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style-fused transformer for mural image
inpainting
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Digital restoration of ancient murals is crucial for preserving cultural heritage. However, existing
methods often suffer from semantic distortion and stylistic inconsistencies when repairing large
damaged areas. This paper proposes M3SFormer, an innovative restoration framework. Built on an
enhanced P-VQVAE module, it employs continuous feature modeling without quantization to retain
details. A new Semantic-Style Consistency Module (SSCM) integrates regional semantics with multi-
scale style features, ensuring coherent outputs. Furthermore, the Flow-Guided Refinement Module
(FGRM) reconstructs key textures throughnetworkguidance, improvingvisual quality. Experiments on
multiple benchmarks show that M3SFormer surpasses mainstream methods across all metrics, with
significant gains in PSNR, SSIM, and LPIPS. It also excels in reconstructing complex structures and
preserving styles under high mask coverage, offering a reliable solution for high-quality digital mural
preservation. The dataset and code are available at: https://github.com/LPDLG/M3SFormer

Ancient murals stand as vital material cultural heritage of Chinese civili-
zation. They not only trace the developmental trajectory of ancient Chinese
art but also bear rich historical, religious, and socio-cultural information1.
These murals demonstrate exceptional artistic mastery in their composi-
tional forms, color applications, and expressive techniques. Their visual
language reflects the esthetic ideals and philosophical concepts of specific
historical periods, holding immense historical and artistic value2. However,
due to the long-term effects of natural weathering, human damage, and
other factors, many murals have suffered severe deterioration, including
pigment flaking, structural fractures, and blurred imagery. This not only
results in the loss of visual information but also undermines the original
cultural expression and historical authenticity of the murals, necessitating
urgent effective inpainting and digital preservation through modern tech-
nological means3.

With the continuous advancement of deep learning in the field of
computer vision, image inpainting techniques have become one of the
key supporting tools for the digital preservation of murals4. Early
methods based on convolutional neural networks (CNNs), such as
EdgeConnect5, relied on local receptive fields to process missing regions
in images. However, when dealing with large-area defects, these
approaches often produced blurry or structurally discontinuous results.

Some image processing ideas introduced in lightweight CNN
architectures6–8, as well as concepts from CNNs designed for object
detection and classification9–11, have also provided inspirational technical
support for mural restoration. Furthermore, the application of light-
weight object detection methods to mural images12 has shown positive
implications for the inpainting task. With the introduction of generative
adversarial networks (GANs), certain progress has been made in texture
generation for image inpainting. Nevertheless, these methods still face
challenges in ensuring the authenticity and historical accuracy of the
restored results.

Overall, existing methods face numerous challenges when addressing
mural restoration tasks. Mural images typically feature complex structures
and distinct stylistic characteristics, making it difficult for traditional
restoration methods to simultaneously meet the high demands for detail
fidelity and structural consistency.

• Traditional methods based on CNNs perform well in texture filling
and local structure reconstruction. However, due to their limited receptive
fields, theyoften struggle tomodel long-range dependencies. This limitation
is particularly evident when handling large-scale missing areas or complex
semantic scenes, where issues such as semanticmisalignment and structural
discontinuities frequently arise.
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• Meanwhile, most methods rely on discrete quantization strategies
during image encoding. While this compression mechanism helps reduce
computational complexity, it inevitably leads to the loss of high-frequency
information, thereby weakening the ability to restore intricate brushstroke
details. On the other hand, current approaches generally exhibit weak
structural guidance in the inpainting process, lacking effective modeling of
local detail variation trends.

• Moreover, stylistic consistency, a critical yet often overlooked
dimension inmural inpainting, is frequently neglected due to the absence of
stylistic constraints. This leads to inconsistencies in color and other aspects
between inpainting areas and the original image, thereby compromising the
overall visual unity.

• Finally, stylistic authenticity and structural accuracy are fundamental
requirements for mural restoration. Any structural reconstruction that fails
to harmonize with the surrounding environment or stylistic reproduction
that lacks authenticity will result in severe visual discord between the
restoredwork and theoriginalmural, thereby causing irreversible damage to
its overall historical and artistic value.

To address the aforementioned challenges, we propose M3SFormer,
Multi-Stage Semantic and Style-Fused Transformer for Mural Image
Inpainting. The framework employs a coarse-to-finemulti-stage inpainting
workflow and introduces a guidancemechanismbasedonfine-grainedflow
field prediction. By estimating local structural transformation trends, it
directs the network to focus on critical detail regions, achieving simulta-
neous enhancement of semantic consistency and structural stability. The
main contributions of this work are as follows:

•We propose the Global Structure Reasoning Module (GSRF), which
first introduces a continuous feature modeling strategy. Abandoning tra-
ditional discrete quantization schemes, it employs an improved P-VQVAE
encoder to perform quantization-free modeling of images. This approach
preserves richer detail features and texture information, thereby enhancing
the inpainting quality of high-frequency structures.

• We propose the Semantic-Stylistic Consistency Module (SSCM),
which leverages regional semantic information from the SMTsnetwork and
multi-level perceptual style features extracted by the VGG network. This
module is jointly optimized through guided loss andGrammatrix style loss.
To further enhance the stylistic alignment between the repaired region and
the original image, we integrated dual prior information from semantic
segmentation and style matching.

• We propose the Flow-Guided Refinement Module (FGRM), which
employs a flow-regularized dynamic optimization framework. Bymodeling
the refinement process as a continuous state evolution system, it enables
fine-grained adjustments to refinement outcomes.

M3SFormer aims to achieve structural precision, semantic clarity, and
stylistic consistency through comprehensive optimization across the entire
workflow, from feature modeling and structural guidance to the construc-
tion of multi-dimensional loss functions. Experimental validation demon-
strates that this method outperforms current mainstream inpainting
algorithms across multiple datasets, exhibiting particularly significant
advantages in restoring intricate details within complex regions and pre-
serving artistic styles. It provides a more robust and scalable technical
approach for the digital inpainting of ancient murals.

• Transformer-based Image inpainting
In recent years, deep learning has gained significant traction in image

inpainting. The Transformer architecture, with its robust capability for
modeling long-range dependencies, has achieved breakthrough progress in
image inpainting tasks. Vision Transformers (ViTs) effectively extract
global information by processing images in chunks. However, standard
ViTs face computational complexity that scales quadratically with image
size when handling high-resolution images. To address this, Swin Trans-
formers strike a balance between global modeling capabilities and compu-
tational efficiency by introducing a hierarchical window attention
mechanism.

