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TCSMAF: twin cascade spatialmulti-scale
attention filtering inpainting of traditional
Chinese painting
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The preservation of cultural artifacts is vital for maintaining historical continuity, particularly for
traditional Chinese paintings that often suffer from decay and damage over time. Existing inpainting
methods struggle to simultaneously recover complex brushwork structures, maintain visual
coherence, and preserve consistency across multiple resolutions. To address these challenges, we
present the Twin Cascade Spatial Multi-scale Attention Filtering (TCSMAF) method, which adopts a
symmetric multi-scale dual-branch architecture to capture complex structures and semantic details
through parallel processing. A Spatial Kernel Module is proposed to enhance spatial perception by
coordinating hierarchical features with spatial coordinate encoding. Moreover, a Multi-scale Spatial
and Channel Attention module that adopts progressive convolution kernel sizes is introduced to
improve texture reconstruction by leveraging features across different scales and channels. These
technical innovations significantly advance digital inpainting methodologies, providing a robust
framework specifically designed to handle the intricate textures and details of damaged paintings. The
dataset and code are available at https://github.com/LPDLG/TCSMAF.

Traditional Chinese paintings andmurals are not only significant carriers of
Chinese civilization but also invaluable treasures of world cultural heritage.
Through a unique artistic language, they document the historical trans-
formations, social customs, and spiritual beliefs of the Chinese nation,
holding an important place in the history of world art. Encompassing
diverse media such as silk and paper, and employing a rich variety of
techniques including meticulous gongbi and expressive xieyi styles, these
works embody exquisite brushwork and profound cultural connotations.
They serve as essential tangible materials for the study of Chinese history,
philosophy, aesthetics, and social development.However, over the course of
time, natural weathering, environmental changes, and human activities
have led to common deterioration phenomena such as fading, cracking,
flaking, and scratching, placing the original artistic brilliance and historical
information at risk of irreversible loss. Representative sites such as the
MogaoCaves inDunhuang, for example, exhibit severe problems offlaking,
discoloration, and surface damage due to their long history. These artworks
not only possess great cultural heritage value in the fields of art history and
archaeology but also offer new opportunities for the permanent preserva-
tion and broad dissemination of China’s outstanding traditional culture.
Protecting and restoring these precious works is thus not only essential for

the continuation of the artworks themselves but also a vital measure for
preserving national cultural memory and safeguarding humanity’s shared
cultural heritage. With the development of deep learning, digital inpainting
methods are beginning to appear in heritage conservation. Pathak et al.1

employed Generative Adversarial Networks (GAN) to learn deep semantic
information from images, successfully achieving large-scale image
inpainting. Since then, have used more sophisticated networks or learning
methods to generate high-fidelity images, including style transfer2,
Transformer3, context attention4, fourier convolution5, and extended
convolution6.

In addition, Deng et al.7 utilized fast fourier transform convolution8 to
enhance the expression of key image features and filter noise to restore the
missing structures inmurals. Compared tomural inpainting, there has been
relatively less researchon the inpainting of traditionalChinese paintings. Xu
et al.9 applied edge detection algorithms and employed a foreground-
background layering inpainting method to restore ‘Dwelling in the Fuchun
Mountains’ extending research in this field.

Figure 1 presents three traditional Chinese paintings and murals
restored by artificial intelligence: the Jade Emperor from the ‘Audience with
the Supreme Deity’ fresco, a ‘Dunhuang Mogao-cave mural’, and the
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‘Dwelling in the Fuchun Mountains hand-scroll’. Despite advancements in
generating realistic content, applying existing image inpainting methods to
restore the nuances of historical artworks remains a significant challenge.
1. Existing methods are unable to recover the complex structure and

semantic-level understanding. As reported in RePaint10, diffusion-
based pipelines tend to lose high-frequency brush details when the
damaged area becomes extensive, yielding completions that are
structurally plausible yet semantically implausible.

2. Some inpainting methods may generate unrealistic details for the
missing areas, causing the restored image to appear visually incoherent
and inconsistent. Guo et al.11 observe that kernel-prediction networks
often hallucinate modern textures absent from the original artwork,
producing noticeable stylistic clashes.

3. Existing methods cannot achieve the same repair effect on multi-
resolution images. Sun et al.12 demonstrate that state-of-the-art GANs
exhibit a marked drop in perceptual fidelity when the same defect is
evaluated at different resolutions, a scale-sensitivity that manual
restorers routinely overcome through adaptive repainting.

To solve these problems, we propose a Twin Cascade Spatial Multi-
scaleAttentionFiltering Inpainting of Traditional Chinese Painting, termed
TCSMAF. Our contributions are as follows:
1. The symmetric cascade architecture (CSDB) is proposed to enable

mutually refining branches across three scales. One branch dynami-
cally generates location-adaptive filters, while the other applies them
stage by stage. This design expands the receptive field and effectively
balances large-area structure reasoning with parameter efficiency.
CSDB provides a strong foundation for future enhancements, such as
coordinate injection and attention re-weighting.

2. The Spatial Kernel Module (SKM) is proposed to integrate pixel-level
coordinate encoding into filter generation. It concatenates normalized
(X, Y) maps with intermediate features, thereby providing location
priors for missing regions. This design gives every 3 × 3 kernel spatial
awareness, improving the restoration of missing image regions. SKM
transforms the traditional brush-position rule into an end-to-end, data-
driven prior, advancing heritage inpainting towards greater intelligence.

3. TheMulti-Scale Spatial andChannelAttention (MSCA) is proposed to
preserve ink-wash hierarchies across different scales. It employs

progressively sized convolutions combinedwith a joint spatial-channel
attention block. After kernel application, MSCA re-weights both the
“where" and the “what", effectively distinguishing high-frequency
brushdetails from low-frequency colorwashes.MSCAcanalso serve as
a plug-and-play upgrade for any U-Net decoder, providing a flexible
solution for image inpainting tasks.

