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Therisks of aging, damage, and disappearance of ancient buildings are becoming increasingly severe.
Three-dimensional digital technology is increasingly crucial for their protection, restoration, and
research. Addressing the low efficiency and poor accuracy of point cloud segmentation in the digital
conservation of ancient wooden components, this paper proposes an innovative method that
integrates traditional construction knowledge with modern point cloud processing techniques. First,
based on construction techniques, we summarize a section acquisition method constrained by the
rules of large timber joinery in ancient buildings. Second, we propose a method for extracting
component segmentation parameters by fusing Euclidean clustering with construction knowledge,
analyzing sectional point cloud data to obtain relevant parameters. Finally, by combining pass-
through filtering and region-growing algorithms and utilizing the obtained parameters, this method
achieves efficient and high-precision segmentation of components.

Ancient architecture can be broadly divided into seven major systems.
Among them, Chinese and European architectures have consistently shone
throughout history. Distinct from other systems, Chinese ancient archi-
tecture developed a timber-frame-based structural system shaped by diverse
geographical and cultural factors, a unique patriarchal clan system, and
specific moral concepts. As an integral part of Chinese civilization, these
structures carry rich historical, cultural, and artistic values. They not only
testify to ancient building technologies and craftsmanship but also reflect
the social, political, and cultural characteristics of different historical peri-
ods. Thus, preserving ancient Chinese architecture is both a tribute to tra-
ditional culture and a vital means of transmitting historical memory.
However, with the passage of time and changes in the natural environment,
these buildings face risks of gradual aging, damage, and even disappearance.
According to the third national cultural-heritage survey, China has regis-
tered approximately 766,700 immovable cultural relics. Among them,
17.77% are in relatively poor condition, and 8.43% are in poor condition;
nearly 50% are timber structures. Effective protective measures for these
ancient buildings are therefore urgently needed.

To address this challenge, in recent years, the rapid advancement of
three-dimensional (3D) digital technology has established techniques such
as 3D scanning, modeling, and visualization as vital tools for ancient

architectural conservation. An increasing number of historical structures
are being incorporated into digital preservation initiatives, and the asso-
ciated technologies are continuously being optimized and refined. From
laser scanning and photogrammetry to high-precision modeling, modern
digital methods enable the accurate capture of geometric forms and surface
characteristics of ancient buildings'. Through precise digital documenta-
tion, every detail of these structures can be meticulously recorded and
preserved. This provides a scientific basis for subsequent restoration work
while simultaneously offering researchers a convenient digital platform for
the presentation and analysis of these architectural artifacts. Consequently,
3D digital technology plays an increasingly critical role in the protection,
restoration, and research of ancient architecture.

Currently, within the domain of digital preservation technologies for
ancient architecture, component individualization based on holistic 3D-
scanned point clouds constitutes a critical procedure. This process entails
isolating and processing each independent structural element separately
from the integrated model, which is essential for enabling precise analysis,
restoration, and conservation. For example, finite element analysis (FEA)
may be applied to standardized models derived from individualized com-
ponents to investigate their internal forces and deformation characteristics
under self-weight, wind loads, or seismic actions, thereby evaluating the
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current structural safety status’. Additionally, deformation parameters
extracted from individualized elements facilitate safety assessments of
heritage structures and support the formulation of targeted preservation
strategies. Consequently, point cloud individualization for ancient buildings
serves not only as a pivotal measure for preventive conservation but also
significantly enhances the precision and efficiency of restoration workflows,
while simultaneously functioning as an indispensable instrument for elu-
cidating the architectural chronology and cultural significance embedded
within these structures.

Point cloud-based individual segmentation of ancient architectural
components refers to the process of classifying and partitioning scanned
objects based on their spatial characteristics, such as geometric shapes and
textures, while grouping points with similar features into the same category.
In recent years, significant progress has been achieved in research on
individual segmentation of ancient architectural components, with two
main technical approaches emerging: deep learning-based point cloud
segmentation and traditional point cloud segmentation’.

Recent deep learning methods for LIDAR point cloud processing can
be primarily categorized into several types: point convolution methods’,
multilayer perceptron (MLP)-based methods’, graph-based methods’,
RNN-based methods’, and attention mechanism-based methods®.
Advanced models such as the PointNet network’ and dynamic graph
convolutional neural networks (DGCNN)"’ are widely used for the semantic
segmentation of LIDAR point cloud data". They exhibit excellent perfor-
mance in distinguishing ‘buildings’ from ‘non-buildings’ (such as ground,
vegetation). Although these methods are effective for macroscopic semantic
segmentation, they have limitations in extracting local features. Further,
precisely clustering individual building instance components remains a
major challenge. Although strategies such as incorporating attention
mechanisms'?, hybrid architectures'’, and weakly supervised learning'* have
been introduced to continuously optimize performance, the problem of
misclassification in semantic segmentation due to shape similarities persists.
Qiu et al. proposed using YOLOV8 for object detection and instance seg-
mentation tasks'’, but the various issues present in traditional architectural
roofs are highly complex. These issues are not fully covered by existing
datasets, leading to data scarcity challenges. Given that ancient structures are
characterized by complex structures, numerous components, diverse
architectural styles, and distinct features, the decision-making processes of
many deep learning models lack transparency, posing problems of inter-
pretability and explainability. Although deep learning has achieved sig-
nificant success in many fields, it remains an immature technology in the
field of ancient architectural segmentation, still facing numerous challenges
and limitations.

Traditional point cloud segmentation methods approach the 3D seg-
mentation problem as structural object detection, primarily relying on point
cloud geometric features. These methods can be classified into three cate-
gories: RANSAC-based model fitting methods, clustering-based methods,
and region-growing methods.

The random sample consensus (RANSAC) method was initially pro-
posed by Fischler and Bolles' in 1981, which employs a probabilistic
approach to estimate models using minimal required point sets. The
RANSAC algorithm has been applied to historic building segmentation,
generating point cloud subsets corresponding to architectural components.
Kivilcim and Duran successfully extracted geometric representations of
fagade elements from noisy airborne and terrestrial LIDAR data using this
approach”. Similarly, Li and Shan employed the RANSAC algorithm to
identify and extract multiple primitive shapes or structures that collectively
represent a building*.

Clustering-based approaches aggregate points whose normal vectors
and spatial positions are mutually proximal. For instance, Xu et al. employed
an enhanced density-based clustering algorithm to group points, thereby
facilitating the identification and planar fitting of point-cloud facets”.
Saglam et al. utilized K-means clustering to partition the point cloud into
blocks, which were subsequently refined into planar segments™. Predicated
solely on spatial proximity or on the joint consideration of normal

orientations, these methods typically necessitate an additional secondary
segmentation stage.

The region-growing algorithm proposed by Besl and Jain in 1988
represents another clustering-based planar segmentation approach capable
of simultaneously incorporating both spatial and normal vector
information”'. Grussenmeyer et al. specifically selected the centroid of each
voxel cell as seed points for region growing, subsequently extracting planar
surfaces from TLS point clouds of medieval castles for parametric
modeling”. While region-growing methods have demonstrated efficacy in
segmenting point cloud data from ancient historical structures, their per-
formance remains constrained by seed point selection strategies™.

Moreover, hybrid methods that integrate various traditional point
cloud segmentation techniques have emerged as a promising strategy to
enhance segmentation performance. For instance, Sheng et al. combined
RANSAC-extracted planes with the K-means clustering algorithm,
where Euclidean distances between fitted surfaces and random spatial
points were computed to identify coherent groups, thereby successfully
segmenting walls and floors™. Adam et al. introduced a hybrid seg-
mentation method for coplanar objects, leveraging both structural
information from 3D point clouds and visual cues from 2D images,
augmented by RANSAC plane fitting™. Similarly, Pérez-Sinticala et al.
employed a hybrid region-growing algorithm enhanced with RANSAC-
based primitive fitting to reduce point clouds into simplified geometric
representations™. For heritage applications, Paiva et al. extracted planar
elements from point clouds of historical buildings spanning five archi-
tectural styles and periods”. Their approach integrated hierarchical
watershed transformation, curvature analysis, and region growing to
optimize seed selection, demonstrating compatibility with multi-source
point clouds from both UAV and terrestrial laser scanners. More
recently, Ling et al. proposed a method combining region growing and
RANSAC for stair segmentation, addressing efficiency limitations of
conventional region growing and inaccuracies in RANSAC-based plane
extraction®. However, the least-squares fitting process exhibited sensi-
tivity to noise, resulting in parametric deviations and erroneous planar
segmentation. Another advancement was made by Jiang et al. with a
hybrid framework incorporating region growing, statistical filtering, and
least-squares fitting”. While their case study on the Shandong Theater
demonstrated successful segmentation of simple geometric elements
(e.g., columns), the method struggled with intricate structural connec-
tions, warranting further refinement for complex architectural
components.