However, existing Transformer-based restoration methods still face
numerous challenges inmural scenarios, particularly exhibiting suboptimal

performance in detail recovery and style fidelity. Although autoregressive
models like VQ-Transformer13 have made progress in image generation
quality, their feature discretization and quantization processes are prone to
high-frequency information loss, thereby weakening their ability to express
subtle characteristics such asmural textures and brushstrokes. On the other
hand, methods like IM-CTSDG14 enhance pigment texture restoration
through multi-scale contextual feature fusion. However, their backbone
networks remain convolutional-based, struggling to model long-range
dependencies. Consequently, when handling large-scale structural gaps or
misalignments common in murals, they often produce semantic and geo-
metric inconsistencies between restored regions and surrounding struc-
tures, leading to visual disharmony. Furthermore, color transitions between
structural regions in murals are often more pronounced than in natural
images, amplifying the issues caused by structural inconsistencies. To
address these challenges, this study adopts an improved UQ-Transformer
architecture15, which introduces continuous feature representations to
mitigate quantization information loss. Combined with a multi-token
sampling strategy to enhance inference efficiency, this approach achieves a
better balance between overall structural consistency and local detail
restoration quality.

Additionally, PUT incorporates an Attention State Space Module
(ASSM)16, when combined with a semantic normalization mechanism,
effectively models repetitive patterns and large-scale structures within
murals. This enhances structural continuity and semantic consistency. It
demonstrates superior performance compared to traditional convolutional
models, particularly in reconstructing complex materials and regional
boundaries17.

•Multi-stage inpainting
In recent years, image inpainting methods based on diffusion models

have demonstrated excellent generation quality, particularly in complex
damage scenarios. The RePaint model18 generates plausible inpainting
content through progressive denoising. However, such methods typically
require extensive iterative computations, resulting in low inference effi-
ciency. To enhance inpainting efficiency and effectiveness, Rectified Flow19

introduces an ordinary differential equation (ODE) optimization path. This
approach significantly improves computational efficiency while maintain-
ing inpainting quality20.

The multi-stage mechanism was also adopted in Efficient
Diffusion21, which significantly reduced the number of iterations through
residual transfer, thereby achieving a better trade-off between repair
accuracy and efficiency. Furthermore, the study enhanced the mechan-
ism’s information transfer during the repair process by introducing an
adaptive loss function and dynamic weight adjustment based on
semantic labels22.

However, existing methods often suffer from flaws due to excessive
hallucination: the restored area may appear structurally incongruous with
its surroundings, or when handling abrupt color changes, it may generate
unnatural smooth transitions instead of preserving the necessary visual
contrast.

Overall, multi-stage restorationmethods excel at handling imageswith
large-scale defects and complex structures, such as murals. Their core
strength lies in the progressive restoration process from structure to texture.
However, existing approaches still face limitations. To address this, we
incorporate the open-set semantic segmentation capability of
Mask2Former23, enabling it to more flexibly identify and process special
elementswithinmurals. This significantly enhances themodel’s adaptability
to complex styles and content.

• Style consistency inpainting
Maintaining stylistic consistency is crucial in mural inpainting. Exist-

ing style preservation methods predominantly rely on Gram matrix-based
style loss functions,which struggle to capture local variations indetailwithin
murals, particularlywhendifferentmaterials are used across distinct areas of
the artwork.

Specifically, by combining Mask2Former23 semantic guidance cap-
ability with style features extracted by the VGG network, we can
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independently model style within different semantic regions, ensuring
stylistic consistency and coherence of local features.

Meanwhile,24 emphasizes the incorporation of style distribution
learning in mural inpainting to enhance coherence between areas of dif-
ferentmaterials. Our semantic grouping style lossmethod partitions images
based onMask2Former23 outputs and calculates independent Grammatrix
differences for each region, thereby achieving more targeted style repre-
sentation. Some studies25 have also attempted to couple style preservation
with the inpaintingworkflow into a closed-loop system, such as by applying
style residual feedback at each generation step.

Methods
Ancient murals, with their diverse styles, constitute a vital component of
cultural heritage. Their preservation and inpainting hold significant
importance for cultural continuity. We propose an incremental mural
inpainting framework that progressively recovers the original appearance of
damaged murals through multi-stage, meticulous treatment.

First, we designed the Global Structural Reasoning Module (GSRF),
which effectively models long-range dependencies in images by incor-
porating continuous feature encoding and self-attention mechanisms,
thereby avoiding information loss issues in global inpainting that plague
traditional methods. Second, we introduced the semantic stylistic con-
sistency module (SSCM). This module employs a semantic mapping
transformer (SMT) and a hierarchical semantic-aware style loss to ensure
inpainting results maintain high consistency with the original mural in
both semantic structure and artistic style. Finally, we developed the
FGRM. This module employs a flow-regularized dynamic optimization
framework, modeling the inpainting process as a continuous state evo-
lution system. Through iterative optimization, it progressively enhances
inpainting quality. This approach not only effectively handles murals
with varying degrees of damage but also preserves the characteristics of
different artistic styles (Fig. 1).

Overall structure
The mural inpainting framework proposed in this study effectively
enhances inpainting outcomes through the synergistic interaction of mul-
tiple modules. As illustrated in Fig. 2.

We demonstrate the complete inpainting workflow of M3SFormer,
featuring a hierarchical organization and information exchange among key
components, including feature extraction, semantic understanding, style
constraints, and flow optimization. Ensuring efficient execution of
inpainting tasks across multiple levels.

GSRFModule is the core component of the global structural reasoning
module, the AQ-Transformer module employs continuous feature encod-
ing and self-attention mechanisms to effectively model long-range depen-
dencies within images. Through an enhanced attention mechanism and
dynamic position encoding, this module avoids the information loss issues
inherent in traditional methods during global inpainting, providing high-
quality feature representations for subsequent processing stages.

SSCM Module integrates semantic segmentation with style matching
mechanisms, guiding inpainting through the extraction of high-level
semantic features. Its hierarchical semantic awareness mechanism ensures
precise recovery of style characteristics across distinct semantic regions. It
comprises the SLSM module and SMT module group.