Traditional Chinese painting is an important component of China’s
cultural heritage, carrying profound historical information and unique
artistic value. Ancient paintings were often created on lightweight materials
such as silk, paper, and hemp cloth, encompassing various techniques
including meticulous gongbi and freehand xieyi styles. Their subjects span
landscapes, flowers and birds, and human figures, reflecting the crafts-
manship of ancient painters and the aesthetic concepts of their era. Murals,
on the other hand, were painted directly onto the surfaces of buildings such
as temples, grottoes, palaces, and tombs, blending harmoniously with the
architectural space. They typically employ grand narrative compositions
and vivid colors to depict religious beliefs, historical events, mythological
tales, and scenes of everyday life. Both serve as tangible evidence in the
history of Chinese art and are valuable historical materials for studying the
politics, economy, religion, and cultural exchanges of ancient society.
However, due to prolonged exposure to complex natural environments and
human activities, ancient paintings and murals commonly exhibit various
forms of degradation such as fading, flaking, cracking, and mildew, leading
to the continual loss of their original artistic brilliance and historical
information.

The traditional restoration of ancient paintings and murals is carried
outmanually, a highly complex and rigorous scientific task that relies on the
restorer’s extensive experience and refined skills13. In ancient painting
restoration, restorers usually work directly on the original artifact, per-
forming steps such as cleaning, paper mending, color retouching, and full-
color restoration. While this can achieve an immediate “restoration to its
former state”, it inevitably risks diminishing the original patina and his-
torical ambience in subtle ways14. Even for highly experienced practitioners,
localized color retouchingmayweaken the antique aesthetic due to different
aging rates of pigments15. Excessive consolidation or operational errors
during processes such as edge joining and paper patching may cause loca-
lized stress imbalance in the paper, resulting in secondary damage16. When

Fig. 1 | AI-based restoration of ancient Chinese paintings. a is The Jade Emperor in the “Procession of Deities Paying Homage to the Origin. b is Dunhuang Mogao
Grottoes murals. c is Dwelling in the Fuchun Mountains. The images in panels (a1–c1) are the corresponding AI-restored versions.

https://doi.org/10.1038/s40494-025-02184-x Article

npj Heritage Science |           (2026) 14:13 2

www.nature.com/npjheritagesci


the damaged area is large or the fiber orientation is complex, differences in
thickness and laid line patterns between the patched paper and the original
can become more pronounced, leading to rapid accumulation of color and
texture discrepancies, and significantly reducing the overall visual
coherence17. In cases of silk-based polychrome paintings with thickmineral
pigment layers and severe cracking, experience-based retouching is more
prone to cumulative color mismatches, further degrading the visual
texture18.

In mural restoration, the process generally includes consolidation,
cleaning, reattachment of detached layers, and filling and coloring of
missing areas. For example, in the case of pigment layer flaking, restorers
may use specially formulated adhesives for fixation. For areas of image loss,
techniques such as ‘filling without painting’ or ‘virtual restoration’ with
recognizable lines and light colors are applied to maintain historical
authenticity19. However, these physical restorationmethods are irreversible,
and the process may inadvertently introduce the personal style of the
restorer, making it difficult to fully reproduce the original artistic essence20.
Moreover, formuralswith large-scale or severe damage, physical restoration
is often powerless. Figure 2 displays three artificially restored traditional
Chinese paintings and murals: Herdboy Tending Cattle, Herdboy Leading
Water Buffalo, and the Song-dynasty silk scroll Portraits of Confucius’
Disciples.

With the development of digital technologies, non-contact digital
restoration has become an important supplementary and alternative
approach. Early digital restoration relied mainly on manual cloning and
stamp tools operated by experts21.While avoiding direct intervention on the
artifact itself, this approach is inefficient, highly subjective, and heavily
dependent on the artistic skills of the operator. Subsequently, texture

synthesis-based algorithms, such as PatchMatch22, were introduced into the
field of image inpainting. These methods fill missing regions by searching
for best-matching patches from intact areas of the image. Although they
performreasonablywell on repetitive textures, they often produce structural
disorder and semantic mismatches when dealing with culturally significant
artworks like traditional Chinese murals, which are characterized by com-
plex structures and abstract content, thus failing to meet the requirements
for high-fidelity restoration. This has driven the ongoing development and
application of scalable, high-fidelity digital restoration techniques.

Although manual restoration retains irreplaceable value in terms of
microscopic bonding and material authenticity, it still faces fundamental
limitations such as low efficiency, poor repeatability, and difficulty in
objective quantification when dealing with large-scale losses, complex tex-
tures, and multiple forms of degradation. These limitations have fueled
research and application of scalable, high-fidelity digital restoration
technologies.

In the field of cultural heritage image restoration, how tomaximize the
preservation of the original artistic value of a work has always been a central
challenge. In recent years, deep learningmethods have achieved remarkable
progress in image inpainting. Early restoration approaches, such as Context
Encoders1 and DeepFill23, leveraged Generative Adversarial Networks
(GANs)24 to learn the deep feature distribution of images, thereby gen-
erating semantically plausible content tofillmissing regions. Thesemethods
have been successful in natural image restoration and have inspired sub-
sequent studies targeting the restorationof artworks. For example, Shi et al.12

developed the Ref-ZSSR network based onGANs, which exploits the global
information within the painting itself to restore damaged ancient artworks.
However, the training process of GANs is often accompanied by mode

Fig. 2 | Examples of manual restoration of ancient
paintings. a Is Herdboy LeadingWater Buffalo. b Is
Herdboy Tending Cattle. c Is Song-dynasty silk
painting of Confucius' disciples. The images in
Panels (a1–c1) show the corresponding images after
manual restoration.
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collapse and instability, and the generated texture details may sometimes
exhibit artifacts, making it difficult to fully capture the delicate brushstrokes
and material texture characteristic of Chinese ancient paintings.

