all

individuals is recalculated based on the objective functions. Then, the
nondominated solutions in Pt+ 1 are added to the alternative solutions set.

Step 5: Output a Band Subset.
The loop ends when the t reaches the maximum number of iterations

MaxT. Based on the information contained in the alternative solutions set,
H-band subsets can be obtained, which together form the PF of the pro-
posed MOBS model. Using the proposed edge-oriented evaluation
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mechanism, a subset of theN band subsets is selected as the final output. All
H band subsets in the PF are evaluated using thismechanism, and the subset
with themaximum evaluation score f (Equation (10)) is selected as the final
output. This subset is optimal for edge detection, as it maximizes the dis-
tinguishability between edge and background pixels.

Pattern segmentation based on improved Canny algorithm
The Canny edge detector method, proposed by John Canny in 198637, has
been widely adopted due to its superior noise suppression and high detec-
tion accuracy. The traditional Canny edge detection process consists of five
sequential steps: (1) Image smoothing using a Gaussian filter. (2) Compu-
tation of gradient magnitude and direction through differential operators.
(3) Non-maximum suppression of gradient magnitudes to retain local
maxima and refine edges. (4) Thresholding with dual thresholds: pixels
exceeding the high threshold are classified as strong edges, those below the
low threshold as non-edges, and intermediate values asweak edges. (5) Edge
linking to connect weak edges adjacent to strong edges, producing the final
edge detection results.

While the Canny algorithmhas been extensively applied in image edge
detection, it exhibits three significant limitations. First, its reliance on
Gaussian filtering for noise reduction inevitably smoothens edges, poten-
tially causing the loss of weak edges. In high-noise images, this approach
may erroneously identify noise as edges. Second, the requirement for
manually specified dual thresholds compromises the algorithm’s adapt-
ability. Third, the Canny algorithm is fundamentally designed for single-
channel grayscale images,making it incapable of effectively utilizing the rich
spectral information contained in hyperspectral image data.

To deal with the limitations of the traditional Canny algorithm, we
propose an improved approach that involves the bilateral filter algorithm,
adopts multi-channel vector fusion, and automatically selects optimal
thresholds according to image characteristics. The improved Canny algo-
rithm used for pattern segmentation is implemented as follows:

Histogramequalization. Since some textile hyperspectral images exhibit
uneven grayscale distribution, histogram equalization is employed to
adjust the grayscale distribution38, ensuring pixel values are uniformly
distributed across the entire dynamic range (0–255). This prevents the
intensity of the entire image from concentrating in a very small region,
resulting in a more uniform histogram distribution and thereby enhan-
cing details.

HSI smoothing based on the bilateral filter algorithm. The texture
noise in textile images can interfere with edge detection. To reduce the
impact of texture on edge detection, we employ a bilateral filter algorithm
to replace the Gaussian filter. Unlike linear convolution filters, the
bilateral filter utilizes both a range kernel and a spatial kernel, typically
both Gaussian. The range kernel input represents intensity differences
between the target pixel and its neighbors. Significant differences result in
minimal weight assignment to adjacent pixels, effectively excluding them
from aggregation. This mechanism prevents the mixing of pixels with

large intensity variations, thereby preserving sharp edges. The calculation
formulas are as follows:

Ibf ðpÞ ¼
1
Wp

X
q2NðpÞ

exp
� k p� qk2

2σ2s

� �
exp

� k IðpÞ � IðqÞk2
2σ2r

� �
IðqÞ;

ð11Þ

Wp ¼
X
q2NðpÞ

exp
� k p� qk2

2σ2s

� �
exp

� k IðpÞ � IðqÞk2
2σ2r

� �
; ð12Þ

where N(p) represents a k × k rectangular window centered at point p. I(p)
denotes the pixel value at point p; I(q) represents the pixel value at neigh-
boring point q; Ibf(p) indicates the filtered output pixel value at point p.Wp
serves as a normalization factor. σs and σr represent distance and intensity
difference scale parameters, respectively.

For comparison purposes, both filters were applied to process textile
HSI at 663.81nm wavelength, as shown in (Fig. 3). The Gaussian filter
effectively smoothed texture noise but simultaneously caused edge blurring.
In contrast, the bilateral filter algorithm successfully removed image texture
noise while better preserving the original pattern edges. Therefore,
employed the bilateral filter to smooth textures for each channel of the
textile HSI.