SLCMModule is a multi-level feature extraction scheme based on the
VGG network precisely controls the artistic style consistency of the
inpainting area. This module receives semantic segmentation results and
image features, calculates hierarchical Gram matrices, and optimizes the
semantic-aware style loss to ensure the inpainting area maintains high
consistency with the original mural in artistic characteristics such as
brushstrokes and color.

SMTModule Group consists of three SMTs that enhance the semantic
perception capabilities through a parallel semantic feature extraction
mechanism. Each SMTmodule independently processes input features and
outputs semantic information, ultimately fusing to generate precise

semantic segmentation maps. These maps provide reliable semantic gui-
dance for subsequent style constraint and flow optimization tasks.

FGRM Module employs a flow-regularized dynamic optimization
framework, refining inpainting outcomes by modeling the inpainting pro-
cess as a continuous state evolution system. This module progressively
enhances inpainting quality through iterative optimization guided by
semantic information, ensuring high precision and fidelity throughout the
inpainting process.

Global structure reasoning module
The global structural reasoningmodule (GSRF) successfully achieves global
structural modeling of images through image block feature extraction, self-
attention mechanisms, global dependency modeling, and the introduction
of positional encoding. This module not only preserves local image features
but also enhances the model perception of global structure through tech-
niques like long-range dependency modeling and positional encoding,
providing a solid foundation for subsequent inpainting modules. Through
multi-head attention mechanisms and meticulous spatial information
modeling, theGSRFmodule effectively captures complex structural features
within images, thereby improving the accuracy and artistic quality of
inpainting images. Figure 3 shows the UQ-Transformer before improve-
ment and the improved AQ-Transformer.

During mural inpainting, global structural modeling is crucial for
ensuring the inpainting results preserve the original image information. To
overcome the limitations of traditional methods in local inpainting, this
study employs a Transformer-based spatial position encoding approach.
This method utilizes a multi-head self-attention mechanism to effectively
model long-range dependencies within the image, thereby preventing
information loss and achieving accurate inpainting of global information.
To assist the model in understanding the relative spatial positions of image
blocks, we introduce a two-dimensional sine position encoding.

Image block feature extraction. To capture global features of an image,
we partition the input image X 2 RH ×W × 3 into multiple image patches
pi 2 Rr × r × 3 of size r× r × 3. Each patch undergoes a linear transformation
tomap it into a high-dimensional feature space. The feature vector Fi 2 RD

for each block is computed as follows:

Fi ¼
Xr2�3

k¼1

Wp;k � pi;k þ bp ¼
Xr2�3

k¼1

Wp;k � vecðpiÞ
� �

k þ bp ð1Þ

whereWp 2 RD× ðr2�3Þ is theweightmatrix for the linear transformation,bp
is the bias term, and vec(pi) denotes the vectorization operation applied to
the image patch pi.

In this manner, features from all image patches are combined into a
featurematrix F 2 RN ×D, whereN is the total number of image patches,D
= 768 is the feature dimension, and r = 16 is the patch size.

This feature extraction process not only preserves local details but also
provides rich feature information for subsequent global modeling and
inpainting tasks. This approach ensures that each local region of the input
image is transformed into a highly expressive feature vector, enabling effi-
cient information exchange and fusion through the self-attention
mechanism in subsequent stages.

To capture global dependencies between image blocks, we introduce a
self-attention mechanism. Given an input feature matrix F 2 RN ×D, we
employ a query matrix Q 2 RN ×D, key matrix K 2 RN ×D, and value
matrixV 2 RN ×D. The output featurematrix is obtained throughweighted
summation:

Fo ¼ softmax
Q � KT

ffiffiffiffi
D

p
� �

� V ð2Þ

This process calculates weights through query-key similarity and
performs weighted aggregation of numerical vectors, thereby effectively
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modeling global relationships between image blocks and enhancing
context-aware capabilities during the inpainting process.

The multi-head attention mechanism enables the model to learn fea-
tures in parallel acrossmultiple subspaces, thereby better capturing different
dependencies and details within images. Using the multi-head attention
mechanism, the output feature representation is:

Ft ¼ ConcatðF1; F2; . . . ; FhÞ �WO ð3Þ

Among these, WO 2 RhDv ×D is the output weight matrix, Fi is the
output of each attention head, h = 12 is the number of heads, and Dv is the
output dimension of each head.

Spatial position encoding. To help the model understand the relative
spatial positions of image patches, we introduce a two-dimensional sine
position encoding. This encoding incorporates spatial information into the
model by encoding the positional indices of image patches, thereby
enhancing the model’s understanding of spatial structures. The formula for
the two-dimensional sine position encoding is as follows:

Pi;j;2d ¼ sin
i

100002d=D

� �
ð4Þ

Pi;j;2dþ1 ¼ cos
j

100002d=D

� �
ð5Þ

whereD denotes the feature dimension, while i and j represent the row and
column position indices of the image block within the image, respectively.

Position encoding is added to the input features to ensure that spatial
location information is preserved.

This two-dimensional position encoding method aligns with the
standard practice in Vision Transformers (ViT). By controlling wavelength
decay 100002d/D, it endows encodings at different positions with distinct
frequency characteristics, thereby enabling the model to better capture
spatial information.

Semantic-stylistic consistency module
To ensure inpainting results maintain high consistency with the original
mural in both semantic structure and artistic style, we propose the SSCM.
This module serves a dual guiding role within the inpainting framework:
on one hand, it provides semantic prior information to the subsequent
FGRM, guiding structural generation during inpainting. On the other
hand, it employs a hierarchical semantic perception mechanism to
ensure precise recovery of stylistic features across different semantic
regions.

Semantic Segmentation Guidance. In image inpainting tasks,
accurate semantic understanding is crucial for ensuring the plausi-
bility of inpainting results. We extract high-level semantic features
through a set of parallel SMTs. Each SMT module consists of a multi-
head self-attention mechanism and a feedforward network, which
generate precise semantic vectors through deep processing of input
features.