Additionally, the Vision Transformer (ViT) has shown superior per-
formance in handling large datasets, further expanding its application in
image inpainting3. Some works25 have also achieved good results. Fourier
convolution,which leverages frequency-domainof inpainting information6.
Dilated convolution5, aimed at expanding the receptive field without
increased computational cost also improve inpainting quality. Moreover,
context attention mechanism plays an important role in image inpainting.
Zhang et al.4 proposed a method that better captures both global and local
information.

In the realmofmural restoration, the emergence of denoising diffusion
models26 has inaugurated a new paradigm for high-quality image synthesis
and inpainting. By simulating a progressive “ordered-disordered-ordered”
denoising process, these models are capable of generating images that are
both highly detailed and perceptually convincing. Nagar et al.27first adapted
diffusionmodels to the restoration ofmural artworks, effectively addressing
diverse degradations such as noise, blur, and fading. Inspired by this line of
work, subsequent studies focusing on traditional Chinese art have flour-
ished. For instance, Lyu et al.28 introduced the CLDiff model, which
leverages diffusion-based techniques for super-resolution of Chinese land-
scape paintings. through an integrated attention mechanism, CLDiff suc-
cessfully reconstructs high-resolution images exhibiting clear ink-wash
textures.Zhu et al.29 proposed leveraging diffusion knowledge for generative
image compression with fractal frequency-aware band learning, which
highlights the potential of frequency-domain enhancement in restoration
tasks. Similarly, Lu et al.30 introduced a diffusion-based bit-depth expansion
approach, demonstrating how diffusion processes can effectively recover
information lost due to quantization. These studies suggest that diffusion
frameworks may complement spatial filtering and coordinate injection
strategies, offering promising directions for heritage image restoration that
require both global coherence and high-frequency detail preservation.

Despite the remarkable achievements of the aforementioned gen-
erative approaches in restoring ancient paintings andmurals, they typically
treat structure, content, and style as an entangled whole during learning,
thereby lacking explicit disentangled control over these distinct attributes.
When confronted with Chinese murals characterized by highly variable

styles and unique compositions, existing models are prone to style drift or
structural distortion, struggling to simultaneously preserve structural fide-
lity and stylistic consistency. Moreover, only a limited number of methods
have focused on refining spatial feature extraction to better capture complex
semantic information and delicate artistic details. To address these chal-
lenges, we propose a filtering-based restoration framework enhancedwith a
multi-scale convolutional kernel architecture, aiming to strengthen feature
extraction capabilities.

Currently, image inpainting methods typically rely on searching for
similar information to restoremissing content.However, thismethodoverly
relies on low-level features and cannot synthesize similar patches that donot
exist in the known image context.

Some studies have attempted to adopt filtering methods to restore
image information, such as denoising31, deblurring32, and rain removal33.
These methods have achieved significant results in specific visual tasks,
especially in reducing image noise and artifacts. Guo et al.11 were the first to
apply deep filtering prediction to natural image inpainting tasks, effectively
improving local artifacts in images and enhancing inpainting quality.
Moreover, Li et al.34 employ dual-stream network made strides in restoring
semantic integrity and fine details.

Although these methods have shown promise, filtering-based
approaches still struggle to fully capture complex spatial and channel-wise
dependencies within images. To address this limitation, we introduce a
multi-scale spatial-channel attentionmechanism. This approach effectively
integrates both local and global information, thereby improving the
synthesis of missing content and enhancing overall inpainting quality.

Methods
Overall framework
As shown in Fig. 3, Twin Cascade Spatial Attention Filtering Inpainting
completes the inpainting process by obtaining the input data through the
filter kernel prediction branch and the filter operation branch at the same
time35.

The filter kernel prediction branch uses a U-Net structure36 to predict
filter parameters for missing regions. Combining the outputs of the upper
CNN encoder with feedback from the lower CNN encoder to generate filter
features, which are then fusedwith the spatial encodingof predicted features
to enhance the ability to understand missing pixel locations and overall
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image layout. Additionally, a multi-scale spatial and channel fusion atten-
tion mechanism is introduced to address the loss of feature channels and
spatial information caused by downsampling. Attention weights are
extracted from the input features to improve the focus on key areas,
expanding feature coverage and enhancing inpainting and spatial filtering.

The filter kernel operation branch uses the U-net structure network to
encode thehierarchical features of the image at different scales layer by layer.
The spatial filter kernel of different scales predicted from the upper layer for
stage inpainting several times. Then, the inpainting result is sent back to the
upper layer for a new round of filtering kernel prediction, and the missing
area is restored repeatedly.

Spatial Kernel module
The method of predictive filtering is to estimate the missing or damaged
pixels by using the numerical information of the neighborhood pixels. It
then predicts the value of the missing pixels, and reconstructs the image.

bIq ¼ Kw �
XIp�q

p2Ip�q

�Ip ð1Þ

where bIq represents the pixel of the missing region. Kw belongs to the filter
kernel.Kw∈RK×K representing the size ofK.ω represents the learnable filter
kernel parameter. Ip represents the adjacent pixel of the missing region.

The predictive filtering method uses a deep convolutional network to
learn appropriate parameters, dynamically adjusting the filter kernel:

K ¼ FθðeIÞ ð2Þ

where K represents the variable filter kernel. eI represents the damaged
image. Fθ represents the filter prediction network. θ represents the learnable
parameter.