Calculation of gradient magnitude and direction based on multi-
channel vector fusion.

Unlike grayscale images, where each pixel is a scalar value in [0,255],
hyperspectral pixels comprise spectral reflectance values across dozens to
hundreds of continuous narrow bands. Thus, each pixel can be treated as a
vector of spectral reflectance. Three points, P1, P2, and P3, were selected.
P1 andP2were sampled from the cloud pattern region (foreground), while
P3 was selected from the background. Their spectral curves are shown in
Fig. 4.

Euclidean distances between spectral vectors in n-dimensional
hyperspectral space were calculated as D12 = 0.1, D13 = 5.36, and D23 =
5.29, demonstrating that closer spectral curves yield smaller distances.
Spectral similaritymetrics are crucial for hyperspectral analysis andmaterial
classification. Three spectral measures were implemented: L1 distance,
Euclidean distance, and Spectral Angle Mapper (SAM).

L1 distance between points p and q:

DL1ðp; qÞ ¼
Xn
i¼1

jpi � qij; ð13Þ

where pi and qi represent the reflectance values of pixels p and q in the i
spectral band, respectively. Similarly, the Euclidean distance can be calcu-
lated as:

Deuclideanðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðpi � qiÞ2
s

: ð14Þ

Fig. 3 | Comparison of the results of two filters. a RGB image, b Hyperspectral image (663.81nm), c Gaussian filter, d Bilateral filter.
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SAM is defined as:

SAMðp; qÞ ¼ arccos

Pn
i¼1 pi � qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 p
2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 q

2
i

p
 !

: ð15Þ

Based on the above analysis, we can compute gradients between adjacent
pixels using different distance metrics. The Canny algorithm employs
gradient operators like the Sobel operator to convolve with grayscale images
for gradient computation. The Sobel operator, known for its simple for-
mulation and noise robustness, is widely used for gradient calculation. In
grayscale images, the horizontal and vertical convolution kernels of the
Sobel operator are defined as shown in Fig. 5.

Building upon the proposed gradient calculation method for adjacent
pixels, we have modified the gradient computation in the Canny algorithm

to directly obtain gradient images for hyperspectral data. The improved
gradient calculation method is demonstrated below using a pixel matrix

example. For an 8-neighborhood pixel matrix
a0 a1 a2
a3 ði; jÞ a6
a7 a8 a9

0
@

1
A centered

at (i, j), ai ¼ ðai1 ; ai2 ; � � � ; ain Þ,i = 0, 1,..., 7, n represents the number of
spectral bands.

Then we employ the Sobel operator to compute the gradient magni-
tude and direction at pixel (i,j). (16) and (17) represent gradients along the
x-axis and y-axis, respectively, while (18) and (19) denote the edge gradient
magnitude and direction:

Gxði; jÞ ¼
k a2 � a0 k þ2 k a4 � a3 k þ k a7 � a5 k

4
; ð16Þ

Gyði; jÞ ¼
k a5 � a0 k þ2 k a6 � a1 k þ k a7 � a2 k

4
; ð17Þ

Gði; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
xði; jÞ þ G2

yði; jÞ
q

; ð18Þ

Gθði; jÞ ¼ arctan
Gxði; jÞ
Gyði; jÞ

 !
: ð19Þ

NMS based on interpolation. The traditional Canny operator’s NMS
approximates gradient directions to 0∘, 90∘, 45∘, or 135∘. However, actual
edge gradients may not align with these fixed directions. The NMS based
on the interpolation method39 utilizes gradient magnitude interpolation
to calculate adjacent pixel values, as illustrated in Fig. 6. For each pixel,
Equation (18) provides the gradient magnitude G, and Equation (19)
provides the gradient direction θ. Equation (20) then uses these outputs
to obtain the gradient G of the center pixel and its 8 neighboring pixels.
For a given pixel point (x0, y0) with gradient direction θ the extension of
this direction intersects the 3 × 3 neighborhood window at points P1 and
P2, where d represents the distance fromP1 to (x0− 1, y0+ 1).G(x0− 1, y0
+ 1),G(x0, y0+ 1) andGp1

denote the gradientmagnitudes at points (x0−
1, y0+ 1), (x0, y0+ 1), and P1 respectively. The gradient magnitudeGp1

at
P1 can be computed using linear interpolation as:

Gp1
¼ ð1� dÞ � Gðx0 � 1; y0 þ 1Þ þ d � Gðx0; y0 þ 1Þ ð20Þ

Similarly, the gradientmagnitude at pointP2 in the opposite direction canbe
calculated. By comparing the gradient magnitudes at the center point G(x0,
y0) with those at Gp1

and Gp2
along the gradient direction, NMS is per-

formed. This process ensures that only the pixel points with maximum
gradient magnitude along the gradient direction are preserved, thereby
refining the edges.

Fig. 5 | Sobel operator kernels.

Fig. 6 | Non-maximum suppression based on interpolation.

Fig. 4 | Differences in spectral responses among
three pixels, two pixels in the pattern, and another
one in the background. aLocations of three selected
points in the RGB image, b Spectral curves of three
points.
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Threshold adaptive setting based on the Otsu threshold method. In
traditional Canny algorithms, the selection of high and low thresholds
requires manual adjustment through experimental results, significantly
reducing the algorithm’s adaptability and efficiency. This paper employs
the Otsu algorithm to adaptively determine the optimal threshold for
hyperspectral images. Also known as the maximum inter-class variance
method, the Otsu algorithm divides an image into foreground and
background based on the distribution of grayscale values. It calculates the
inter-class variance between background and foreground under different
thresholds. The threshold corresponding to the maximum inter-class
variance is selected as theOtsu threshold. For an imagewithM×N pixels,
let N0 represent pixels with grayscale values below threshold T (mean
grayscale u0), and N1 represent pixels with grayscale values above T
(mean grayscale u1). The proportions of these two-pixel groups in the
entire image are:

ω0 ¼
N0

M ×N
; ð21Þ

ω1 ¼
N1

M ×N
: ð22Þ

The total mean grayscale of the image is denoted as μ, and the inter-class
variance is expressed as g:

μ ¼ ω0 × μ0 þ ω1 × μ1; ð23Þ

g ¼ ω0ðμ0 � μÞ2 þ ω1ðμ1 � μÞ2: ð24Þ

The threshold T corresponding to the maximum inter-class variance g is
selected as the high threshold, which best separates foreground (edge pixels)
and background pixels. The high threshold obtained through the above
steps is used to set the low threshold at 0.4 times its value40. Pixels with
gradients exceeding the high threshold afternon-maximumsuppression are
marked as edge pixels. Those with gradients between the high and low
thresholds are classified as weak edge pixels, while pixels with gradients
below the low threshold are considered non-edge points.

Pixels with gradients exceeding the high threshold after non-
maximum suppression are marked as edge pixels. Those with gradients
between the high and low thresholds are classified asweak edge pixels, while
pixels with gradients below the low threshold are considered non-edge
points.

Pattern segmentation. To address edge depressions in the edge-
detected image, resolve discontinuities in fractured regions, and enhance
pattern contour clarity, morphological dilation is applied to the edge
image. Dilation, a fundamental morphological operation, is widely used
for noise suppression, region segmentation, and connectivity restoration
in image processing. Dilation is an operation to obtain the local max-
imum, and we do morphological inflation according to
A� B ¼ fzjðBÞz \ A≠;g, which is presented in Fig. 7a. Where A is an
image, B is a 3 × 3 rectangular solid core, and its anchor point is in the

center, indicating that A is inflated by B. The grey pixels are the dilated
pixels that are considered as part of the output image (in fact, they are
black). In Fig. 7b, it can be observed that before dilation, certain edges are
fragmented and fail to form a connected region. For example, the aus-
picious cloud pattern edge emphasized by the red box shows this frag-
mentation. After dilation, these broken edges become connected, thus
creating a single connected region for the auspicious cloud pattern edge.
Such connectivity is highly significant because it enables the successful
extraction of the auspicious cloud pattern in subsequent segmentation
procedures, thereby ensuring the pattern’s integrity for accurate
identification.