In summary, current methods for segmenting individual components
of historic timber structures face significant challenges, including inaccurate
point cloud segmentation, low precision, and difficulties in processing
geometrically complex models. To address these limitations, this study
proposes a novel methodology that integrates traditional architectural
knowledge with hybrid point cloud processing algorithms. The approach
involves systematically extracting and formalizing structural knowledge
from classical construction treatises, with particular attention to component
joint configurations and spatial relationships. This domain-specific
knowledge is then combined with optimized point cloud segmentation
techniques to achieve precise individualization of primary structural
members (columns, beams, and architrave components). The developed
framework effectively resolves the critical technical bottleneck of accurately
segmenting large timber elements from dense point cloud data. The
resulting segmented models provide fundamental data support for historic
building research and conservation™, while offering technical solutions for
three key aspects of cultural heritage management: precision restoration,
interpretive reconstruction, and sustainable digital preservation.

Methods

Addressing the challenges of complex model component individualization,
segmentation, and low segmentation accuracy in ancient building point
clouds, this paper classifies and synthesizes wooden components to inves-
tigate their structural principles. Building upon this foundation, we propose
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Fig. 1 | Technology roadmap.

Fig. 2 | Principal structural systems of Chinese
ancient timber architecture. a Post and lintel con-
struction. b Column and tie construction. ¢ Log
cabin construction.

an individualization segmentation framework that integrates traditional
construction knowledge with a hybrid point cloud segmentation algorithm.
The overall technical approach is illustrated in Fig. 1.

Firstly, segmentation sections for the ancient building point cloud are
determined based on joinery locations and construction principles, struc-
turally extracting sectional feature maps. Subsequently, combining tradi-
tional construction knowledge—such as the Doukou module system from
the Engineering Practice Rules—with an improved Euclidean clustering
algorithm (including two-stage clustering and construction-knowledge-
constrained clustering), we develop a parameter extraction method for
individualization. This method acquires segmentation parameters for dis-
tinct sectional feature point clouds from the perspective of joinery patterns.
Finally, employing the obtained component segmentation parameters and
construction knowledge, component individualization is performed using a
bounding box algorithm constructed via a pass-through filter and a region-
growing algorithm.

Section positioning via traditional construction knowledge
Overview of ancient building structural systems. Ancient architecture
can be broadly categorized into seven distinct systems. Throughout
architectural history, the Chinese and European systems have emerged as
the most prominent. The Chinese architectural tradition differs sig-
nificantly from other systems, primarily manifested in its unique geo-
graphical and cultural context, specific patriarchal clan system, and
profound ethical doctrines. These factors collectively shaped a con-
struction system fundamentally based on large timber structures. This
defining characteristic establishes ancient Chinese architecture with a
distinctive position in the history of world architecture.

Chinese ancient timber architecture has evolved from prehistoric times
to the present, culminating in three distinct structural systems: post and
lintel, column and tie, and log cabin, as illustrated in Fig. 2.

Post and lintel construction represents the most widely distributed
structural system within Chinese ancient timber architecture. Its derived
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Fig. 3 | Roof configuration types in traditional
Chinese architecture. a Hip roof, b gable-and-hip
roof, ¢ pyramidal roof, d overhanging Gable roof,
and e flush Gable roof.

architectural forms exhibit significant diversity, predominantly employed in
large-scale structures such as palaces, altars, temples, and monasteries.
Despite the variety of architectural styles, these forms adhere to specific rules
and principles, demonstrating consistent patterns of regularity. This system
has evolved into a comprehensive craftsmanship framework. Structurally,
the post and lintel construction is characterized by the sequential layering of
beams atop columns, followed by the placement of short columns upon
these beams, and subsequently shorter beams upon the short columns. This
layering progresses progressively until reaching the ridge purlin. Beams are
interconnected at their ends by purlins to support the roof structure. Based
on distinct roof configurations, the post and lintel construction can be
categorized into five primary types: hip roof, gable-and-hip roof, pyramidal
roof, overhanging gable roof, and flush gable roof, as illustrated in Fig. 3.

The column and tie construction is predominantly employed in ver-
nacular dwellings and smaller-scale buildings. It is characterized by rela-
tively slender and densely spaced columns. The roof load is transferred
directly from the purlins to the columns, eliminating the need for large
horizontal beams.

The log cabin construction represents a distinctive form of building
construction that dispenses with the need for vertical columns and hor-
izontal beams. Its structural configuration is relatively straightforward,
consequently facilitating ease of construction. However, due to its rudi-
mentary nature and substantial timber consumption, its application
remains relatively limited. It is primarily suitable for forested regions or
colder climates/predominantly employed in heavily forested areas or
regions experiencing colder climates.

This study focuses on post-and-lintel architecture as the primary
research subject, conducting an in-depth structural analysis and synthesis of
these ancient buildings. This focus stems from the fact that the classification
of post-and-lintel structures is predominantly determined by variations in
roof configuration, whereas the structural components beneath the roof
exhibit relative consistency, demonstrating unified construction
characteristics.

This uniformity is manifested not only in the overall architectural
layout but also in the proportional relationships between different building
elements. Adherence to specific proportional and constructional require-
ments for individual components constitutes a fundamental principle that
must govern the design and construction of ancient architecture, ensuring
both structural soundness and esthetic harmony.

Joinery principles and section positioning. Through the analysis of
roof configurations, preliminary identification of an ancient building’s
fundamental typology can be achieved, thereby enabling deeper com-
prehension of the structural distinctions between different architectural
forms. This paper synthesizes common structural patterns, leveraging
joinery principles and the inherent symmetry of ancient buildings to
determine section positioning.

This study adopts the large timber assembly sequence—specifically,
“interior before exterior, lower before upper”—to determine section cuts.
For instance, in a structure with four rows of columns (two hypostyle
columns and two peripheral eave columns, the inner hypostyle columns and
their interconnecting members are erected first, followed by the peripheral
eave columns and their linking components. Where multiple horizontal or
vertical members connect adjacent columns, the lower and intermediate
members must be installed prior to the upper ones; reversal of this sequence
is structurally non-compliant. Within the large timber framework,

IR

Fig. 4 | Transverse section through the central column grid. (1) Eave columns, (2)
outer hypostyle columns, (3) inner hypostyle columns, (4) short post, (5) ceiling
beam, (6) penetrating tie beam, (7) corner beam, (8) and (9) architraves, (10)
Dougong bracketing clusters, (11) double-step beam, (12) single-step beam, and
(13)-(15) beams.
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components below the column capitals constitute the “lower framework”,
while those above form the “upper framework”. Installation of upper fra-
mework members commences only after the lower framework assembly is
complete. The following demonstrates this methodology using a six-row
column structure with a peripheral corridor. For structures without per-
ipheral corridors, the section cut position undergoes a translational
adjustment while maintaining identical procedural rigor.

First section: Transverse cross-section at the mid-span of the column
grid (section location indicated by the green area in Fig. 4).

This transverse section was acquired from the central region of the
overall point cloud dataset. This location selection offers two advantages: it
minimizes interference from cluttered points while simultaneously ensuring
the acquisition of comprehensive column cross-sectional information. Key
parameters (e.g, column center coordinates and radii) were extracted
directly as a result of the cross-sectioning.

Traditional construction knowledge application: In traditional Chinese
timber structures: Bay direction (building facade width): Features a higher
column density with larger intercolumniation. Depth direction (depth
perpendicular to facade, aligned with beam direction): Exhibits fewer col-
umns with reduced intercolumn spacing.

Based on the column point cloud distribution within the cross-section,
the two primary axes of the column grid are identified as the bay direction
and depth direction. These spatial parameters constitute essential pre-
requisites not only for column individualization but also for subsequent
longitudinal section extraction between columns.

Section 2: Longitudinal section through inner hypostyle columns along
the depth direction (section location indicated by the red area in Fig. 5).

Structural assembly sequence: Following column erection, ceiling
beam connections (5) are installed, adhering to the “interior-before-exter-
ior” principle.

Data acquisition rationale: A global longitudinal section acquired
along the depth direction at the inner hypostyle column positions enables
extraction of critical height parameters: outer hypostyle column (2), inner
hypostyle column (3), short post height (4), penetrating tie beam (6), corner
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Fig. 5 | Longitudinal section along the hypostyle columns in the depth direction.
(1) Eave columns, (2) outer hypostyle columns, (3) inner hypostyle columns, (4)
short post, (5) ceiling beam, (6) penetrating tie beam, (7) corner beam, (8) and (9)
architraves, (10) Dougong bracketing clusters, (11) double-step beam, (12) single-
step beam, and (13)-(15) beams.