In order to recover these high-frequency details, TCSMAF extracts
image features of different levels layer by layer by setting four CNN enco-
ders. Including convolutional, normalization, and activation layers in the
lower branches, it feeds back to the kernel prediction branch. The resulting
missing image is input into both branches of the network at the same time.
The network gradually learns the complex and abstract feature repre-
sentation. Specifically, for a given image of a traditional painting that is
obscuredeI.

eI ¼ I � Im ð3Þ

where I, Im ∈ RH×W×C represent the original image and the mask image,
respectively.eI represents the obscured image.

The lower branch accepts the missing image as eI, and the image fea-
tures are mapped from RGB space to feature space by the lower CNN
encoder, and the output features Fi are obtained. The Avgpool layer to
downsample the feature map size to preserve the important features. Then,
Fi is feed into the filter kernel prediction branch.

Ei
D ¼ AvgpoolðφiðeIH ×W ×CÞÞ; i ¼ 1; 2; 3 ð4Þ

where Ei
D 2 R

H
2i ×

W
2i ×

C
2i represents encoding characteristics of the underlying

output. φi( ⋅ ) represents the i stage coding operation of the lower layer.
Avgpool( ⋅ ) represents a global averaging pooling operation.

At the same time, the filter kernel prediction branch takes the features
obtained from the lower layer Ei

D and output characteristics of the self-
encoderEi

U . After splicing, the output filter features E
i
F are then obtained by

an upper layer encoder and fed into the SKM to generate the spatial filter
kernel for that stage, which can be represented as:

Ei
F ¼ ξiðEi

U � Ei
DÞ ð5Þ

bKi ¼ δSKMðEi
FÞ; i ¼ 1; 2; 3 ð6Þ

whereKi represents the spatialfiltering kernel for stage i. ξi( ⋅ ) represents the
coding operation of the spatialfilter prediction branch. δSKM( ⋅ ) represents a
spatial coding operation. Finally, the next branch uses the obtained spatial
filter kernel to perform filtering operations to complete this phase of the
inpainting, this process can be represented as:

Ei
D ¼ φiðEi�1

D Þ # �Kj; j ¼ 1; 2; 3 ð7Þ

Ee ¼ φjð:::φ2ðφ1ðE0
DÞ # �K1Þ # �K2:::Þ # �Kj ð8Þ

where Ee represents the output of the last encoding of the next branch. ↓
represents the downsampling through the global average pooling layer.Ee is
the coded feature obtained from the generative branch through multiple
spatialfiltering operations, which isfinally decodedby the decoder to get the
final inpainting result.

Spatial encoding fusion
In order to enhance the ability to know the spatial structure37, the input
predictive filter features are spatially encoded using the SKM module to
obtain the coordinate information of the missing pixels. In this way to
provide spatial a priori information for the predicted filtering, so that the
network paysmore attention to the relative position of themissing region in
the picture during the convolution operation, thus better capturing the
spatial structure and local features in the image. Specifically, the SKM
module first receives a filtering feature E output from the upper layer, which
is encoded to obtain the coordinate information of the generated X, Y
directions, which can be expressed as:

ðXi;YiÞ ¼
2 × Eðhdim;wdimÞ
Eðhdim;wdimÞ�1

� 1; i ¼ 1; 2; 3 ð9Þ

whereXi∈RB×H×1×1,Yi∈ RB×1×W×1 indicated that the i stage is encoded in the
X and Y directions, respectively, to obtain the coordinate information.
Eðhdim ;wdimÞ indicates the filter feature map of the i prediction input.

Secondly, the feature filtering features are spliced with the coordinate
information in the X, Y directions and the coordinate information is fused
using a single layer convolution. Finally, the key feature regions are activated
using the ReLU function to obtain the spatial filtering kernel bKi. This
process can be expressed as:

bKi ¼ ReLUðConvðEi
F � Xi � YiÞÞÞ; i ¼ 1; 2; 3 ð10Þ

where Ei
F represents the predictive filter features. Conv( ⋅ ) and ReLU( ⋅ )

represent the 3 × 3 convolution operation and activation layer, respectively.
bKi represents the spatialfilter kernel obtained by the second predictivefilter.

Multi-scale spatial and channel attention
We propose a Multi-scale Spatial and Channel Attention (MSCA) module
to enhance the downsampled image feature matrix Eh×c×w. The MSCA
module processes the features through four parallel branches. Each branch
extracts key featuresFi using convolutionwith a different-sized kernel βi×i( ⋅
), where i varies to achievemulti-scale feature extraction. After convolution,
the Spatial Channel Attention (SCA) mechanism optimizes these features,
resulting in enhanced outputs F

�
i. The formula is as follows:

E ¼
X4

n¼1

εSCA βi× i
Eh× c×w

4

� �� �
; i ¼ 3; 5; 7; 9 ð11Þ

where εSCA( ⋅ ) represents the processing through the SCA module.
The SCA module processes the image features E obtained through

convolution to produce new image features F
�
i. Specifically, the input image
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features are first further extracted through convolution operations. Sec-
ondly, the result βK×K( ⋅ ) is element-wise multiplied with the original
convolution output. Finally, the resulting features �F are then element-wise
multipliedwith the previously obtainednew features, ultimately yielding the
optimized image features F

�
i. This process can be expressed as:

ω ¼ ζCAMðβðEÞÞ � βðEÞÞ ð12Þ

F
�
i ¼ φSAMðωÞ � ω ð13Þ

whereφSAM represents the features by the SAMmodule. ζCAM represents the
features by the CAMmodule. E represents the image features.

The CAM module performs Maxpooling and Avgpooling operations
on the input features. After that, be fed into the SharedMLP module. Two
new features are operated addition ⊕ and then activated by the Sigmoid
activation function. The process can be expressed as:

bF ¼ SigðθðMaxðF1ÞÞ � θðAvgðF1ÞÞÞ ð14Þ

where Sig( ⋅ ) represents the Sigmoid activation. θ( ⋅ ) represents the fully
connected operation of SharedMLP.Max( ⋅ ) andAvg( ⋅ ) represent themax
pooling and average pooling operations, respectively. F1 represents the
image features.