To automatically filter out noise and incomplete patterns, we calculate
the area, length, width, and position of each connected component.We first
drawadistributionmapof the areas of all connected regions in the image.By
analyzing this distribution, we initially set the area threshold to 200 pixels to
remove connected regions with extremely small areas from the image to
filter out noise. This threshold is determined to effectively remove noise
while ensuring that complete patterns remain unfiltered. For individual
images where this threshold may not be optimal, we adjust it by observing
the noise filtering results and referring to the specific area characteristics of
patterns in each image. Incomplete patterns with local missing parts have
low reusability, so they are filtered out. Since most patterns located at the
edges of the image are incomplete, we additionally eliminate patterns at the
image edges to filter out incomplete ones. As shown in Fig. 8, it is evident
that noise and incomplete patterns have been effectively removed, leaving
clear and complete pattern edges.

Finally, an α channel (transparency channel) is added to the original
RGB channels. We render the background transparent and convert the
foreground pattern regions within the connected components into non-
transparent areas, thereby effectively segmenting the foreground pattern
regions. The segmentation framework is illustrated in Fig. 9.

Evaluation Metrics
For this pattern segmentation task, we employ PA, IoU scores, Precision,
Recall, F1 score41 to quantitatively assess segmentation quality. Pixel accu-
racy (PA) is the ratio of properly classifiedpixels dividedby the total number

Fig. 7 | The dilation of an object by a structuring element. a Schematic diagram of the dilation operation, b Edge dilation result.

Fig. 8 | Comparison of pattern edges before and after filtering. a Pattern edge
image before filtering, b Pattern edge image after filtering.
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of pixels. ForK+ 1 classes (K foreground classes and the background), pixel
accuracy is defined as:

PA ¼
PK

i¼0 piiPK
i¼0

PK
j¼0 pij

; ð25Þ

where pij is the number of pixels of class i predicted as belonging to class j.
Intersection overUnion (IoU) - Also known as the Jaccard Index, is

a measure to describe the extent of overlap of the predicted segmen-
tation mask with the ground truth. It is defined as the intersection area
between the predicted segmentation and the ground truth, divided by
the area of the union between the predicted segmentation mask and the
ground truth:

IoU ¼ JðA;BÞ ¼ jA \ Bj
A∪B

¼ TP
TP þ FP þ FN

; ð26Þ

where TP stands for the true positive fraction, FP refers to the false-positive
fraction and FN refers to the false-negative fraction. A and B denote the
ground truth and the predicted segmentation, respectively; they go
between 0 and 1.

Precision/ Recall/ F1 score can be defined for each class, aswell as at the
aggregate level, as follows:

Precision ¼ TP
TPþ FP

; Recall ¼ TP
TPþ FN

: ð27Þ

Usually, one is interested in a combined version of precision and recall rates;
the F1 score is defined as the harmonic mean of precision and recall:

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

: ð28Þ

Results
Datasets
So far, there is no benchmark for textile pattern edge detection and seg-
mentation of HSI in close-range settings. Furthermore, visual comparison
without statistical measures is not adequate to make an objective judgment
ofwhich result is better. Therefore, we created a hyperspectral image pattern
segmentation dataset (HSI-Pattern). This hyperspectral imaging system
acquires both hyperspectral and RGB images simultaneously. This is the
first benchmark dataset for textile pattern edge detection and segmentation

of HSI. While the dataset currently includes 30 images, it is deliberately
designed to cover diverse traditional textile elements. First, it covers a range
of commonmaterials, including brocade, satin, damask, gauze, silk,fine silk,
light silk, velvet, and cotton, among others. These materials span both
protein-based and plant-based fibers, and they also have distinct textures.
Second, it covers several major categories of cultural patterns, including
plant patterns, animal patterns, character patterns, andartifactpatterns.The
plant patterns include peony, orchid, chrysanthemum and pomegranate,
and more. The animal patterns include crane, butterfly and phoenix, and
more. The character patterns are the Chinese characters for “fortune” and
“longevity”. The artifact patterns include the “Eight Treasures”motif, which
is a representative decorative pattern rooted in Buddhist culture. These
patterns represent Chinese typical design styles in textile heritage, with
varying complexity and color contrasts. Third, it involves four traditional
crafting techniques: embroidery, brocade weaving, Zhang velvet, and kesi.
Embroideryhas stitcheddetails. Brocadeweaving has raised textures. Zhang
velvet is a pile-weaving technique for velvet. Kesi is a weft-faced tapestry
technique. Each of these techniques adds unique spectral and structural
features to HSI data. To ensure annotation reliability, the ground truth
patterns segmentation was labeled by three users, with the best one selected
for the final experiments.