Finally, the softmax fusion yields a semantic label matrix S 2 RN ×M ,
whereNdenotes thenumber of imagepatches andM represents thenumber
of semantic categories. The semantic-guided feature reconstruction process

(a1)                                               (a2)                                            (b1)                                              (b2)

                                              (c)                                                                                                     (d)

Fig. 1 | Illustration of the damagedmurals and landscape paintings. a1, a2 show pre-inpainting and AI-inpainting ink-wash landscapes by modern artistDaiqiuWu. b1,
b2 depict a colored landscape with figures by Ming Dynasty artist Hong Yang. c, d display genuinely damaged, uninpainting murals.
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is represented as:

Fguide ¼
XN

i¼1

Si;j � Fopt;i ð6Þ

This semantic information serves a dual purpose: First, it provides struc-
tured prior knowledge to the FGRMmodule, guiding the flow optimization
process through the semantic mask Mc to evolve within specific semantic
regions, ensuring the inpainting process adheres to semantic constraints.
Second, it offers grouping criteria for style loss computation, enabling
independent style matching across different semantic regions. The

semantic segmentation loss function is defined as:

Lsem ¼ �
XC

c¼1

yc logðpcÞ ð7Þ

This loss ensures the network can accurately identify various semantic
regions, laying the foundation for subsequent semantic-guided inpainting.

SLCM. Based on semantic segmentation results, we propose a hier-
archical semantic-aware style matching mechanism. This mechanism
employs a pre-trained VGG19 network as the feature extractor, extracting
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feature representations at three levels: {relu1_2, relu2_2, relu3_3}. For each
semantic category c, we first extract the feature map of the corresponding
region using the semantic maskMc:

Fcout ¼ Mc � Fout ð8Þ

Fcgt ¼ Mc � Fgt ð9Þ

Then compute theGrammatrix for each semantic region at different layers:

Gc
l ðFoutÞ ¼ Fc;lout � ðFc;loutÞ

> ð10Þ

Gc
l ðFgtÞ ¼ Fc;lgt � ðFc;lgt Þ

> ð11Þ

The layered semantic-aware style loss is ultimately defined as:

Lstyle ¼
XC

c¼1

X

l2L
λl Gc

l ðFoutÞ � Gc
l ðFgtÞ

���
���
2

F
ð12Þ

whereL = {relu1_2, relu2_2, relu3_3} denotes the selected feature layer set,
and λl represents the layer weight coefficient. This design ensures that dif-
ferent semantic regions, such as facial features, clothing textures, and
background decorations, can undergo independent style matching, thereby
avoiding feature smoothing issues that might arise from global style loss.

Flow-guided refinement module
Traditional one-shot forward generation methods often struggle with
complex structural damage and semantic inconsistencies. To address this,
we propose a flow-regularized progressive optimization framework that
models the inpainting process as a continuous state evolution system. The
core idea is to gradually evolve the initial inpainting result toward the final
output along a semantically guided optimization path by learning a para-
meterized velocity field.

Specifically, given the initial repair result X0 generated by the PUT
network and the target image X1, we construct a continuous time series
fXtgt2½0;1�, whose evolution is described by the following ODE:

dXt

dt
¼ vθðXt ; tjMÞ ð13Þ

where vθ denotes the learnable velocity field network, andM represents the
semantic guidance information provided by Mask2Former. The velocity
field network adopts a U-Net architecture, with its input being the
concatenation of the current state Xt and semantic feature maps, and its
output being a three-dimensional flow field.

In terms of implementation details, we employ the Euler method with
fixed step size for numerical solution:

XtþΔt ¼ Xt þ Δt � vθðXt ; tjMÞ ð14Þ

The step size Δt is set to 0.1, with a total of 10 iterations performed. This
design ensures repair quality while keeping computational overhead within
acceptable limits. Notably, this framework is fully decoupled from the style
constraint module to be introduced later. This modular design enables
independent optimization and upgrades of each component.

Loss function
This loss function design embodies tight coupling between modules:
Lsem provides regional guidance for style matching while imposing
structural constraints for flow optimization. The style loss Lstyle
ensures artistic authenticity in the inpainting results. and the flow
optimization loss Lflow performs the final refinement under dual
constraints of semantics and style.

Through this collaborative optimization mechanism, our frame-
workmaintains semantic plausibility and stylistic consistency in repair
results even under complex damage conditions. Based on the afore-
mentioned module design, we constructed a multi-level total loss
function:

Ltotal ¼ Lflow þ λ1Lsem þ λ2Lstyle ð15Þ

where Lflow is the flow optimization loss, ensuring distribution align-
ment during the inpainting process. Lsem is the semantic segmentation
loss, guaranteeing semantic consistency. Lstyle is the hierarchical,
semantic-aware style loss, maintaining artistic style consistency.
Hyperparameters λ1 and λ2 are used to balance the contribution of
each loss term.

Results
Datasets
We utilize two datasets, MuralVerse-S andMaskCLP-S, in the experiments
to assess the effectiveness of the proposed method.

We propose a dataset MuralVerse-S of murals compiled from
publicly available images across various regions of China. It comprises
1396 extended and cropped images of Dunhuang murals, 2335 images of
Gansu murals, 2950 images of Hebei murals, and 1482 images of Inner
Mongolia murals, as illustrated in Fig. 4. All images are cropped to a
resolution of 256 × 256 and divided into training, validation, and test sets
in a ratio of 8:1:1.

We extractmasks fromauthentic damage regions in theMaskCLP and
MuralVerse datasets to simulate various damage patterns, such as cracks
and blocky detachments. This approach introduces novel and realistic
challenges to the field of image restoration.

The dataset MaskCLP-S, collected from publicly available online
sources, comprises 8273 images of Chinese landscape paintings (as
shown in Fig. 4), encompassing diverse artists and artistic styles.
Within the dataset, 7446 images were used for training and 827 for
testing, with all images uniformly preprocessed to a resolution of 256 ×
256 pixels.

Implementation details
The experiments were conducted on a platform equipped with an
NVIDIAGeForce RTX 3090 graphics card. Model training employed a
stochastic gradient descent optimizer with an initial learning rate of 1 ×
10−4 and a step size decay strategy. Considering the characteristics of
different modules, the learning rate for the Global Structure Reasoning
Module was set to 3 × 10−5, the learning rate for the Semantic Stylistic
Consistency Module was set to 5 × 10−4, and the learning rate for the
FGRM was set to 5 × 10−4. The batch size is set to 8, and the total
number of training epochs is 400.