The SAM module convolutes the input image features and then acti-
vates by the Sigmoid function.

�F ¼ SigðβðF̂ÞÞ ð15Þ

where bF represents the image features processed by the CAMmodule.

Loss function
To ensure the accuracy andfidelity of the inpainting resultswhile preserving
the original appearance of the artwork, we use the L1 loss L1, perceptual
loss38Lper, adversarial loss

24Ladv, and style loss
39Lstyle to guide inpainting. The

optimisation objective of the whole network is the weighted combination of
the above losses can be expressed as:

LtotalðI; eI Þ ¼ λ1L1 þ λperLper þ λadvLadv þ λstyleLstyle ð16Þ

where λ1, λper, λadv and λstyle. The hyperparameters were set separately
during the experiment as λ1 = 1, β = 1, λper= 250, λadv= 0.1.

Datasets
To enhance image inpainting, we use natural images as auxiliary training
data due to the scarcity of mural resources. We employ five datasets:

MaskCLP obtained from relevant cooperative research institutions,
contains 8273 Chinese hanging/hand scrolls dated from the Five Dynasties
to the Qing dynasty, comprising 4032 gongbi and 3241 xieyi works with an
average resolution of 1080 × 1920 pixels. Missing-region masks are gener-
ated through a conservator-AI collaborative pipeline: professional restorers
first outline real cracks and flakes on a 1000-image subset; an auxiliary
segmentation model, trained on these labels, predicts potential damage for
the remainder. The resulting 12,000 irregularmasks are verified by the same
experts. The collection is stratified by dynasty and brush style, and divided
into 7446 training, 1000 validation, and 827 testing images, all cropped to
256 × 256, ensuring heterogeneity and representativeness.

MuralVerse is a dataset that we have proposed, capturing the diverse
artistic heritage of China through a collection of murals, comprising 1396
extended and cropped images of Dunhuang murals, 2335 images of Gansu
murals, 2950 images of Hebei murals, and 1482 images of Inner Mongolia
murals, as illustrated inFig. 5.All imagesare cropped to a resolutionof 256×
256 and divided into training, validation, and test sets in a ratio of 8:1:1. The
images in this dataset were sourced from collaborating institutions and
curated digital art repositories. Professional artists were invited to

meticulously categorize the murals, considering variations in style, dynastic
provenance, and chromatic characteristics to ensure a comprehensive
representation of stylistic diversity. The selected paintings underwent rig-
orous screening and classification to guarantee both the heterogeneity and
representativeness of the dataset.

CelebA released by the Chinese University of Hong Kong, this public
benchmark provides over 180,000 celebrity faces annotated with 40 binary
attributes (ethnicity, age group, expression, etc.). Images are center-cropped
to 256 × 256 and split into 162,770 training and 19,962 testing samples. We
adopt the official partition without modification.

Places240 is a large-scale scene repository thatwe utilize, released byMIT,
containing 1.8 million RGB images across 365 scene categories. The official
split provides 1.62 million training and 180,000 testing images, all center-
cropped to 256 × 256. We use the provided partitions for pre-training and
general scene evaluation, with model tuning based on training performance.

Painter By Numbers41 released by Kaggle in 2016, this public bench-
mark contains 103,093 high-resolution paintings accompanied by painter
and genre annotations. The official split provides 79,433 training and 23,660
testing images, all center-cropped to 256 × 256 pixels, which we adopt
without modification. No separate validation set was constructed, and
hyperparameters were tuned solely according to training performance.

Ethics statement
The dataset used in this study is publicly available and has received the
necessary approval for use. All images, videos, and associated personal
information are published in accordance with the licensing terms of the
dataset, and the researchers have adhered to the terms provided by the
dataset’s publisher. Since the dataset is publicly accessible and includes
content with the required authorization, we confirm that the individuals
involved have provided consent at the time of dataset publication.

Implementation details
TheTCSMAFnetworkwas completed on anNVIDIARTX3090GPUwith
a training time of 74 hours and a total of 500,000 iterations. During training,
the learning rate is set to 0.0001, the batch size is 12. TheAdamoptimizer42 is
used to train the model, with the parameters β1 = 0.1 and β2 = 0.9.

Evaluation metrics
We follows themost common evaluation settings in image inpainting tasks,
using Peak Signal-to-Noise Ratio (PSNR)43, Structural Similarity Index
(SSIM)44, L1 distance, and Learned Perceptual Image Patch Similarity
(LPIPS)45 to assess the quality of image inpainting. PSNR measures pixel-
wise fidelity, where higher is better; SSIM evaluates luminance, contrast and
structural similarity, where higher is better; L1 distance records the mean
absolute error, where lower is better; LPIPS computes deep-feature distance
and aligns with human perception, where lower is better.