Bands selection result
In this section, a comparative experiment between the proposed multi-
objective optimization NSGA-II and the Single-objective optimization GA
is given. The fitness functions of the GA are set as f1 and f2, respectively. It is
worth noting that we set the same basic parameters on the considered data
sets. Table 1 shows the parameter settings of GA and NSGA-II. For the
NSGA-II and theGA, threeBS trialswere carried out owing to the stochastic
natureof theGA.Onecanobserve fromFig. 10 that thebands selectedby the
GA(f1) on the threeHSI-Pattern data samples aremore concentrated on the
three trials. On the contrary, the bands selected by theNSGA-II andGA(f2)

Table 1 | Parameter settings of algorithms

Parameters Value

Population size 50

Dimension The number of selected bands

Number of iterations 50

Mutation probability 0.6

Crossover probability 0.9

Fig. 9 | Workflow of the textile pattern segmentation algorithm based on edge detection in HSI.
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aremore evenly distributed across the range of all bands. FromTable 2, one
can see from the result of this experiment that the proposed NSGA-II
approach selects band subsets more informative than the GA(f2) approach.
In addition, theproposedNSGA-II achieveshigherpixel accuracy (PA) than
the GA on the three HSI-Pattern data samples. The comparison shows the
improved effectiveness of the proposed NSGA-II approach.

Pattern segmentation result
First, to comprehensively validate the effectiveness and superiority of our
algorithmic improvements for the Canny operator, we conducted two
rounds of complementary ablation experiments targeting different ver-
ification objectives. We first performed a preliminary ablation study based
on the original traditional Canny operator: in each experimental group of
this preliminary study, we only replaced one of our proposed improved
steps with the original method of traditional Canny edge detection, while
keeping all other steps consistentwith the original operator, aiming to verify
whether each individual improved step could independently bring perfor-
mance gains compared to the traditional approach.

The experimental results of the preliminary ablation study are pre-
sented in Fig. 11 andTable 3. It canbe visually observed that, comparedwith
the edge detection result of the original Canny operator, each experimental
group with only one improved step added has obvious optimization. All
experimental groups with a single improved step achieve higher values in
evaluation metrics compared with the original Canny operator.

On the basis of this preliminary verification, we then carried out
ablation experiments in the integrated system. We took our fully
improved algorithm as the baseline, and in each comparative method,
only one of the improved steps was replaced with the original method of
traditional Canny edge detection, while the other steps remained using
our improved methods. This design, which builds on the preliminary
validation of individual step effectiveness, allowed us to further clarify the
specific performance impact of each individual improvement direction in
the integrated algorithm system.

Performance of different filter measures. Edge detection on hyper-
spectral images filtered by Gaussian and bilateral filters yielded results
shown in Fig. 12a and b. In Fig. 12a, edge loss occurred; for instance, the
lines of the upright crane’s legswere severelymissing. In contrast, Fig. 12b
showed more complete edges. Table 4 demonstrates the quantitative
results on the HSI-Pattern dataset. The quantitative results further show
that the bilateral filters of the proposed method improve the edge
detection performance (IoU by 27.85%, PA by 13.09%, Precision by
2.71%, Recall by 41.53%, and F1-score by 22.35%).

Performance of single-channel HSI, multi-channel HSI, and RGB
edge detection measures. Typically, the Canny operator detects edges
in RGB images after converting them to single-channel grayscale. We
applied two methods: conventional grayscale conversion and a vector-
based color image method. The results are shown in Fig. 12d and e,
respectively. Additionally, edge detection results for a single-channel
grayscale image at 663.81 nmwavelength and the vectormethod using all
channels in HIS are presented in Fig. 12c and f, while Fig. 12a shows the
result of our proposed HSI Band Selection method. Evidently, the results
of the single-channel method and the two RGB methods exhibit sig-
nificant edge loss at the lower left corner. HSI, with its high spectral
resolution and richer information, can detect more complete edges
compared to RGB. It is worth noting that our Band Selection method
achieves a higher PA and IoU (93.74% and 73.19%) with only selected
bands than the vector method using all 204 bands (92.00% and 73.09%).
It is expected due to the curse of dimensionality problem.