Fig. 6 | Longitudinal section of the eave column axial plane. (1) Eave columns, (2)
outer hypostyle columns, (3) inner hypostyle columns, (4) short post, (5) ceiling
beam, (6) penetrating tie beam, (7) corner beam, (8) and (9) architraves, (10)
Dougong bracketing clusters, (11) double-step beam, (12) single-step beam, (13) and
(15) beams.

beam (7), double-step beam (11), and
beam (13)-(15).

These parameters facilitate component individualization. Directional
distinction: The ceiling beam aligns parallel to the depth direction. At
equivalent elevations, bay-directional members are designated ceiling
tie beams.

Section 3: Longitudinal section along the eave column grid axis (section
location indicated by the orange area in Fig. 6).

Construction sequence: Following the installation of the penetrating tie
beams and corner beams, the architraves were subsequently installed
between the eave columns.

Data acquisition and analysis: A longitudinal section was acquired
along the Bay Direction (perpendicular to depth direction), positioned
centrally between the longitudinal grid axes of the eave columns within the
overall point cloud dataset. This sectioning enabled the extraction and

single-step beam (12),

Fig. 7 | Longitudinal section of the outer hypostyle column axial plane. (1) Eave
columns; (2) outer hypostyle columns; (3) inner hypostyle columns; (4) short post;
(5) ceiling beam; (6) penetrating tie beam; (7) corner beam; (8) and (9) architraves;
(10) Dougong bracketing clusters; (11) double-step beam; (12) single-step beam; and
(13)-(15) beams.

subsequent analysis of critical dimensional and positional parameters for:
Architraves (8) and (9), Dougong bracketing clusters (10).

Section 4: Longitudinal section of the outer hypostyle column axial
plane (section location indicated by the blue area in Fig. 7).

Construction sequence and structural logic: The installation of the
primary timber framework constitutes the final structural phase prior to
decorative elements. The facade design of palace buildings exhibits bilateral
symmetry, featuring door and window openings positioned between per-
ipheral hypostyle columns. Masonry infill walls are strategically arranged
along these columns to provide essential lateral support.

Data acquisition method: A longitudinal section was acquired across
the longitudinal plane defined by the outer hypostyle columns within the
overall point cloud dataset. This sectioning plane was oriented either parallel
to the depth direction or the Bay direction, depending on the specific facade
under investigation.

Data utility: This longitudinal sectioning methodology enables the
extraction and documentation of critical dimensional parameters pertain-
ing to door and window openings, as well as the adjacent masonry infill wall
panels.

Parameter derivation via Euclidean clustering algorithm for
individual component segmentation

Building upon the acquisition of key sectional point clouds through tradi-
tional construction knowledge (incorporating structural attributes and
assembly sequences), this chapter employs point cloud processing algo-
rithms to derive component-specific parameters from these profiles. For the
first section (column grid cross-section): A dual-stage clustering approach
addresses the challenge of extracting centroid coordinates and radii from
composite column point clouds. For the remaining three sections: Lever-
aging predetermined column parameters and spatial distribution,
construction-knowledge-constrained clustering obtains component indi-
vidualization parameters, resolving segmentation parameter acquisition.
Subsequent subsections elaborate on these methodologies in detail as
follows.

Dual-stage clustering algorithm for individualized parameter
extraction in transverse profiles. Column structures within ancient
building point clouds manifest two primary typologies: discrete col-
umn structures and interconnected column structures. Discrete col-
umns, exemplified by pavilion supports, typically stand independently
—open on all sides and structurally isolated. Conversely,
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interconnected columns exhibit extensive fusion with adjacent com-
ponents (e.g., walls, door/window frames), resulting in blurred
boundaries, geometric incompleteness, and significant extraction
challenges. To address complex interconnected column configura-
tions, this paper proposes a dual-stage clustering algorithm for pro-
cessing column grid cross-sectional point clouds. This methodology
resolves the critical challenge of extracting centroid coordinates and
radius from composite point clouds encompassing columns fused with
wall and fenestration structures. The technical workflow is illustrated
in Fig. 8.

For complex column point clouds, Stage 1 acquires parameters for
discrete column sections:

Euclidean clustering for isolated column point clouds: This algorithm
iteratively partitions the dataset into K distinct clusters by assigning each
point to the nearest cluster centroid based on Euclidean distance metrics.
The resultant classification is schematically represented in Fig. 9.

The Euclidean clustering algorithm can be formally represented as
follows:

k
min Y > "l — ], 50 < I8 <N, /9

i=1 xes;

The mathematical representation comprises: S = {S;, S,,
Clustered partition of data points, y;: Centroid of the ith cluster,N,,,.:
cardinality of cross-sectional point clouds.

Given that cross-sectional point clouds interfacing with door/window
frames substantially exceed discrete column sections in density—and con-
sidering traditional post-and-lintel structures typically feature <9 column
rows—the clustering parameters are constrained as

Maximum cluster size: Nyp./9

Minimum cluster size: 50

This dual-threshold configuration efficiently eliminates sparse noise
points and column points fused with fenestration elements while isolating
all discrete columnar features. Consequently, it achieves optimal distance-
threshold convergence at 1.5x the point cloud density spacing (empirically
validated through iterative trials), thereby rendering Euclidean clustering
highly effective for heritage structural parameter extraction. Figure 10
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Fig. 11 | Schematic of phase 2 processing.

(highlighted in blue) visualizes the isolated column clusters obtained during
Phase-1 processing.

Parametric extraction via 2D circle fitting to isolated column point
clouds: Upon completion of Euclidean clustering, the cardinality (point
count) of each cluster is outputted. Subsequently, for each clustered point
cloud, this study employs a RANSAC-based 2D circle fitting method to
robustly extract its geometric parameters from data that may contain noise
and a small number of non-columnar outliers. This method projects the
column’s cross-sectional point cloud onto a 2D plane and finds the optimal
circle model through the following iterative process:

Model hypothesis: Three non-collinear points are randomly selected
from the 2D point cloud dataset. As three points define a circle, these 3
points form a minimal sample set used to generate a candidate circle model.

Model parameter calculation: Based on the 3 selected points, the cen-
troid coordinates (h, k) and radius r of the candidate circle are precisely
calculated.

Consensus set validation: A distance threshold is set based on the
average density of the point cloud, which is set to 0.01 in this paper. The
algorithm iterates through all points in the dataset, calculating the per-
pendicular distance of each point to the generated candidate circle’s cir-
cumference. If this distance is less than the threshold, the point is classified as
an “inlier,” i.e., a point that supports the current model.

Iteration and evaluation: The above steps are repeated for N iterations.
In each iteration, the number of inliers obtained by the current model is
recorded.

Optimal model selection: After N iterations, the candidate circle model
supported by the largest number of inliers is selected as the optimal model.
The inlier set of this model is considered to best represent the true column
cross-section, yielding more precise centroid coordinates and radius. The
formula is as follows:

230 2] ]
2x; —x1) 2(y; —y) ] Lk

d = 1/ = W + O — K = 1]

N4y =8N
R )

For a given dataset {p;}"’ | where each point p; = (x;,y;), the proce-
dure is formalized as follows: Three pointsp, , p,, p5, are randomly sampled
to instantiate a circle hypothesis. Let (h, k) denote the circle’s centroid
coordinates and r its radius. Let d; denote the orthogonal distance from
point p; to the fitted circle; it serves as an inlier-outlier discriminator. If d;
falls below a predefined threshold, p; is classified as an inlier. The average
radius of the isolated column point cloud is subsequently computed and
recorded.

Phase 2: Parametric acquisition for composite column point clouds:
When processing the composite point clouds, in order to separate the col-
umn cross-section point cloud portion from the data extensively fused with
components such as doors, windows, and walls, this study adopts a multi-
directional pass-through filtering strategy constrained by principal axis
directions. First, we define the “principal axes,” which are determined
according to the main horizontal extension direction of the wall or fenes-
tration components connected to the columns. The specific implementation
of this strategy is as follows:

Euclidean clustering of door-column integrated structures: Owing to the
significantly larger cardinality of the composite cluster relative to isolated
column cross-sections, the minimum cluster size for the second stage is set
to twice the point count of the largest cluster identified in the first stage.
Consequently, the algorithm successfully isolates the column-door/window
composite cluster, highlighted in yellow in Fig. 11.

Boundary parameter extraction for connected column point clouds:
Compute the minimum and maximum coordinate values of the composite
point cloud along the X, Y, and Z axes. These extrema define the bounding
values of the integrated structure.

Point cloud extraction via pass-through filtering: Utilizing the pass-
through filtering algorithm, extract point clouds within a range of 1.0-1.5
times the radius along the principal axis from the composite point cloud.
This ensures both the inclusion of door and window point clouds and that
the extracted point clouds remain disconnected.