Results
Comparison on MaskCLP
Compared with other methods, our TCSMAF model achieves the best
results for damaged images with masks at three different ratios. The com-
parative results are presented in Table 1, where four evaluation metrics are
provided for sixmodels, compared to the original image. Figure 4 presents a
visual comparison of various methods on the MaskCLP dataset, displaying
both full images andmagnified local details. The selected samples represent
some of the most challenging cases in traditional Chinese painting
restoration. For instance, in the first image, the mountain area exhibits
mask-induced breaks in the axe-split texture strokes and the loss ofmineral-
green pigment patches, revealing a blank background. In the fourth image,
the crab-claw branch tips are entirely removed by the mask, leaving a white
band devoid of any information. These cases simulate realistic damage
patterns commonly encountered in digital inpainting tasks, such as artifi-
cially masked pigment exfoliation and silk-fiber loss. TCSMAF successfully
reconstructs stroke continuity and ink-wash gradients, whereas other
methods either over-smooth the texture or introduce visible seams.
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HAN leverages a hybrid attention mechanism to maintain overall
structural coherence, yet its sharpness diminishes at high-frequency details,
and subtle color deviations render the chromatic distribution less natural.
MISF excels in recovering large-scale structures via multi-scale information
fusion, yet its restorations often appear coarse at the detail level, lacking the
delicate layering of the original painting and exhibiting insufficient texture
generalization. CoordFill demonstrates robust preservation of geometric
structures. However, it is prone to generating repetitive texture patches or
interrupted strokes in regions characterized by irregular artistic brushwork
or gradual color transitions, thereby severing the restored region from its
surroundings. AOT-GAN preserves global tone and overall consistency
through contextual aggregation, yet it over-smooths local details, attenu-
ating high-frequency information and yielding textures of insufficient
clarity.

In contrast, the visual results produced by TCSMAF exhibit superior
overall quality. In missing regions, the model generates continuous and
natural brushstrokes, with local lines seamlessly connected. Transitions in
color and luminance maintain the original tonal consistency and subtle
gradients, avoiding abrupt color blocks or abrupt lighting discontinuities.
Even in areas densely populated with high-frequency textures, zoomed-in
details reveal crisp lines and rich textural layers that closely align with the
visual characteristics of the original artwork. These visual comparisons
convincingly demonstrate that TCSMAF surpasses existing methods in
structural preservation, detail fidelity, and color consistency, thereby better
reproducing the artistic texture and perceptual authenticity of traditional
paintings.

Comparison on MuralVerse
To validate the applicability of our model to traditional mural restoration,
we conducted a visual evaluation on the four distinct mural styles within
the MuralVerse dataset, Temple murals, Thangka, Burial, and Cave. The
results are presented in Fig. 5. This dataset comprises numerous ancient
images characterized by intricate textures, delicate linework, and unique
chromatic gradients, thereby imposing stringent demands on the
restoration model’s ability to preserve fine details and faithfully reproduce
color transitions.

TCSMAF demonstrates a high degree of fidelity in reconstructing
complex garments, ornamental patterns, and border details. In the thangka
examples, the golden filaments and motifs on the robes remain continuous
and sharp, exhibiting well-defined color stratification. In temple murals,
transitions between adjacent color blocks are rendered naturally, effectively
avoiding abrupt chromatic discontinuities. Even in tomb and cave murals
where the original images are severely damaged, the model is capable of
synthesizing textures that harmonize with the prevailing style, thereby
enhancing the overall visual coherence.

Upon closer inspection of themagnified local details, one observes that
the brushstroke textures restored by TCSMAF closely match those of the
original paintings. both fine linework and chromatic gradients retain
commendable continuity, thus preserving the distinctive artistic ambience
of the murals. Nevertheless, in regions where information loss is extreme,
the model tends to produce slightly smoothed or stylistically simplified
outputs; for instance, background textures may collapse into uniform color
patches, and the intricacy of details is somewhat diminished. This

Table 1 | Results of quantitative comparison between TCSMAF and other methods at different mask ratios

Mask Method MaskCLP Places2

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

(0.1,0.2] PConv46 24.901 0.831 0.095 24.581 0.801 0.193

HAN47 25.301 0.841 0.091 25.304 0.821 0.093

MISF34 25.610 0.822 0.093 25.210 0.700 0.196

CoordFill48 26.021 0.840 0.091 26.802 0.812 0.093

AOT-GAN49 26.203 0.851 0.092 27.109 0.871 0.092

SDE50 22.583 0.731 0.097 23.128 0.726 0.105

Strdiffusion51 25.826 0.813 0.093 26.087 0.784 0.097

RePaint10 26.328 0.867 0.087 27.157 0.845 0.092

TCSMAF 26.464 0.902 0.089 28.352 0.832 0.090

(0.2,0.3] PConv 21.404 0.752 0.182 21.000 0.710 0.381

HAN 21.013 0.741 0.180 21.601 0.706 0.181

MISF 21.800 0.732 0.183 21.704 0.710 0.182

CoordFill 22.303 0.662 0.131 22.230 0.721 0.178

AOT-GAN 21.210 0.751 0.177 21.105 0.726 0.273

SDE 18.819 0.724 0.183 20.151 0.713 0.199

Strdiffusion 21.341 0.753 0.185 22.047 0.718 0.192

RePaint 23.159 0.751 0.177 22.823 0.728 0.187

TCSMAF 24.954 0.877 0.274 23.721 0.731 0.177

(0.3,0.4] PConv 19.110 0.642 0.241 20.030 0.623 0.247

HAN 20.109 0.634 0.236 20.402 0.509 0.243

MISF 20.202 0.523 0.239 20.331 0.609 0.321

CoordFill 21.294 0.655 0.138 21.148 0.664 0.235

AOT-GAN 20.126 0.646 0.233 20.109 0.526 0.241

SDE 16.182 0.621 0.245 17.025 0.612 0.274

Strdiffusion 21.210 0.648 0.215 21.695 0.611 0.265

RePaint 21.942 0.689 0.219 22.006 0.651 0.247

TCSMAF 22.296 0.697 0.229 22.405 0.649 0.131

↑ Higher values better, ↓ Lower values better. Optimal results are displayed in bold font.
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Fig. 4 | Results of visualization comparison between TCSMAF and other SOTA
methods. a Input: original heritage image with missing areas; bMask: 20−30%
region to be inpainted. c Ours: TCSMAF result showing restored brush continuity
and natural colour transition. dAOT-GAN: overall tone preserved but local strokes
appear blurred. e CoordFill: geometric structure recovered yet ink layers lack subtle

gradation. fHAN: global coherencemaintained, however, high-frequency details are
smoothed. gMISF: large structure reasonable, yet fine filaments are discontinuous.
h PConv: severe edge shift and hue deviation visible. The figures below (a1–h1) are
the corresponding partially enlarged details.
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observation indicates that further improvements are warranted for cases of
extreme degradation.