Performance of different similarity measures. Results using L1 dis-
tance, Euclidean distance, and SAM are shown in Fig. 12a, g, and h. The
L1 distance method produced edges that better conformed to the actual
patterns. The Euclidean distance method generated more noise in the
lower-left corner with poorer edge continuity. While the SAM method
maintained better edge continuity, it introduced significant noise and
false edges in the lower-left region, causing pattern connections and
segmentation failures. It also outperformed the Euclidean distance and
SAM methods in the quantitative results.

Performance of different NMS measures. Figure 12a shows that our
interpolation-based NMS significantly improves edge continuity over
traditional NMS (Fig. 12i). By preserving continuous gradient directions,
it effectively resolves the edge breakage issue of the traditional Canny
operator, leading to improved precision.

Performance of manual and Otsu adaptive thresholding. The selec-
tion of thresholds significantly affects the results of Canny edge detection.
When manually setting thresholds, for example, setting them to 40 and
100 as in Fig. 12j, it frequently leads to substantial edge loss or redun-
dancy. In contrast, our automatic thresholding method, as demonstrated
in Fig. 12a, obviates the need for manual parameter adjustment. It not
only enhances the efficiency of the algorithm but also achieves superior
edge detection results without any noticeable reduction in performance.

In summary, the design of ourfinal improved algorithm is based on two
rounds of ablation experiments with complementary logic. The combination

Fig. 10 | The distribution of band subsets selected by the proposed NSGA-II and the GA on the three HSI-Pattern data samples. a Auspicious Cloud & Crane Pattern
Jacquard Fabric, bWealth &Nobility Peony Pattern Embroidery, c Peony Pattern Jacquard Fabric, dBand distribution of a, eBand distribution of b, fBand distribution of c.
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of the two rounds of experiments makes the design of the improved algo-
rithm more systematic and rigorous. Overall, the method balances perfor-
mance and speed: it boosts accuracywithout significantly increasing runtime.

Furthermore, we compare the proposed image segmentation method
with various representative HSI approaches in the HSI-Pattern dataset,
including Unet42, PSPNet43, DeepLabv3+44, and a HSI boundary detection
method45. In addition,we compareourmethodwith threeRGBedgedetection
methods, including TEED46, PiDiNet47, andDexiNed48. Table 5 demonstrates
the quantitative results. From the results, the proposedmethod performs best
in all fivemetrics. Specifically, the proposedmethod significantly outperforms
the next bestDeepLabv3+method in the IoU andPAmetrics by nearly 5%; it
achieves the best performance in the Precision of 75.78%. In addition, the
proposedmethod’sRecall reaches95.54%andF1-score reaches84.52%,which
is better than several other methods. Therefore, from the quantitative results,
the proposedmethod achieves the best performance.One canobserve that the
proposedmethodneeds some time to search for theoptimal subset of bands in
an iterative fashion. Nevertheless, our method can select a subset of bands to

detect edges that result inmoreaccurate segmentationperformancecompared
with other methods. We compare this time with the typical time scales of the
overall textile hyperspectral imaging processing workflow. In a textile digita-
lization pipeline, the time required for HSI data acquisition is approximately
one and ahalfminutes, far longer than the time.Thus, the computational time
of our algorithm does not become a bottleneck in the entire workflow. Fur-
thermore, we believe that with the improvement of computing power and the
wide use of high-performance computing, the execution time of the proposed
method is not a critical issue.