Fenestration cloud clustering using Euclidean segmentation: Reapply
Euclidean clustering with the minimum cluster size calibrated from isolated
column sections. Given that residual column segments manifest as minor
circular arc fragments, this configuration successfully extracts discrete
fenestration clouds. The sectional boundary parameters are subsequently
computed for each fenestration cluster.

Fenestration element removal via axial filtering: Execute directional
pass-through filtering along the principal axes to subtract fenestration point
clouds from the composite dataset, preserving only columnar geometries.
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Fig. 12 | Technical workflow for individualized parameter extraction from longitudinal sections.
Fig. 13 | Sectioning framework.

Global sectioning for Section 2
A 4 A 4

Sectioning between eave
columns and outer hypostyle
columns

Sectioning exterior to inner
hypostyle columns

A 4

Positional parameters of penetrating
tie beams and corner beams

Positional parameters of ceiling
beams, hypostyle columns, and
single/double/triple-step beams

Sectioning above ceiling beams

A 4

Positional parameters of short
posts and roof beam systems

Cylindrical parameter estimation via 2D circle fitting: Perform
RANSAC-based circle fitting on the residual columnar cloud to determine
centroid coordinates and radius of each structural member.

For most columns connected to a single wall, applying pass-through
filtering along their principal axis is effective. However, for columns located
in corner positions (i.e., corner columns), they are typically connected
simultaneously to two walls in mutually perpendicular directions. To
address this problem, we adopt a multi-directional filtering strategy for
corner columns, ie., applying pass-through filtering along both axes to
which the corner column is connected.

The extracted column grid parameters—specifically, centroid coordi-
nates and radius (defining structural positions)—enable the determination
of individual column placement, bay widths, and structural depths. This
facilitates comprehensive mapping of column distribution patterns essential
for analyzing historic buildings’ planar layouts and provides spatial refer-
ences for subsequent longitudinal section extraction. Within traditional
Chinese timber structures, the fundamental spatial unit is termed a
“structural bay”, formed by four circumjacent columns. The bay width
denotes the east-west dimension. The structural depth signifies the
north-south span. Aggregated bay widths constitute a building’s total facade
width, while cumulative structural depths define its total structural depth,
forming key indicators of traditional architectural proportions.

Component-wise parameter extraction from longitudinal sections
via knowledge-constrained clustering. Leveraging the previously
extracted column positional parameters—comprising centroid coordi-
nates, radii, and the global column-grid configuration—the precise

location and extent of each longitudinal section can be unambiguously
determined. This subsection details the acquisition of segmentation
parameters for these sections. Specifically, guided by the hierarchical
joinery rules of historic timber framing, Euclidean clustering augmented
with semantic constraints is applied to the longitudinal point-cloud slices
of the wooden superstructure. The procedure systematically extracts
component-level parameters for distinct structural zones, as illustrated in
Fig. 12.

In this study, a standardized dimensional convention is established to
unify component parametrization: the vertical axis is defined as height, the
major axis parallel to the material grain as length, and the minor cross-
sectional dimension as thickness.

1. Extraction of segmentation parameters from the longitudinal sec-
tion of the inner hypostyle columns along the depth direction
(Section 2)

To eliminate extraneous point clouds while preserving informative
data—and to constrict the clustering domain for improved accuracy
—Section 2 derives component-wise parameters through a three-
stage localized cutting strategy, the framework of which is illustrated
in Fig. 13.

Positioning cut location 1: Extract a predetermined-width point
cloud section between the eaves column (2) and outer hypostyle
column (3), as demarcated in blue in Fig. 14. The component
thickness relationship matrix (Table 1) enables proportional
estimation of extraction range by modularly calculating component
width relative to column diameters.
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Fig. 14 | Locating section cut position 1. (1) Ground, (2) eave columns, (3) outer

hypostyle columns, (4) inner hypostyle columns, (5) ceiling beam, (6) 7-purlin
beam, (7) 5-purlin beam, (8) 3-purlin beam. (9) penetrating tie beam, (10) corner
beam, (11) double-step beam, (12) single-step beam, and (13) short post.

Table 1 | Component thickness relationships

Structural
classification

Component name

Thickness (column-
diameter equivalent)

(b)

Fig. 15 | Structural connection schematic between eave columns and outer
hypostyle columns. a Structure with dougong brackets. b Structure without dou-
gong brackets.

Fig. 16 | Locating section cut position 2. (1) Ground; (2) eave columns; (3) outer
hypostyle columns; (4) inner hypostyle columns; (5) ceiling beam; (6) 7-purlin
beam; (7) 5-purlin beam; (8) 3-purlin beam. (9) penetrating tie beam; (10) corner
beam; (11) double-step beam; (12) single-step beam; and (13) short post.

Columns Eave columns 6 Doukou
Hypostyle columns 6.6 Doukou
Roof beams Corner beams 6 Doukou
7-Purlin beams 7 Doukou
5-Purlin beams 5.6 Doukou or 4/5 thickness
of 7-purlin beams
3-Purlin beams 4/5 thickness of
7-purlin beams
Triple-step beams Equivalent to 7-purlin beams
Double-step beams Equivalent to 5-purlin beams
Single-step beams Equivalent to 3-purlin beams
Tie beams Penetrating 3.2 Doukou
tie beams
Major architraves 4.8 Doukou
Minor architraves 3.2 Doukou
Architraves 4.8 Doukou
Flat architraves 3.5 Doukou
Cushion boards Cushion boards 1 Doukou

Euclidean clustering: The minimum cluster size is set to an empiri-
cally determined value of 50 to suppress noise; this threshold may be
raised if excessive clutter is present. The maximum cluster size is fixed
as the total number of points within the extracted slice.

Feature extraction: For each cluster returned by Euclidean clustering,
all constituent point coordinates are traversed. The bounding values
along the X, Y and Z axes are computed on-the-fly by dynamically
updating the respective minima and maxima, yielding the spatial
extent of the cluster.

Construction logic sequencing and component parameterization:
Fig. 15a shows a structure with Dougong brackets. Based on con-
struction knowledge, if there are 5 clustered parts, they include the
Dougong point cloud. Sorted by height value in ascending order, from
bottom to top, they are: Ground plane, penetrating tie-beam, partial
dougong, corner beam, and partial eaves; if there are 4 clusters, it does
not include the partial dougong point cloud. Figure 15b shows a
structure without Dougong brackets. The Euclidean clustering also

results in 4 clusters, which from bottom to top are: ground plane,
penetrating tie-beam, baotou beam, and partial eaves.

Thickness computation: Table 1 documents component thickness
relationships: Penetrating tie-beam and corner beam thickness <
Eave column diameter; Thickness ratio penetrating tie-beam: corner
beam = 3.2:6; Corner beam thickness can be derived from measured
penetrating tie-beam thickness using this ratio.

Computational procedure: Expand the point cloud along the bay
direction at the located component positions. Calculate actual
thickness values. Length convention: Distance between eave column
and outer hypostyle column centroids.

Positioning cut Location 2: Extract a fixed-width point cloud segment
outside the inner hypostyle columns, as shown in the red area of Fig. 16,
ensuring inclusion of cross-sectional point clouds for ceiling beam
(5), double-step beam (11), and single-step beam (12).

Euclidean clustering and feature extraction procedures are consistent
with Position 1.

Construction hierarchical sequencing and component parameter
acquisition: Match beam types in ascending height order:

For five clusters: Ground level (1), ceiling beam (5) (at hypostyle
height), double-step beam (2), single-step beam (3), partial eaves.
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2. Longitudinal section at eave column axis (third section)
Section positioning: Due to the symmetrical layout of traditional
architecture, leverage previously acquired locations of outrigger
beams and ground level to extract sections between adjacent eave
columns’ center points, eliminating point cloud interference above
Dougong brackets.
Euclidean clustering: Since the subject is scanned point cloud data, the
central regions of architrave components lack point coverage. As
documented in Table 1’s Doukou module system for architraves,
component thicknesses vary significantly—with cushion board
thickness being substantially thinner than other architrave members.
Consequently, for layered architrave assemblies, longitudinal sections
will capture only cushion panel point clouds. Additionally, the sec-
tional cutting range referenced the thickness of the cushion boards.
By leveraging this difference in thickness, a certain gap is ensured
between the sectioned components, thereby facilitating component
parameter acquisition using the Euclidean clustering algorithm.
Feature extraction: Measure height values for each clustered segment
and sort them in ascending order.

Fig. 17 | Locating section cut position 3. (1) Ground, (2) eave columns, (3) outer
hypostyle columns, (4) inner hypostyle columns, (5) ceiling beam, (6) 7-purlin
beam, (7) 5-purlin beam, (8) 3-purlin beam, (9) penetrating tie beam, (10) corner
beam, (11) double-step beam, (12) single-step beam, and (13) short post.
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Fig. 18 | Layered architrave assemblies.