During the training phase, all input images are uniformly resized
to a resolution of 256 × 256. The hyperparameters in the loss function
are set as follows: semantic loss weight λ1 = 0.5, style loss weight λ2 =
0.2. The ODE solution in the FGRMmodule employs the Euler method
with a time step Δt = 0.1 and a total of 100 iterations.

Evaluation metrics
We follow the most common evaluation settings in image inpainting tasks,
utilizing peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM)26, and learned perceptual image patch similarity (LPIPS)27 to assess
the quality of image inpainting. Additionally, we employ image generation
speed and the number of parameters as evaluation metrics for network
performance, which intuitively reflect the model’s complexity and
execution speed.

Baselines
To demonstrate the effectiveness of our model, we selected seven repre-
sentative baselines categorized into three groups.
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CNN-based inpainting.
• CTSDG28: A coupled texture-structure decomposition network

implementing dual-stream inpainting through task-specific subnetworks.
•AdaIR29: An adaptive image inpainting network that handles diverse

degradations through frequency-domain feature modulation and learnable
degradation adaptation mechanisms.

• EdgeConnect5: A two-stage adversarial framework first reconstruct-
ing edge structures through semantic boundary detection, followed by
texture completion guided by edge constraints.

• RFR30: A progressive inpainting framework employing iterative
refinement with cascaded recurrent feedback modules.

Transformer-based inpainting.
• PromptIR31: A plug-and-play image inpainting framework enabling

parameter-efficient integration with existing network architectures through
prompt learning.

Diffusion-based inpainting.
• Strdiffusion32: A lightweight diffusion sampler with momentum-

based skip for fast, multi-scale inpainting.
• RePaint18: A diffusion inpainting method that couples denoising

sampling with mask-aware reverse SDE for structure and texture
consistency.

Comparison analysis with SOTAs on MuralVerse-S
To demonstrate the effectiveness of the proposed model, AICE, we con-
ducted qualitative and quantitative comparisons with several existing state-
of-the-art methods.

Quantitative comparison with SOTAs on MuralVerse-S
For a rigorous evaluation of our proposedM3SFormermodel, we compared
it against variousmainstream image inpaintingmodels. For each compared
model, we first fine-tuned it on our training set and then evaluated it on our
test set. We did not impose specific constraints on the training hyper-
parameters for any model; instead, all models were trained using their
original hyperparameterswithoutmodification. For thefine-tuningprocess,
all models were trained for 10,000 steps. The parameter counts and infer-
ence times of the experimentalmodels are shown in Table 1. For the test set,
we categorized masks into three groups based on their area ratio in the
image: 0.1%–10%, 10%–20%, and 20%–30%. For each image, onemaskwas
randomly selected from each category and applied to the image. The final
experimental results are presented in Table 2 and Fig. 5.

It can be observed that M3SFormer consistently outperforms com-
petitors in PSNR, not only surpassing the formidable Repaint but also
achieving a 31.677% improvement over PromptIR at 20–30% mask cov-
erage. This demonstrates our model’s ability to generate superior image
quality, standing out notably among other benchmarkmodels.M3SFormer
also demonstrates exceptional performance on SSIM, achieving a 74.047%
improvement over PromptIR31, another Transformer-based architecture, at
mask levels of 20–30%. This demonstrates that our model surpasses others
in structural similarity. Simultaneously, our approach exhibits exceptional
stability. For instance, the SSIMof the EC5model drops sharply as themask
coverage increases, with its metric at 20–30% decreasing by a full 25.080%
compared to its metric at 0.1–10%. In contrast, our method metrics at
20–30% mask coverage decrease by only 0.521% compared to those at
0.1–10% coverage, demonstrating the exceptional stability of our model. In
terms of parameter count and inference efficiency, ourmethod achieves the
second-fastest inference speed with a moderate model size. More impor-
tantly, it strikes an excellent balance between efficiency and generation

Table 1 | Model parameters and inference time

Model Params ΔT(ms)

CTSDG 52.5M 15.7

AdaIR 28.7M 68.3

EC 21.5M 7.1

RFR 31M 10.2

PromptIR 35.5M 32.6

Strdiffusion 42.7M 57665.8

RePaint 55.2M 13.6

Ours 54.1M 10

(a) (b) (c) (d) (e) (f)
Fig. 4 | Illustration of the example of dataset andmask. a Landscape Albumwith Clear Sounds by JianWang from the earlyQing dynasty, bTwelve-Panel Landscape Album
by Yan Hua from the Qing dynasty, c Landscape Album by Qipei Gao from the Qing dynasty. d–f are famous Murals.
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quality: it delivers superior output quality compared to the fastest model,
EC,while requiring significantly fewer parameters and lower computational
cost than the high-quality model RePaint.

M3SFormer also demonstrates outstanding performance on LPIPS,
achieving a 91.116% improvement over PromptIR on masks ranging from
20 to 30%. This represents a significant advancement, indicating ourmodel
outperforms comparable architectures in enhancing perceptual similarity.

In summary, these experimental results demonstrate the validity and
efficiency of our model, which excels across all metrics.

Qualitative analysis with SOTAs on MuralVerse-S
The comparative experimental results are shown in Fig. 6. Overall, the
proposed model demonstrates comprehensively superior performance at
the visual level. The inpainting results it generates are not only more
structurally complete but also exhibit texture details that better align with
the contextual semantics, thus more closely matching human visual per-
ception habits and significantly outperforming other compared models in
terms of overall esthetic effect.

Figure 6a1 shows an enlarged view of the red box region in Fig. 6a. It
can be clearly observed that the results generated by EC5 and PromptIR31

suffer from overall blurring and structural distortion, particularly with
broken edges, leading to poor inpainting quality. Although RFR30 and
StrDiffusion32 manage to preserve the general structure, they exhibit
unnatural clusters of black pixel artifacts in local areas, severely compro-
mising the perceptual detail and authenticity. In contrast, the results

generated by CTSDG28, RePaint18, and ourmethod are visually closer to the
original image. Among these, our model not only excels in detail com-
pleteness but also performs best in terms of overall visual consistency.

Figure 6b1 provides a locally magnified view of the red box region in
Fig. 6b. The issuesobservedhere are largely consistentwith thosementioned
above: the areas inpainted by EC and PromptIR31 show noticeable color
discrepancies compared to the surrounding original regions, indicating
restoration inconsistency due to insufficient semantic understanding. RFR30

and StrDiffusion32 again exhibit issues with black pixel noise, further
degrading the overall image quality. Our model effectively overcomes these
typical drawbacks, with the inpainted regions demonstrating more natural
and harmonious structural connections and color transitions with the
surrounding content.