A qualitative comparisonwasmade among our proposed vector-based
HSI edge detection method, the image boundary detection method45, and
two top-performing alternatives: TEED, andDeepLabv3+, as shown in Fig.
13. Figure 13 contains sampleswithdiverse inherent contrast characteristics.
In high-contrast cases, such as the vivid peony patterns in the second row,
our edge detection resultsmaintain sharp boundaries. Both ourmethod and
method45 achieved satisfactory results, which attained segmentation PA
exceeding 98%.However,DeepLabv3+ failed to distinguish the peonyfloral

Table 2 | Results Obtained by the Proposed NSGA-II and the Standard GA on the three HSI-Pattern data samples

Data Sample Methods Trial1 Trial2 Trial3 Mean

Fig. 8(a) NSGA-II Number of selected bands 26

Information Entropy 85,791.2 85,791.2 85,791.2 85,791.2

PA(%) 95.40 95.31 95.46 95.39

Time(s) 0.696 0.597 0.615 0.636

GA(f1) Number of selected bands 26

Information 85,791.2 83,108.2 83,615.8 84,171.7

PA(%) 83.16 82.46 82.33 82.65

Time(s) 0.043 0.051 0.053 0.049

GA(f2) Number of selected bands 26

Information Entropy 78,834.9 78,103.2 78,834.9 78,591.0

PA(%) 94.35 91.22 90.81 92.13

Time(s) 0.053 0.051 0.041 0.048

Fig. 8(b) NSGA-II Number of selected bands 23

Information Entropy 102,142.6 106,957.1 102,142.6 103,747.4

PA(%) 93.74 93.74 93.65 93.71

Time(s) 0.552 0.591 0.554 0.566

GA(f1) Number of selected bands 23

Information Entropy 107,473.5 107,844.2 108,442.7 107,920.1

PA(%) 92.35 92.35 92.35 92.35

Time(s) 0.043 0.051 0.032 0.042

GA(f2) Number of selected bands 23

Information Entropy 96,921.5 102,732.5 94,253.6 97,969.2

PA(%) 92.73 92.73 92.73 92.73

Time(s) 0.042 0.047 0.041 0.043

Fig. 8(c) NSGA-II Number of selected bands 26

Information Entropy 84,094.3 84,094.3 84,094.3 84,094.3

PA(%) 98.94 98.94 98.94 98.94

Time(s) 0.683 0.626 0.578 0.629

GA(f1) Number of selected bands 26

Information Entropy 86,700.9 90,902.9 86,700.9 88,101.6

Time(s) 0.034 0.046 0.047 0.042

GA(f2) Number of selected bands 26

Information Entropy 80,272.1 80,501.2 80,388.7 80,387.3

PA(%) 98.94 98.94 98.94 98.94

Time(s) 0.029 0.045 0.045 0.040

Bold values denote the optimal performance metrics among the compared methods in the respective evaluation tasks.
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Table 3 | Quantitative comparison between the traditional Canny method and alternative approaches

Method PA (%) IoU (%) Precision (%) Recall (%) F1 (%) Time (s)

Traditional Canny method 75.90 22.06 62.49 25.43 36.15 1.07

Bilateral filter method 78.73 31.76 69.50 36.91 48.21 1.53

Vector method using selected bands 80.17 36.85 71.65 43.14 53.86 5.36

Otsu adaptive thresholding method 79.29 34.60 69.38 40.83 51.41 1.76

Interpolation-based NMS method 82.10 44.04 73.17 52.52 61.15 2.19

Fig. 12 | Edge detection results of tenmethods. aOurmethod, bEdge detection results usingGaussian filter, c Single-channel, dGrayscale imagemethod onRGB, eVector-
basedmethod on RGB, fVector method by using all channels onHIS, g Euclidean distance, h SAMdistance, iTraditional NMSmethod, jManual threshold setting method.

Table 4 | Quantitative comparison between the proposed method and nine alternative approaches

Method PA (%) IoU (%) Precision (%) Recall (%) F1 (%) Time(s)

Our method 93.74 73.19 75.78 95.54 84.52 5.73

Gaussian filter method on HSI 80.65 45.34 73.07 54.01 62.17 5.36

HSI single band method 76.57 48.23 54.23 81.34 65.07 1.06

Grayscale image method on RGB 77.53 42.46 57.57 61.80 59.61 1.16

Vector method on RGB 79.54 49.48 67.04 66.11 66.57 1.51

Vector method by using all channels on HSI 92.00 73.09 73.10 92.98 80.76 5.42

Euclidean distance method on HSI 79.61 64.87 66.78 95.36 78.69 6.44

SAM distance method on HSI 80.46 52.96 59.92 82.01 69.25 10.69

Traditional NMS method on HSI 82.13 46.66 70.10 58.25 63.63 4.72

Manual threshold method on HSI 81.55 47.20 59.02 66.96 62.77 24.71

Bold values denote the optimal performance metrics among the compared methods in the respective evaluation tasks.