For six clusters: Ground, ceiling beam, three-step beam, double-step
beam, single-step beam, and partial eaves.

Utilizing the obtained component positions, expand point clouds
along facade width and depth directions to generate cross-sections.
Acquire thickness and length values of beam members. Reference the
Doukou module system for beam categories in Table 1 when
determining the point cloud expansion range.

Positioning cut Location 3: Extract a fixed-width point cloud segment
above the ceiling beam in the longitudinal section between inner
hypostyle columns, as shown in the yellow portion of Fig. 17.

Euclidean clustering and feature extraction procedures align with
Position 1.

Construction-knowledge constrained sorting and component para-
meter acquisition: Traditional construction principles dictate that
ceiling beams support short posts, which in turn bear roof beams—
potentially 3-purlin beams, 5-purlin beams, or 7-purlin beams.
Intermediate minor columns support each beam tier.

As illustrated, the sequence bottom-to-top is: 7-purlin beam (6)
(aligned with short posts height), 5-purlin beam (7), 3-purlin beam
(8). Minor column heights supporting inter-beam tiers can be derived
from construction knowledge.

Thickness resolution: With beam positions determined, expand point

Construction sequencing and parameter acquisition:

The Dougong cluster is invariably the highest; its elevation equals the
eave-column height. Given the column centroid, radius, and height,
the eave-column cloud is subsequently removed from the global set by
a masking strategy, preventing later confusion with sparrow braces.
Repeat Euclidean clustering.

Feature extraction: Calculate positional values for all clusters.
Construction-knowledge constrained sorting and component para-
meter acquisition: For the remaining architrave components not
included in the section, prior knowledge of the component joint rules
from traditional construction treatises, specifically the vertical
stacking order (e.g. sparrow braces, minor architraves, cushion
boards, major architraves, dougong brackets), is utilized. By using the
heights between the separated component point clouds, positions are
matched against the construction knowledge to output adjacent
height pairs, as illustrated in Fig. 18.

For the Major Architraves and Flat Architraves, which are closely
connected components and both absent from the sectional point
cloud, Doukou-proportional constraints are used to effectively
distinguish these overlapping components. This yields the positional
coordinates and heights for Dougong brackets, architraves, and
sparrow braces.

Using the previously extracted column parameters, the thicknesses of
architraves and Dougong are obtained by transverse slicing at the
corresponding elevations. The sparrow brace thickness is approxi-
mated by the column diameter. The Dougong length is approxi-
mately the total bay width or depth plus half a Dougong thickness; the
Architrave length is approximately the total bay width or depth; and
the sparrow brace length is approximately the individual bay width
or depth.

A special mortise-and-tenon joint, known as the encircling-head
tenon, is employed when major architraves and columns are
combined at the end or corner positions. A transverse slice is
generated at the elevation of the major architrave, and the cloud
within one column diameter outward from each corner eave column
is isolated (Fig. 19). Euclidean clustering is applied, the bounding
values of each cluster are computed, and the geometric parameters of
the encircling-head tenon are thereby obtained.

3. Longitudinal section of outer hypostyle column axis plane (Section 3)

Section positioning: This section acquires parameters for door/window

clouds along facade width and depth directions to obtain thickness  components in peripheral corridor-style structures. Utilizing the pre-
and length values. Expansion ranges reference the Doukou module-  determined positions of outer hypostyle columns and the ground plane,
to-column-diameter ratios for beam frames in Table 1. extraction is performed along the bay direction. The thickness of ancient
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Fig. 19 | Schematic diagram of the point cloud extraction range for head-encircling
tenons.
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Fig. 20 | Schematic diagram of door-window-wall assembly. (1) Door, (2) wall,
and (3) window.

building walls is greater than or equal to that of the columns. In contrast, the
windows in ancient architecture are primarily wooden structures, and their
thickness is very slight compared to the walls—far less than the column
thickness. The sectioning method adopted in this paper involves extracting a
point cloud within a very small range at the column’s center; therefore, what
is extracted is a “small-range” point cloud section along the column’s central
axis. Because the windows are very thin and fall within this sectional cutting
range, their point clouds are retained in the sectional data. Conversely, the
walls are very thick; thus, the wall point clouds are filtered out during this
sectioning step.

Euclidean clustering. The total point count of the sectional cloud is
tallied; the door- and window-related points differ markedly in quantity from
the rest. The Euclidean clustering algorithm is applied, with the minimum
cluster size set to one-tenth of the total point count and the maximum cluster
size set to the total itself, thereby isolating the door and window point clouds.

Feature extraction: For each clustered segment, the bounding-box
coordinates are computed.

Knowledge-constrained ordering and parameter retrieval: Fig. 20
depicts the door-window-wall schematic. This paper adopts an empirical
threshold of 0.5 m as the criterion. Clusters whose lowest point lies above
0.5 m are classified as window clouds, and those below 0.5 m as door clouds,
from which the length and height of each door and window are obtained.
Based on construction knowledge, the vertical distance from the window
base to the ground defines the wall height, which can be calculated using the
positions of the window and the ground. The thickness is obtained by
making a transverse slice at the corresponding positional value.

Individual segmentation of structural components based on
hybrid segmentation algorithms

Component segmentation algorithm combining pass-through fil-
tering and region growing. Pass-through filtering, as a linear-

complexity preprocessing operation based on spatial coordinate axes,
spatially crops point clouds by setting threshold ranges along specified
axes (e.g., the Z-axis). It efficiently filters out irrelevant regions, sig-
nificantly reducing data volume for subsequent processing.

The Region Growing algorithm, conversely, is a clustering method
based on local geometric similarity, which iteratively aggregates adjacent
points with consistent normal directions and low curvature. This algorithm
effectively segments continuous and homogeneous surfaces. The perfor-
mance of the Region Growing algorithm is highly dependent on the setting
of its key parameters, including the normal vector angle threshold and the
curvature threshold™. In this study, the determination of these parameters
followed a principle combining theoretical analysis and empirical testing.

Normal vector angle threshold: Considering that the surfaces of wooden
components in ancient Chinese architecture (such as column surfaces and
the faces of beams/architraves) are mostly regular planes or curved surfaces,
the normal vector directions of adjacent points on these surfaces exhibit
high consistency”. Therefore, we set a small angle threshold of 5 degrees to
ensure that only points on the same smooth surface are grouped into
one class.

Curvature threshold: Similarly, the curvature values of regular com-
ponent surfaces are low and change gently. We set a low curvature threshold
of 1 to distinguish the smooth surfaces of components from the high-
curvature regions at component edges or the junctions between different
components.

Parameter optimization: The initial values of the aforementioned
parameters were set based on prior knowledge and were refined through
iterative testing on the component point clouds. Ultimately, a parameter
combination (empirical value) that achieves the best balance between over-
segmentation and under-segmentation was selected to ensure the robust-
ness and accuracy of the segmentation.

Combining pass-through filtering and region growing leverages their
complementary strengths—a pragmatic and efficient strategy. Pass-through
filtering first rapidly pre-filters data, using component parameters obtained
in the section “Parameter derivation via Euclidean clustering algorithm for
individual component segmentation” to focus on target regions while
eliminating large-scale noise interference. This addresses the region grow-
ing’s inefficiency and noise sensitivity in large-scale scenes. Subsequently,
region growing performs refined segmentation on the simplified point
cloud, identifying continuous surfaces through dual constraints of normal
vectors and curvature. This approach accommodates minor surface
deformations in historic timber columns without over-relying on idealized
geometric models (e.g., traditional RANSAC). The integrated methodology
synergizes both algorithms’ advantages, effectively mitigating false merging
and over-segmentation while resolving computational burdens and seg-
mentation accuracy challenges in complex heritage building point clouds.