In summary, across diverse test scenarios, our model consistently
exhibits comprehensive inpainting capabilities superior to other main-
stream methods. Particularly in challenging areas where other models
commonly suffer from blurring, structural breaks, noise interference, or
color distortion, our model—leveraging its multi-stage fusion mechanism
and style-aware design—still generates high-quality inpainting results that
are structurally reasonable, stylistically consistent, and visually stable.

Quantitative comparison with SOTAs on MaskCLP-S
To evaluate the performance across different datasets, we conducted
experiments on various types of datasets. For each dataset, we performed
fine-tuning training and testing. The results are shown in Table 3.

Table 2 | Comparison results of M3SFormer on MuralVerse-S

Model Type PSNR↑ SSIM↑ LPIPS↓

0.1–10% 10–20% 20–30% 0.1–10% 10–20% 20–30% 0.1–10% 10–20% 20–30%

CTSDG28 CNN 26.449 26.113 26.016 0.782 0.774 0.771 0.271 0.275 0.278

AdaIR29 CNN 23.585 22.562 21.268 0.917 0.875 0.853 0.082 0.119 0.141

EC5 CNN 25.907 20.183 18.455 0.933 0.741 0.699 0.047 0.201 0.231

RFR30 CNN 23.496 18.571 18.617 0.891 0.654 0.648 0.122 0.311 0.302

PromptIR31 Transformer 21.164 20.675 20.393 0.555 0.554 0.551 0.393 0.391 0.394

Strdiffusion32 Diffusion 25.826 25.622 25.021 0.898 0.881 0.873 0.042 0.042 0.045

RePaint18 Diffusion 27.474 26.981 26.433 0.931 0.901 0.893 0.026 0.029 0.030

Ours Transformer 27.891 27.304 26.853 0.959 0.956 0.954 0.015 0.022 0.035

The output images of the generators are used for metrics computation. ↑Higher values are better, ↓ Lower values are better. *Optimal results are displayed in bold, while suboptimal results are underlined.

GT         MASK          CTSDG         AdaIR EC     RFR     PromptIR StrDiffusion RePaint Ours   

(a)

(a1)

(b)

(b1)

Fig. 5 | Illustration of traditional Chinese mural comparison. a, bMural and results of the corresponding comparison method. a1, b1 Enlarged view of the red area.
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It can be observed M3SFormer still leads in PSNR, outperforming its
formidable competitor Repaint18. Moreover, it achieves a 31.424%
improvement over PromptIR31, another Transformer-based architecture,
on masks ranging from 20% to 30%. This demonstrates that our model
continues to generate superior image quality even when applied to a dif-
ferent dataset. M3SFormer also demonstrates exceptional performance on
SSIM, achieving a 73.321% improvement over PromptIR31, another
Transformer-based architecture, at 20–30% mask coverage. This demon-
strates that our modelmaintains superior structural similarity performance
across diverse datasets. Additionally, our approach exhibits exceptional
stability. At 20–30% mask coverage, our metrics decline by only 0.313%
compared to those at 0.1–10% coverage, indicating outstanding consistency
across various datasets.

M3SFormer also demonstrates outstanding performance on LPIPS,
achieving a 91.326% improvement over PromptIR31, another Transformer-
based architecture, on masks ranging from 20 to 30%. This represents a
significant advancement, indicating our model outperforms comparable
architectures in enhancing perceptual similarity.

In summary, these experimental results demonstrate the general-
izability of our model.

Qualitative analysis with SOTAs on MaskCLP-S
The comparison results are shown in Fig. 6. It can be observed that the
proposedmodel demonstrates superior performance at the visual level, with
generated inpainting results more aligned with human perception and
significantly outperforming other comparison models in overall quality.

Figure 6a1 presents an enlarged view. It is evident that the results
generated by EC5 and PromptIR31 exhibit noticeable blurring and structural
distortion, resulting in poor inpainting quality. RFR30 and StrDiffusion32,
meanwhile, show localized clusters of black pixels that compromise the
perception of fine details. In contrast, the results produced by CTSDG28,
RePaint18, andourproposedmethodare visually closer to theoriginal image,
with our model demonstrating the best performance in terms of detail
preservation and visual consistency.

Figure 6b1 shows a local enlargement of the red-boxed area. The results
are similar to the previous case: the colors in the restored regions of EC5 and
PromptIR31 show noticeable discrepancies with the surrounding areas,
resulting in inconsistent inpainting. RFR30 and StrDiffusion32 also exhibit
black pixel noise issues, affecting overall image quality. The proposedmodel
effectively avoids these issues, achieving natural transitions in both structure
and color between the restored region and its surroundings.

In summary, across all test scenarios, the proposed model demon-
strates superior inpainting capabilities compared toothermethods.Notably,
even when other models produce blurred, structurally broken, or color-
distorted results, the proposed model consistently generates structurally
coherent, stylistically consistent, and visually stable inpaintings.

Visualization on celebrated traditional mural painting datasets
To validate the effectiveness in practical scenarios, we cropped images from
the Fahai Temple murals andmanually added randommasks as inpainting
targets. The inpainting results are shown in Fig. 7. The experiment
demonstrates that even under random mask interference, the proposed

Table 3 | Comparison results of M3SFormer on MaskCLP-S

Model Type PSNR↑ SSIM↑ LPIPS↓

0.1–10% 10–20% 20–30% 0.1–10% 10–20% 20–30% 0.1–10% 10–20% 20–30%

CTSDG28 CNN 26.479 26.146 26.216 0.782 0.774 0.771 0.271 0.275 0.278

EC5 CNN 25.927 20.283 18.655 0.933 0.741 0.699 0.047 0.201 0.231

RFR30 CNN 23.486 18.771 18.687 0.894 0.658 0.644 0.122 0.311 0.302

PromptIR31 Transformer 21.061 20.685 20.363 0.556 0.554 0.551 0.394 0.391 0.392

Strdiffusion32 Diffusion 25.814 25.601 24.936 0.898 0.882 0.871 0.042 0.043 0.045

RePaint18 Diffusion 27.452 26.884 26.285 0.932 0.900 0.892 0.025 0.029 0.030

Ours Transformer 27.863 27.266 26.762 0.958 0.956 0.955 0.017 0.023 0.034

The output images of the generators are used for metrics computation. ↑Higher values are better, ↓ Lower values are better. *Optimal results are displayed in bold, while suboptimal results are underlined.