Fig. 11 | The preliminary ablation study results based on the original traditional Canny operator. aTraditional Cannymethod, bBilateral filtermethod, cVectormethod
using selected bands, d Otsu adaptive thresholding method, e Interpolation-based NMS method.
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Table 5 | Quantitative comparison between the proposed method and seven alternative approaches

Method PA (%) IoU (%) Precision (%) Recall (%) F1 (%) Time (s)

Method in45 on HSI 82.46 55.44 63.53 81.31 71.33 33.03

Unet 85.96 64.52 72.47 86.89 74.36 0.05

Pspnet 87.87 67.45 69.39 76.57 76.27 0.06

DeepLabv3+ 88.56 68.23 75.13 89.84 79.95 0.07

TEED 88.63 69.08 75.17 89.49 81.71 0.19

PiDiNet 84.43 64.37 71.79 79.14 70.44 0.37

DexiNed 84.01 60.75 74.49 71.44 67.34 3.19

Our method 93.74 73.19 75.78 95.54 84.52 5.73

Bold values denote the optimal performance metrics among the compared methods in the respective evaluation tasks.

Fig. 13 | Edge detection and pattern segmentation results for eight textile samples.
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patterns from the background, resulting in significant misclassification.
When processing images where the pattern and background colors are
similar and edges are less distinct—such as the eight treasures patterns on
dark backgrounds—the method45 missed certain pattern edges, leading to
segmentation failure. Our method successfully captures fine edges. Such
performance confirms the robustness of our method in low-contrast sce-
narios. Therefore, from the qualitative image results, the proposed method
can detect pattern edges effectively under different backgrounds, which is
superior to the other seven methods.

Discussion
We propose a band selection algorithm for HSIs, which is called edge-
oriented MO of band selection (EOMOBS). This model simultaneously
involves two factors, including information and redundancy, which can
better describe the characteristics of the bands in HSI. The edge-oriented
evaluation mechanism is constructed to select the final solution from the
Pareto front, so the selected band subset is more conducive to edge detec-
tion. After band selection, the improved Canny algorithm is used for edge
detection in textile hyperspectral images for pattern segmentation. The
method fuses information frommultiple channels from EOMOBS through
vector calculation and automatically selects optimal high and low thresholds
according to image characteristics, offering better adaptability than the
traditional Canny operator. Compared with seven edge detection methods
on HSIs and two methods for RGB, our method demonstrates better edge
detection performance. When applied to textile pattern segmentation with
low contrast and noise, it achieves 93.74% PA and 73.19% IoU, out-
performing the other seven methods, including Unet and DeepLabv3+.

Traditional textile patterns, as an important part of cultural heritage,
carry rich historical and cultural connotations. The accurate segmentation of
these patterns is crucial for the digital preservation and in-depth study of
cultural heritage.Our algorithmenables theprecise extractionof low-contrast
and noisy textile patterns, which provides the necessary technical support for
constructing a comprehensive database of traditional textile patterns.
Moreover, the successful application of this algorithm in textile pattern seg-
mentation paves theway for similar digital research on other types of cultural
heritage. Cultural heritage artifacts beyond textiles often share key HSI
characteristics with textile data. Typical examples of these artifacts include
ancientmurals, paintedpottery, andpaintingswithpigmentedpatterns. First,
they contain delicate, meaningful boundaries that require precise detection.
For instance, the edge of a figure in a mural and the contour of a decorative
motif on pottery both fall into this category of boundaries. Second, their
hyperspectral data may include redundant bands. Third, they are susceptible
to noise from aging; common aging-related noise includes pigment fading
and surface cracks. All these aspects are challenges that our framework is
designed to address. This demonstrates the potential of HSI-based segmen-
tation techniques in promoting the digitalization process of cultural heritage.

Data availability
Relevant researchers may acquire the data and materials that substantiate
the conclusions of this study by contacting the corresponding author if they
are required for scientific research.
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