Segmentation occlusion strategy. Within the refined segmentation
process of heritage building point clouds, particularly after achieving the
individual extraction of principal load-bearing components (such as
columns), a critical preprocessing step involves applying an occlusion
strategy. The core objective of this strategy is to effectively remove suc-
cessfully segmented component point clouds, significantly reducing the
complexity of subsequent segmentation algorithms and improving seg-
mentation accuracy.
The implementation of this occlusion strategy follows the steps below,
using column point clouds as an example:
1. Pass-through filtering localization:
Utilize the 3D bounding boxes generated during component indi-
vidualization. The spatial extent of these bounding boxes should fully
encompass all regions previously occupied by columns, along with
adjacent areas. Removing all point clouds within these 3D bounding
boxes generates a primary candidate residual point cloud dataset.
2. Integration of unclassified points:
Combine all non-column points and unclassified point clouds
produced during the individualization process within the 3D
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Table 2 | Component parameters acquired from sectional profiles

Sectional diagram Segmentation parameters

Individualizable components

Transverse section through the central
column grid

Centroid coordinates and radii of columns

Columns

Longitudinal section along the hypostyle
columns in the depth direction

Heights of: ground level, ceiling beams, penetrating tie beams,
corner beams, hypostyle columns, short posts, and roof beams

Ceiling beams, penetrating tie beams. corner
beams. columns. roof beams, and step beams

Longitudinal section of the eave pillar
axial plane
columns

Heights of: sparrow braces, minor architraves, cushion panels,
major architraves, flat architraves, Dougong brackets, and eave

Sparrow braces, architraves, dougong brackets,
columns

Longitudinal section of the outer
hypostyle column axial plane

Length and height parameters of doors, windows, and walls

Doors, windows, walls

Fig. 21 | Column individualization workflow. Point cloud data
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Fig. 22 | Ceiling beam individualization workflow.

bounding boxes. This ensures that after final column removal, any
points potentially belonging to other components—non-column
points, including those not explicitly classified previously—are
seamlessly and securely preserved, preventing data exclusion.

3. Merging residual data:

Merge the integrated point cloud from Step 2 with the primary can-
didate residual point cloud dataset generated in Step 1. This yields a final
residual point cloud where all segmented column point clouds are elimi-
nated while maximizing preservation of information from all other
components.

Heritage building component individualization. Table 2 lists the seg-
mentation parameters acquired from corresponding cross-sectional
profiles for each structural component. Utilizing these parameters, axis-
aligned bounding boxes (AABB) are constructed via the pass-through
filtering algorithm to extract point clouds containing target components.
Adventitious point clouds within these bounding volumes are subse-
quently eliminated through the region growing algorithm, ultimately
yielding individualized component point clouds.

This study performs component individualization following tradi-
tional large timber assembly sequences, sequentially processing: columns,
ceiling beams, ceiling tie beams, penetrating tie beams, corner beams,
sparrow braces, architraves, Dougong brackets, and finally door/window/
wall components for interior finishing.

1. Column individualization
Serving as primary load-bearing elements and topological anchor
points for subsequent segmentation, individualized column extrac-
tion provides spatial references to enhance segmentation precision
(see Fig. 21).

Utilizing pre-acquired cylinder parameters (centroid coordinates,
radii), a 0.03 m radial extension around each cylindrical axis forms a
cuboid constraint space. Pass-through filtering constructs AABB to
isolate regional point clouds, narrowing the processing scope. The
region growing algorithm is then applied to achieve preliminary
segmentation.

Post-processing strategy for wall-embedded columns: Merging exclu-
sively clusters with consistent geometric parameters (cylinder-fitting
radii, axial orientations) to eliminate non-columnar outliers.

Validating spatial continuity via KD-Tree spatial indexing to preserve
structural integrity. Filtering out clusters lacking geometric coherence
or spatial contiguity.
An occlusion strategy subsequently removes segmented column point
clouds: Pass-through filtering identifies residual regions; Unclassified
points from initial segmentation are reintegrated into the global
dataset; Column-stripped residual point clouds are generated for
downstream operations. This establishes precise spatial coordinates
for inter-column connections while precluding potential confound-
ing interference during subsequent component segmentation.

2. Individualization of ceiling beams and ceiling tie beams
In the section “Parameter derivation via Euclidean clustering
algorithm for individual component segmentation” second
cross-section, a longitudinal section individualized parameter
extraction method based on construction knowledge-
constrained clustering was utilized to obtain the positional
coordinates, length, thickness, and height of ceiling beams.
Using the aforementioned parametric data, the pass-through
filtering algorithm was applied to define constraints with upper/
lower bounds along all three spatial dimensions, isolating point
cloud regions conforming to the specified range. Subsequently,
the region growing algorithm eliminated interfering noise
points, yielding individualized point clouds of the ceiling beams.
The workflow is illustrated in Fig. 22.

3. Individualization of penetrating tie beams and corner beams
Utilizing parameters (position, length, thickness, height) acquired
from Section 2 in “Parameter derivation via Euclidean clustering
algorithm for individual component segmentation” for penetrating
tie beams and corner beams, apply combined pass-through filtering
and region-growing segmentation to extract individualized point
clouds for these components.

4. Individualization of architraves, dougong brackets, and sparrow braces
Employing parameters (position, length, thickness, height) obtained
from Section 3 in “Parameter derivation via Euclidean clustering
algorithm for individual component segmentation” for Dougong,
architraves, and sparrow braces, implement integrated pass-through
filtering and region-growing segmentation to derive individualized
point clouds for these elements.
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Fig. 23 | Schematic diagram of the Hall of Central Harmony.

5. Individualization of step beams and roof beams
Using dimensional parameters (length, thickness, height) acquired
from Section 2 in “Parameter derivation via Euclidean clustering
algorithm for individual component segmentation” for step beams
and roof beams, execute combined pass-through filtering and region-
growing segmentation to generate individualized point clouds for
these structural members.
6. Individualization of doors, windows, and walls
Applying parameters (length, thickness, height) derived from Section 4
in “Parameter derivation via Euclidean clustering algorithm for individual
component segmentation” for door/window/wall assemblies, perform
integrated pass-through filtering and region-growing segmentation to
obtain individualized point clouds for these finishing components.

Results

In this section, we will employ point cloud data from the Hall of Central
Harmony in the Forbidden City, utilizing the C++ programming language
and Point Cloud Library (PCL) on the Microsoft Visual Studio 2017 plat-
form to implement the component individualization segmentation task.

Experimental data

This experiment obtained point cloud data of the Hall of Central Harmony
in China’s Forbidden City through 3D laser scanning. The Hall of Central
Harmony was initially constructed in the 18th year of the Yongle era of the
Ming Dynasty (1420 AD), and has a history spanning over 600 years.

Acquisition of sections

The Hall of Central Harmony is a quadrangular pyramidal roof palace-style
structure, featuring a surrounding colonnade with six rows of columns, as
shown in Fig. 23. Its plan is square, with encircling corridors. The framework
primarily uses nanmu wood, with a row of front and rear eaves columns
along the depth direction. There are four rows of principal columns (cate-
gorized by position as inner and outer principal columns). These four rows
collectively support the ceiling beam and the timber framework above. The
eaves columns and principal columns are interconnected by corner beams
and penetrating tie beams. Above the ceiling beam, the framework employs
short posts for height extension.

Profile acquisition was performed using a section-cutting location
determination method based on ancient architectural tectonic knowledge,
obtaining the following section diagrams: a transverse section through the
central column grid, a longitudinal section along the inner hypostyle col-
umns in the depth direction, a longitudinal section of the eave column axial
plane, and a longitudinal section of the outer hypostyle column axial plane.
The section diagrams are shown in Fig. 24.

Parameter extraction
1. Transverse section through the central column grid

For the transverse section through the central column grid, column
parameters were acquired using a dual-stage clustered column point

cloud processing algorithm. First, through first-stage Euclidean
clustering, the complex column point cloud was divided into
independent column point clouds and composite column point
clouds, as shown in Fig. 25. Then, for the independent column point
clouds, RANSAC-based 2D circle fitting was employed to obtain the
centroid coordinates and radius of each individual column point
cloud, with the average radius calculated from the independent
column point clouds.

Subsequently, for the composite column point clouds, second-stage
composite column parameter acquisition was performed by filtering
out door/window point clouds to retain only the column point
clouds, as illustrated in Fig. 26.

2D circle fitting was applied to the remaining column point clouds to
derive centroid coordinates and radius values, with extracted column
radius parameters provided in Table 3:

2. Longitudinal section along the inner hypostyle columns in the depth

direction
A 10 cm-wide point cloud section was captured between the eave
columns and outer hypostyle columns, as shown in the blue fragment
of Fig. 27. Positional and parametric values of penetrating tie beams
and corner beams were obtained.

A 10 cm-wide point cloud section was extracted 10 cm outward from
the interior hypostyle columns, as indicated by the red fragment in
Fig. 27. Euclidean clustering was applied for parameter acquisition,
yielding six clustering groups - revealing that the Hall of Central
Harmony contains minor columns inserted with single-step, double-
step, and triple-step beam ends. The longitudinal section component
parameter extraction method with structural knowledge-constrained
clustering was employed to obtain positional and parametric values
of ceiling beams, hypostyle columns, triple-step beams, double-step
beams, and single-step beams.

A 10cm-wide point cloud section above the ceiling beams was
captured, as highlighted in the yellow fragment of Fig. 27. Euclidean
clustering was performed on this section, with boundary values
extracted to determine beam frame heights and positions.
Component thickness values were acquired by expanding laterally.
Component parameters acquired from the longitudinal section
(depth direction) along the inner hypostyle columns are documented
in the pink section of Table 4.