GT           MASK CTSDG EC RFR   PromptIR StrDiffusion RePaint Ours   

(a)

(a1)

(b)

(b1)

Fig. 6 | Illustration of traditional Chinese painting comparison. a, b Results of landscape analysis and related comparative methods, a1, b1 Enlarged view of the red area.
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model can effectively complete mural inpainting tasks. Although minor
color differences between the restored area and its surroundings are visible
upon magnification, the model demonstrates strong inpainting capabilities
in preserving overall content structure and color harmony.

These results indicate that our method effectively understands image
semantic content and can reasonably infer the structure and color ofmissing
areas based on contextual information, showing potential for tackling such
complex inpainting tasks.

Visualization on celebrated traditional chinese painting datasets
To validate the generalization capability across diverse artistic styles, we
further selected the Thousand Miles of Rivers and Mountains scroll as a test
subject. After cropping the image and manually adding randommasks, we
applied our proposedmethod for inpainting. The results are shown inFig. 8.

Experiments demonstrate that even under randommask interference,
the model can effectively recover the content of the ancient painting.
Although minor color differences between the restored area and its sur-
roundings are visible upon magnification, the overall structural recon-
struction is accurate. Colors blend naturally with the surrounding
environment, with no noticeable visual discontinuities. This result further
demonstrates that our model can fully comprehend the rich semantic

information within images. By leveraging contextual features, it effectively
infers the reasonable structure and color distribution of missing regions,
showcasing excellent generalization and practicality.

Ablation study
To validate the contributions of each component within our framework, we
conducted ablation experiments across the following four dimensions.

Ablation study on effectiveness of components
This experiment systematically evaluated the contribution of each module
to model performance by sequentially removing the FGRM, GSRF, and
SSCM. The results are shown in Table 4.

The results indicate that removing any module leads to a decline in
image inpaintingquality. Specifically, thePSNRvaluedecreases significantly
as the masked area expands. At a masking ratio of 20–30%, removing any
module causes a PSNR drop ranging from 1% to 2.5%, with the removal of
GSRF having a relatively smaller impact on PSNR. Regarding structural
similarity, SSIM slightly decreased at smaller mask ratios 0.1–10%, but its
performance gradually improved as the mask ratio increased.

All threemodules contributed approximately a 0.15% improvement in
SSIM under large mask conditions, indicating that each module helps

(a)                                              (a1)                                              (b)           (b1)

Fig. 7 | Illustration of celebrated traditional mural painting. a, bMasking a section of the Fahai Temple murals. a1, b1 Inpainting result of a section of the Fahai Temple
murals.

(a)                                              (a1)                                               (b)                      (b1) 

Fig. 8 | Illustration of traditional celebratedChinese painting. a, bApplying amask to a section of the ThousandMiles of Rivers andMountains scroll. a1, b1The inpainting
Result of the section of the Thousand Miles of Rivers and Mountains scroll.
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enhance the structural consistency between the restored result and the
original image.

Figure 9c1–f1 further reveals that removing any module induces local
generation artifacts. As shown in the third row of Fig. 9c1–e1, an unrea-
sonable brown patch appears slightly left of the image center.

In summary, all threemodule play crucial roles in enhancing themodel
inpainting performance. GSRF strengthens the ability to capture long-range
dependencies in images, effectively preserving high-frequency details.
SSCM provides dual constraints at both semantic and stylistic levels during
inpainting. FGRM further improves visual coherence and structural
integrity through flow-guided fine-grained optimization.

Ablation Study on effectiveness of feature representation
This experiment systematically compares the impact of quantitative features
(QF) and continuous features (CF) on model performance, validating the
effectiveness of the improvedmodule. Relevant results are shown inTable 5.

The experimental results reveal that using the original quantized fea-
tures yields only a marginal improvement in PSNR, with SSIM remaining
largely unchanged. Conversely, LPIPS shows a significant decline under
larger mask ratios. Specifically, at mask ratios of 10%-20%, LPIPS improves
by 37.142%. A substantial 43.548% improvement at 20%-30% mask
coverage.

Thus, continuous features outperformquantized features in improving
perceptual quality. prioritizing image quality metrics alone leads to a sig-
nificant reduction in perceptual similarity.

Further visual comparisons in Fig. 10c1, d1 reveals that images gen-
erated using quantization features, as shown in Fig. 10c1, exhibit white
cracks, compromising visual naturalness. In contrast, as shown in Fig. 10d1,
results using continuous features exhibit reasonable filling of these cracks.
Although colors are not perfectly matched with surrounding areas, the
overall appearance is softer and more natural, aligning better with human
visual perception habits.

In summary, incorporating continuous features enables the model to
better learn deep characteristics within images, resulting in inpainting
outcomes that appearmore visually natural andgentle.This approach aligns
more closely with human expectations for perceiving image content.

Ablation study on effectiveness of step size
This experiment systematically evaluated the impact of different ODE
solution step sizes on model performance. The results are summarized in
Table 6.

Experimental results indicate that as the number of ODE steps
increases, all threemetrics—PSNR, SSIM, and LPIPS, show varying degrees
of improvement. The most significant enhancement in PSNR occurs when
the number of steps reaches 50. For mask ratios of 0.1–10%, 10–20%, and

20–30%, the PSNR gains from 20 to 50 steps were 4.063%, 2.465%, and
1.439%, respectively. This demonstrates that appropriately increasing the
ODE step count comprehensively enhances model performance. Based on
this, setting the ODE step count to 50 achieves favorable results.

Figure 11c1–e1 further illustrates that image generation quality pro-
gressively improves with increasing ODE steps. For instance, in Fig. 11c1,
color blocks appear in the facial region that clashwith the surrounding hues,
whereas in Fig. 11e1, these blocks are noticeably softened, resulting in a
more harmonious and natural overall image Fig. 12.

In summary, appropriately increasing the ODE step size positively
impacts model performance.