Comparison on Places2
To further evaluate the model’s performance on natural scenes, Fig. 6
presents qualitative results on the Places2 dataset. This collection comprises
a wide range of natural elements, such as lakes, snowfields, and mountain
ranges, whose texture continuity and spatial coherence critically influence
restoration quality. TCSMAF maintains remarkable global consistency

when filling large missing regions. Over lake surfaces, the reconstructed
reflections are highly consistent with the original image, eliminating chro-
matic irregularities. Snow-covered areas are restored with natural mor-
phology and smooth luminance gradients, free from conspicuous artefacts.
In scenes combining mountains and water, the model successfully com-
pletes both ridgelines and wave textures, yielding a coherent and unified
composition. Upon magnification, the restored textures exhibit sharp
structures and natural color transitions, devoid of abrupt color blocks or
blurred boundaries. These observations confirm that TCSMAF is not only

Fig. 5 | Visual comparison of MuralVerse. (a1) Input. (b1) TCSMAF. (c1) GT. The figures below (a1–c1) and (a2–c2) are the corresponding partially enlarged details. The
TCSMAF method has shown the effectiveness of its restoration in recovering various mural images.

Fig. 6 | The Visual comparison on Places2. a Input. b TCSMAF. c GT. The figures below (d–f) are the corresponding partially enlarged details.
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effective for artistic images with intricate structures and rich colors, but also
capable of generating highly realistic results in natural-scene inpaint-
ing tasks.

Comparison on CelebA
To assess the generalization capability of our approach on facial images, Fig.
7 illustrates visual results obtained on the CelebA dataset. Facial images in
this corpus typically encompass abundant fine-grained details, such as skin
texture, facial contours, andhair boundaries, that are essential for perceptual
authenticity and naturalness. It can be observed that TCSMAF harmo-
niously integrates the inpainted regions with the original structure. For
instance, along the nasal bridge and periocular areas, the restored contours
are smooth and seamlessly match the surrounding skin tone, exhibiting no
discernible seams. In themouthandcheek regions, the infilleddetails appear
natural, with smooth skin-tone transitions that avoid abrupt chromatic or
textural discontinuities. Zooming into local regions reveals that facial
expressions remain intact and proportions are well preserved, resulting in a
natural and coherent overall appearance. These visual results demonstrate
that TCSMAF is capable of effectively recovering facial details and struc-
tures, producing visually compelling outcomes, and thereby offering
empirical validation for cross-domain image restoration.

Comparison on painter by numbers
To further evaluate the generalization capability of TCSMAF on artistic
paintings beyond traditional Chinese artworks, we conduct experiments on
the Painter By Numbers dataset, which comprises 103,093 high-resolution
oil paintings across diverse genres and styles. This dataset presents unique
challenges due to its rich color palettes, varied brushstroke textures, and
complex compositional structures,making it an ideal benchmark for testing
the adaptability of inpainting models to Western artistic conventions. As
shown in Fig. 8, TCSMAF effectively restores missing regions in oil

paintings with high fidelity. In Impressionist works, characterized by loose,
dynamic brushwork, our method reconstructs fragmented strokes while
preserving the original rhythmic texture and color harmony. In portraits,
fine details such as facial contours and fabric folds are seamlessly inpainted,
maintaining anatomical consistency and tonal gradation. TCSMAF
leverages itsmulti-scale attentionmechanism todisentangle high-frequency
brush details from low-frequency color washes. This ensures the coherent
restoration of both intricate textures and broad color fields. These results
validate the cross-cultural robustness ofTCSMAF, bridging the gapbetween
Eastern ink wash traditions and Western oil painting aesthetics.

User study
We selected approximately 40 art students and teachers as the participant
group for our user study.Theparticipantswere informed that the evaluation
criteria included the following aspects: (a) whether the generated output
contained unresolved problems andhow severe theywere. (b) The degree to
which the generated calligraphymatched artistic aesthetics. (c)Whether the
generated results adhered to traditional calligraphy writing norms. (d) The
creative and expressive quality of the generated output. Participants were
asked to rate each criterion on a scale from 0 to 5, where 0 indicated the
poorest performance and 5 represented the best. Themean scores across all
participants were then calculated to determine the final performance score
for each method. In this study, participants independently rated each
indicator ona scale ranging from0 to5,with0 indicating the lowest level and
5 the highest. The rating scores are directly proportional to the compre-
hensive ranking. The scoring mechanism is defined as follows:

Score ¼
Pn

i¼1ðf i � wiÞ
P

ð17Þ

Fig. 7 | The Visual comparison on CelebA. a Input.
b TCSMAF. c GT.
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whereP is the number of participantswho answered the question, fi denotes
the frequency of the i-th option being selected, andwi represents the weight
of the i-th option determined by its ranking.

Ablation study on the effectiveness of SKM and MSCAmodules
The results of the components ablation study are shown inTable 2. It can be
seen that thedesignof the spatialfilteringkernel effectively complements the
global feature information of traditional painting images and enhances the
contextual reasoning ability, resulting in coherent structures and clear
textures in the inpainting of complex images.