3. Longitudinal section of the eave column axial plane

Using the previously acquired column coordinate parameters and the
positions of corner beams and ground level, a longitudinal section
point cloud was generated at the centroidal position between two eave
pillars (as shown by the red marker in Fig. 28). The longitudinal
section component parameter extraction method with structural
knowledge-constrained clustering was applied to obtain dougong
brackets positions and eave columns heights.

Leveraging the pre-acquired column centroid coordinates and radius
parameters, along with the newly measured eave pillar heights in this
section, a segmentation and masking method was implemented on
the overall point cloud to remove column points. A longitudinal
section was then generated at the same location (indicated by the
green marker in Fig. 29a), followed by Euclidean clustering.

Positional data extraction was performed for each clustered segment,
with construction-constrained sequencing applied to identify
component positions(Fig. 29b): Green represents sparrow braces;
between green and blue denotes minor architraves; blue indicates
cushion boards; between green and red signifies major architraves
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Table 3 | Column parameters

Table 4 | Component parameters

Type Column radius (m)
Eave columns 0.28
Hypostyle columns 0.30

Fig. 27 | Section positioning schematic for longitudinal section along mid-depth
eave columns.

integrated with flat architraves; and red marks Dougong brackets. At
the architrave height plane, a transverse section point cloud was
captured and further constrained using eave column diameters.
Through Euclidean clustering, encircling—head tenon point clouds
were identified, with boundary values such as height calculated.
Component parametric values extracted from the longitudinal
section of the eave column axial plane are presented in the orange
section of Table 4.
4. Longitudinal section of the outer hypostyle column axial plane

For peripheral corridor-style building door/window components,
leveraging the pre-acquired positions of outer eave hypostyle columns and
ground level, a longitudinal section of the outer hypostyle column axial
plane was captured (Fig. 30a). Euclidean clustering was then directly applied
to cluster door/window point clouds (Fig. 30b).

Subsequently, door/window identification criteria were implemented
to distinguish doors from windows, compute boundary values, and derive
positional parameters. Component parametric values extracted from the
outer hypostyle column axial plane longitudinal section are presented in the
blue rows of Table 4.

Component individualization

Profile positions were initially determined based on timber structural con-
nection patterns and the inherent symmetry of historic buildings. For each
profile, enhanced Euclidean clustering was employed to extract individual
component segmentation parameters. Table 4 presents the parametric
values of columns, beams, and architraves obtained following bottom-to-
top and interior-to-exterior sequence principles. To standardize component
parameters, vertical dimensions are defined as height, longer edges as length,
and shorter edges as thickness.

Certain parameter values were approximated using column diameters
or bay dimensions (e.g., in traditional Chinese architecture, four columns
define one bay: east-west dimension =bay width, north-south dimen-
sion = bay depth). Component segmentation was executed using a method
combining pass-through filtering and region-growing algorithms. To
enhance segmentation accuracy, a segmentation masking strategy was
implemented.

Column individualization: First, individualization segmentation of
column components was performed. Building upon the acquired centroid
coordinates and diameters of columns, extended bounding boxes were
constructed for region-growing segmentation. For instances where columns

Component Length (m) Thickness Height (m)
(width) (m)
Inner hypostyle columns 6.45
Outer hypostyle columns 6.45
Short posts 3.20
Ceiling beams and 15.52 0.56 0.47
ceiling tie beams
Penetrating tie beams 2.6 0.31 0.39
Corner beams 2.6 0.58 0.71
Eave columns 6.3
Sparrow braces Bay width or 0.56 0.75
bay depth
Minor architraves 21.41 0.31 0.41
Cushion boards 21.41 0.1 0.22
Flat architraves 21.41 3.3 0.16
Major architraves 21.41 0.46 0.56
Dougong brackets 21.41 1.64 0.58
Roof beam systems 7.08 0.48 0.57
Triple-step beams 4.99 0.48 0.54
Double-step beams 3.54 0.35 0.47
Single-step beams 2.09 0.37 0.44
Doors Bay width or 0.56 3.97
bay depth
Windows 3.79 0.56 2.94
Walls 3.79 0.71 1.1

embedded within wall point clouds exhibited fragmentation, clusters with
homogeneous geometric parameters were merged. As illustrated in Fig. 31,
Column-individualized point clouds were obtained.

Subsequently, the segmentation masking strategy was applied to sub-
tract column point clouds from the global point cloud for subsequent
component individualization, as demonstrated in Fig. 32.

Individualization of ceiling beams and ceiling tie beams: Utilizing
parameters (position, length, height, thickness) for ceiling beams and ceiling
tie beams obtained in the section “Parameter extraction” (detailed values in
Table 4), apply combined pass-through filtering and region-growing seg-
mentation to extract individualized components. Results are shown in
Fig. 33b.

Individualization of penetrating tie beams and corner beams:
Employing parameters (position, length, height, thickness) for penetrating
tie beams and corner beams acquired the section “Parameter extraction”
(specified in Table 4), implement integrated pass-through filtering and
region-growing segmentation to derive individualized components. Out-
comes are illustrated in Fig. 33c and d.

Individualization of architraves, dougong brackets, sparrow braces, and
encircling—head tenon: Using parameters (position, length, height, thick-
ness) for architraves, Dougong, sparrow braces, and encircling-head tenon
determined the section “Parameter extraction” (tabulated in Table 4), exe-
cuted combined pass-through filtering and region-growing segmentation to
generate individualized components. Visualizations are provided in
Fig. 35e-h.

Individualization of roof beams, triple-step beams, double-step beams,
and single-step beams: Applying parameters (position, length, height,
thickness) for roof beams, triple-step beams, double-step beams, and single-
step beams from the section “Parameter extraction” (refer to Table 4),
perform integrated pass-through filtering and region-growing segmenta-
tion to obtain individualized components. Results are displayed in Fig. 33i.

Individualization of doors, windows, and walls: Leveraging parameters
(position, length, height, thickness) for door/window/wall assemblies
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Fig. 28 | Partial schematic of longitudinal section
along eave column axis plane in the hall of central
harmony.
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Fig. 29 | Schematic diagram of longitudinal sec-
tion along eave column axis plane in Hall of
Central Harmony. a Partial sectional schematic.
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Fig. 30 | Euclidean clustering diagram for long-
itudinal section along outer hypostyle column axis

plane in the Hall of Central Harmony. a Partial
sectional schematic and b Euclidean clustering
diagram.
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Fig. 31 | Column individualization. a Bounding box. b Column fragmentation.
¢ Merged fragmented point clouds.

obtained in the section “Parameter extraction” (see Table 4): Construct
bounding boxes using construction-knowledge-constrained pass-through
filtering. Implement region-growing segmentation within bounding boxes.
Achieve individualized components. Segmentation outcomes are shown in
Fig. 33j-

Comparative experiments

To rigorously validate the accuracy of ancient architectural component
individualization via the proposed segmentation method, this study adopts
manually segmented component point clouds as ground truth for

Fig. 32 | Global point cloud with column points removed.

comparative experiments against classical traditional segmentation
approaches. Two experimental groups were established: one for column
component individualization and another for architrave components con-
forming to regular geometric constraints.

For column components, the column point cloud’s centroid coordi-
nates and radii were previously obtained, and a bounding box was con-
structed. Then, the RANSAC algorithm, the least-squares method, the
cylindrical mathematical model, and the region-growing algorithm used in
this paper were applied separately for point cloud segmentation within the
bounding box. As shown in Fig. 34.
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Fig. 33 | Individualized component point clouds

of the Hall of Central Harmony. a Columns,

b ceiling beams, ceiling tie beams, ¢ penetrating tie
beams, d corner beams, e sparrow braces,

f achitraves, g Dougong brackets, h head-encircling
tenon, i roof beam systems, j doors, k windows, and
1 walls.
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Fig. 34 | Column segmentation comparison using multiple methods. a Original
point cloud within the component bounding box. b RANSAC algorithm. ¢ Least-
squares method. d Cylindrical mathematical model. e Proposed method.

Validation was conducted through a multi-metric protocol: First,
manually segmented data served as ground truth for iterative closest point
(ICP) registration against outputs from the three methods, with registration
outcomes illustrated in Fig. 35. Second, bidirectional error verification was
implemented—measuring both test-to-reference and reference-to-test
point cloud distances—to eliminate coverage gaps, with accuracy metrics
documented in Table 5.

Third, the comprehensive evaluation included combined root mean
square error (synthesizing bidirectional deviations), F1-score (balancing
precision and recall), and Intersection-over-Union (IoU) spatial overlap
analysis, as quantified in Table 5.