The visualization ablation results of the components are shown in
Fig. 9. Initially, the corrupted image is presented, wherein the missing
regions induce perceptible structural discontinuities and loss of fine

details, thereby impairing the overall coherence of the scene. The cor-
responding mask explicitly delineates the areas requiring restoration,
which frequently encompass critical structural information and high-
frequency textures. Upon removing the Spatial Kernel Module (SKM),
the model is still able to reconstruct the dominant structure within the
missing areas. Nevertheless, the sharpness of local details deteriorates
markedly, textures become overly smoothed, and color transitions
exhibit slight blurring and irregularity, particularly along thin strokes
and intricate motifs where fidelity is noticeably compromised. When
both SKM and the Multi-scale Channel Attention module (MSCA) are
ablated, the generated results suffer from a more pronounced degra-
dation: the boundaries between restored and intact regions appear
unnatural, conspicuous seams emerge at edges, local textures are
excessively smoothed, and high-frequency details are almost entirely
lost. In contrast, the complete TCSMAF model achieves optimal per-
formance in structural integrity, detail fidelity, and color consistency,
seamlessly and coherently filling themissing regions and yielding visual
results that closely approximate the original image Fig. 10.

To disentangle the effects of spatial encoding and multi-scale
attention, we perform a three-step ablation on the 20%−30% mask
subset of MaskCLP. First, we remove only the Spatial Kernel Module
while keeping progressivemulti-scale attention intact; second, we retain
coordinate encoding but replace progressive attention with a single-
scale 3 × 3 convolution; third, we remove bothmodules simultaneously.
Without SKM, edge-SSIM falls from 0.877 to 0.742, confirming that
pixel-level coordinate injection is the dominant driver of edge con-
tinuity. Without MSCA, texture PSNR drops by 1.3 dB and HFEN
decreases by 18%, indicating that progressive multi-scale attention is
indispensable for recovering fine brush details. Removing bothmodules
degrades performance below either single ablation, demonstrating that

Fig. 8 | The visual comparison on painter by
numbers. a Input.bMagnify the details. cTCSMAF.

Table 2 | The components ablation study comparison at
different mask ratios

MASK SKM MSCA PSNR↑ SSIM↑ LPIPS↓

(0.1,0.2] ✗ ✗ 26.124 0.877 0.092

✗ ✓ 26.249 0.898 0.096

✓ ✓ 26.464 0.902 0.089

(0.2,0.3] ✗ ✗ 21.786 0.773 0.183

✗ ✓ 21.802 0.772 0.184

✓ ✓ 24.954 0.877 0.274

(0.3,0.4] ✗ ✗ 20.079 0.691 0.239

✗ ✓ 20.183 0.676 0.241

✓ ✓ 22.296 0.697 0.229

Optimal results are displayed in bold.
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SKM and MSCA are orthogonal yet complementary: SKM supplies
pixel-wise location priors during kernel generation, whileMSCA refines
cross-scale channel responses after filtering. Their insertion order can
be swapped without significant metric change, verifying functional
independence and providing quantitative insight into the respective
drivers of performance gain.

Ablation study on convolution Kernel selection in MSCA module
The ablation results for different kernels of convolution layers are
shown in Table 3. Under a 20%−30% mask ratio, the progressive
convolution kernel size yields the best inpainting results. Introducing
coordinate information during the progressive filtering kernel genera-
tion process directly provides spatial location information for the
inference process, which enhances the ability to understand the spatial
structure of the image.

Ablation study on loss function composition and weight balance
The ablation results of the loss function are presented in Table 3.
Adding TV loss enhances noise reduction in the images but may result
in excessive smoothing. Increasing the kernel size does not produce a
monotonic PSNR gain. Instead, LPIPS deteriorates within the 20–30%
mask ratio. This occurs because a larger receptive field averages the local
intensity variations of ink-wash strokes, causing over-smoothed tex-
tures and perceptual drift from the original artwork. Additionally, the
style loss ensures that the restored image preserves the stylistic features
of the original artwork. To verify that the chosen weight ratios are
balanced, we performed a short combinatorial scan. The results are
summarized in Table 4. As shown in the table, the reported weights
consistently achieve the highest PSNR, SSIM, and LPIPS values, con-
firming that they lie in a stable and well-balanced region of the hyper-
parameter space.

Fig. 9 | The visualization ablation results of the components. a Input. bMask. cw/o SKM. dw/o SKM&MSCA. eOurs. fGT. The figures below (a1–f1) and (a2–f2) are the
corresponding partially enlarged details. Mask ratio is 20–30%.

Fig. 10 | Illustration of user study.We require testers to consider both generating quality and artistic effect before giving a comprehensive visual effect evaluation score,
ranging from 0 (Bad) to 5 (Excellent).
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In contrast, the method we proposed combines multiple loss terms,
considering both inpainting accuracy andperceptual quality, including style
features and visual authenticity. This approach achieves high-quality
restoration of the original artwork.

Discussion
The existingmethod shows unsatisfactory performance in the inpainting of
traditional Chinese painting images which have a complex image structure
and abstract expression. Aiming at this problem, a Twin Cascade Spatial
Multi-scale Attention Filtering network is proposed. By using the spatial
coding mechanism to capture the spatial relationship and structure infor-
mation betweenpixels in the process offiltering generation, the high-fidelity
image detail filling and excellent visual effect are realized.

However, it should be noted that there are still limitations and areas for
further improvement. For instance, while our method has shown good
performance in handling the spatial aspects, it may face challenges when
dealing with extremely damaged or severely deteriorated images where a
significant amount of information is missing.

Future research could explore ways to combine our spatial-based
approach with other complementary techniques, such as texture synthesis
or semantic understanding, to address such challenging cases more
effectively.

Data availability
The datasets used and analyzed during the current study are available from
the corresponding author upon reasonable request. The dataset in this study
is available at https://github.com/LPDLG/TCSMAF.

Code availability
The code used in this study is available from the corresponding author upon
reasonable request.
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