The results demonstrate that the proposed method consistently out-
performs the RANSAC fitting, least squares, and cylindrical mathematical
model segmentation methods in terms of accuracy when compared to these
other three point cloud segmentation approaches. It can be observed from
the table that, compared to the RANSAC fitting, least squares, and cylind-
rical mathematical model segmentation methods, the proposed method
consistently achieves a lower RMSE in point cloud matching, a higher F1-
score than the other three methods, and an Intersection-over-Union (IoU)
that is 0.026, 0.038, and 0.072 higher than the other three methods,
respectively.
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For architrave components within regular geometric structures,
comparative segmentation experiments were conducted using pre-obtained
parameter values through three distinct approaches: (a) pass-through fil-
tering, (b) bounding-box-assisted Euclidean clustering, and (c) the pro-
posed bounding-box-aided region-growing algorithm (Fig. 36).

To ensure rigorous validation, manually segmented point clouds
served as ground truth for iterative closest point (ICP) registration against
outputs from these methods. Figure 37 presents registration comparisons,
while Table 6 quantifies accuracy through forward and reverse registration
metrics.

Comparative analysis reveals distinct segmentation deficiencies: The
pass-through filtering algorithm produced extraneous point clouds relative
to the ground truth data, including erroneous points like mortise-tenon joint
noise points. Concurrently, the bounding-box-assisted Euclidean clustering
method suffered from reduced point cloud density and ambiguous geo-
metric proximities, leading to the erroneous grouping of interfering points
with structural architrave points—resulting in indistinguishable clusters and
suboptimal segmentation. Our proposed methodology effectively resolved
this issue through precise spatial positioning and holistic structural analysis.
As quantitatively demonstrated in Table 6 (architrave component evaluation
metrics comparison), the approach delivers superior performance.

Experimental results demonstrate that the proposed method achieves a
root mean square error (RMSE) of 0.00928246, an F1-score of 0.993623, and
an Intersection-over-Union (IoU) of 0.98561, significantly exceeding both
alternative methods. Our approach outperformed the pass-through filtering
and bounding-box-assisted Euclidean clustering methods by IoU margins
of 0.05 and 0.02, respectively. These outcomes substantiate the method’s
superior accuracy in segmenting geometrically analogous structures and
boundaries, particularly for visually ambiguous categories.

Discussion
This study addresses the technical challenges of low efficiency and weak
semantic association in point cloud segmentation for digital preservation of

(@) (b) d (e)

Fig. 35 | Column segmentation vs. ground truth: method comparison. a Ground
truth point cloud. b RANSAC algorithm. ¢ Least-squares method. d Cylindrical
mathematical model. e Proposed method.

ancient timber structures, proposing an innovative method that integrates
traditional construction knowledge with modern point cloud processing.
Through empirical research on the Hall of Central Harmony in Beijing’s
Forbidden City as a representative case study, the following conclusions
were drawn:

1. A cross-section determination method for heritage segmentation
parameters based on historical construction techniques and structural
joinery constraints was established.

2. A parameter extraction framework for heritage component segmen-
tation was developed through the fusion of spatial geometric features
and historical architectural knowledge.

3. A component individualization algorithm combining pass-through
filtering with region-growing methods was constructed for scanning
point clouds of wooden members.

Leveraging traditional timber joining principles for cross-section
determination and acquisition, our whole-to-local processing strategy
obtains parameters through Euclidean clustering and semantically con-
strained analysis of sliced point cloud data from structural subsections.
Component individualization employs a dual algorithm of pass-through
filtering and region growing, implementing sequential masking of extracted
components to prevent redundant segmentation. After extracting target
component point clouds from the global dataset during individualization,
the corresponding subsets are systematically masked in the original point
cloud. This critical workflow prevents segmentation errors caused by data
overlap while enhancing individualization accuracy.

By transforming historical construction knowledge into computable
semantic rules, our algorithm simultaneously determines component types
during geometric feature analysis, establishing bidirectional mapping
between 3D data and architectural semantics. This approach not only
provides a reliable technical pathway for heritage BIM reconstruction, but
also enables deformation parameters calculation from individualized
components—delivering crucial references for preventive conservation and
restoration. The knowledge-fused data processing methodology demon-
strates significant reference value for digital preservation in architectural
and cultural heritage.

Although this method demonstrates high-precision advantages in
processing timber-frame architecture with clear construction rules, its
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Fig. 36 | Tie beam segmentation comparison using multiple methods. a Pass-
through filtering. b Bounding box plus Euclidean clustering. ¢ Proposed method
(Bounding box + Region-growing).

Table 5 | Column Segmentation Comparison Results

Point cloud count Forward registration (%) Reverse registration (%) RMSE F1-Score loU
RANSAC algorithm 18,622 99.8013 99.8254 0.0105927 0.998133 0.95019
Least-squares method 16,732 99.8327 99.341 0.00996908 0.995862 0.939324
Cylindrical mathematical model 16,078 99.9502 94.5255 0.0113074 0.971622 0.90469
Proposed method 17,373 99.9194 99.8254 0.00944171 0.998723 0.976926
Ground truth 17,755
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Fig. 37 | Tie beam segmentation vs. ground truth: method comparison. a Ground
truth point cloud. b Pass-through filtering. ¢ Bounding boxplus Euclidean clustering.
d Proposed method (Bounding box + Region-growing).

Table 6 | Tie beam segmentation comparison results

Point Forward Reverse RMSE F1- loU
cloud registration  registration Score
count (%) (%)
Pass-through 108,277 97.1684 99.8175 0.0101807 0.984751 0.93775
filtering
Bounding box 104,555 99.1775 99.369 0.0099807 0.992731 0.96252
plus Euclidean
clustering
Proposed 101,637  99.4028 99.3219 0.0092825 0.993623 0.98561
method
Ground truth 101,898

limitations, generalizability, and future development potential also deserve
in-depth discussion. The core limitation of the current method lies in its
dependence on specific domain knowledge; its successful application is
premised on the existence of a systemized set of construction rules that can
be computationally translated. However, this core idea of “construction
knowledge-driven segmentation” is highly portable. For example, for
timber-frame architecture from different cultural backgrounds, such as the
Japanese Dougong system and the Chinese Dougong, while differing in
modulus and assembly logic, they likewise follow a set of rigorous rules. By
encoding and parameterizing these specific rules, this method can be
adapted to the corresponding architectural systems. Therefore, this method
is applicable to any architectural type that possesses a codified or uncodified,
yet systemized, construction “grammar”.

To overcome current limitations and expand the depth and breadth of
this method’s application, future research will proceed in the following
directions:

1. Multi-modal data fusion and refined segmentation: A key future
direction is the deep fusion of this study’s knowledge-driven method
with multi-modal data (such as high-resolution imagery, hyperspec-
tral, or thermal infrared data). This strategy will not only enhance
segmentation robustness by fusing information like texture and
material, but more importantly, it will associate geometric information
with physical material information (such as paint finishes, decorative
paintings, or deterioration levels). This will endow HBIM with richer
semantic content and provide comprehensive data support for
deterioration assessment and conservation/restoration.

2. Deepening economic valuation applications: In the practical manage-
ment of heritage conservation, precise cost control is crucial. By
achieving component-level individualization, this method can deepen
macroscopic asset valuation down to microscopic cost accounting.
Future work will focus on achieving high-precision estimation of
conservation project budgets, providing powerful decision support for
the cost-benefit analysis of heritage management.

3. Enhancing scalability and automation: This study, using the Hall of
Central Harmony as a case study, successfully verified the

segmentation effectiveness of the method combining construction
knowledge and point cloud algorithms on major components.
However, the method’s deeper potential lies in its ability to segment
components that remain unsegmented. For instance, when facing
morphologically complex components, such as the Guazhu (melon-
shaped short posts) in the hip roof of the Hall of Supreme Harmony,
purely geometric point cloud processing methods might fail. But
based on the construction logic this method relies on, such as the
Doukou modular system of Qing-style architecture, the key
parameters of these components (like the Guazhu height) can be
precisely calculated through their proportional relationship with the
Doukou. This eloquently demonstrates that geometric segmentation
and construction knowledge reasoning are two complementary
paths—two sides of the same coin—for component individualiza-
tion. Therefore, future research will focus on constructing a
formalized knowledge base of ancient architectural construction
(such as an architectural ontology or knowledge graph). By
establishing such a knowledge system, the algorithm can auto-
matically query and invoke corresponding segmentation rules and
parameters based on the building type, thereby significantly
enhancing the automation level and scalability of the processing
workflow and laying a foundation for intelligent, regional-level
heritage monitoring and management.

Data availability
All data generated or analyzed during this study are included in this pub-
lished article.
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