Ablation study on effectiveness of loss function
This experiment systematically evaluated the impact of each loss function
on model performance by sequentially removing the hierarchical style loss,
semantic segmentation loss, and both losses simultaneously. The results are
shown in Table 7.

The results indicate that removing any single loss function leads to a
decrease in PSNR, with the most significant impact observed when both
style loss and semantic segmentation loss are removed simultaneously.
Under three mask ratios, 0.1–10%, 10–20%, and 20–30%, PSNR decreased
by 8.941%, 7.053%, and 4.368%, respectively. Regarding LPIPS, while
removing the style loss yields some improvement, the other two settings
result in decreased perceptual similarity. For structural similarity, SSIM
decreases after removing any loss function, indicating that all three are
crucial for maintaining image structural consistency.

Further observation of Fig. 11c1–f1 reveals that removing any loss
function degrades generation quality. As shown in the top row of Fig. 11d1
and Fig. 11e1, white artifacts appear in the upper part of the image,
inconsistent with the surrounding areas.While retaining only partial losses,
as shown in Fig. 11c1, mitigates the white artifact issue, local brightness
inconsistencies persist in the facial region. Only when all loss functions are
fully applied, as shown in Fig. 11f1, yielding generation results that aremore
reasonable in both structure and detail.

In summary, style loss, semantic segmentation loss, and their com-
bined effect significantly impact model performance. Their synergistic
interaction effectively enhances the quality and structural consistency of
generated images. Although incorporating these losses slightly affects per-
ceptual similarity metrics, sacrificing them to pursue higher LPIPS scores
would result in a significant decline in overall visual quality. Therefore, such
a trade-off is not advisable in the overall evaluation.

Discussion on failure cases
As illustrated in Fig. 13, the failure cases indicate that our method does not
perform well in repairing relatively large areas or regions with complex
structures. For example, Fig. 13a exhibits noticeable color patches that are
inconsistent with the surrounding context, while in Fig. 13c, an object
inconsistent with the context is generated in the mouth area of the figure.
We believe these issues can be largely attributed to themodel’s hallucination
problem when processing highly uncertain regions. When sufficient sur-
rounding pixel constraints are absent, the model tends to rely on common
features from its training data for completion, which can easily lead to
factually divergent results in complex scenarios requiring high detail. A core
issue lies in the failure of the current model to leverage prompts as a pow-
erful guiding mechanism. By introducing prompt inputs—whether in the
form of textual descriptions, edge maps, or even rough user feedback—the
highly uncertain “open-loop" generation problem can be transformed into a
“closed-loop" optimization problemguided by strong priors. Such guidance
can effectively anchor the model’s generation space, mitigating hallucina-
tions at the source and ensuring structural consistency with the overall
image as well as historical credibility of the restored content. In terms of
specific strategy, prompts can be designed to influence internal modules of
the AQ-Transformer, so that the data ultimately fed into the SSCM carries
prompt information, thereby enabling controlled regulation of the final
output.

Table 4 | Ablation of structural components and training
strategies

Mask Method PSNR↑ SSIM↑ LPIPS↓

0.1–10% w/o GSRF 27.586 0.961 0.014

w/o FGRM 27.580 0.962 0.014

w/o SSCM 27.538 0.960 0.011

Ours 27.891 0.959 0.015

10–20% w/o GSRF 27.141 0.957 0.019

w/o FGRM 26.760 0.954 0.020

w/o SSCM 26.824 0.959 0.019

Ours 27.304 0.956 0.022

20–30% w/o GSRF 26.578 0.952 0.026

w/o FGRM 26.191 0.950 0.028

w/o SSCM 26.184 0.953 0.031

Ours 26.853 0.954 0.035

Optimal results are displayed in bold, while suboptimal results are underlined.
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Discussion
Our approach does not perform well in repairing large-scale missing areas
or inherently complex regions, often yielding unreasonable results. These
issues stem from multiple factors, including the absence of prompt-like
inputs in our model. Without such prompt-guided constraints, it becomes
challenging to generate visually coherent outputs in certain scenarios.

This study not only provides a scalable technical approach for the
digital inpainting of ancient murals but also offers new insights for the field
of digital preservation of cultural relics. Future work will focus on further
optimizingmodel efficiency, exploring adaptive inpaintingmechanisms for
cross-culturalmural styles, and extending this technical framework tomore
types of cultural heritage preservation scenarios.

(a)                    (b)                    (c)                    (d)                    (e)                     (f)

(a1)                   (b1)                  (c1)                   (d1)                  (e1)                  (f1)
Fig. 9 | Illustration of the Components Ablation Study. a 0.1–10%, 10–20%, 20–30% masks combined with the mural. bMask. c Removing GSRF. d Removing FGRM.
e Removing SSCM. f Ours. a1–f1 Enlarged views of the red regions.

Table 5 | Ablation of feature representation strategies

Mask Method PSNR↑ SSIM↑ LPIPS↓

0.1–10% w/ QF 27.403 0.955 0.021

w/CF 27.891 0.959 0.015

10–20% w/ QF 27.075 0.954 0.035

w/CF 27.304 0.956 0.022

20–30% w/QF 26.856 0.953 0.062

w/CF 26.853 0.954 0.035

QF denotes quantized features, while CF denotes continuous features.
Optimal results are displayed in bold, while suboptimal results are underlined.
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This study addresses key challenges in the digital inpainting of ancient
murals by proposing M3SFormer, a mural image inpainting framework
integrating multi-stage optimization strategies with a semantic-stylistic
consistency guidance mechanism. By establishing a multi-stage inpainting
workflow progressing from coarse to fine-grained processing and intro-
ducing a guidance mechanism based on refined flow field prediction, it
effectively resolves issues of semantic misalignment and structural dis-
continuity encountered by traditional methods when handling large-scale
missing areas. Experimental results demonstrate that M3SFormer exhibits

significant advantages across multiple mural image datasets, particularly in
restoring intricate details within complex regions and preserving artistic
style, achieving notable improvements over existing mainstream methods.

The core contribution of this study lies in the innovative introduction
of continuous feature modeling strategies tomural restoration, abandoning
traditional discrete quantization methods. By adopting the UQ-
Transformer component of the improved P-VQVAE, this approach pre-
serves richer detail features and texture information, significantly enhancing
the restoration quality of high-frequency structures. Simultaneously, the

Fig. 10 | Illustration of feature representation
ablation study. a Images combining masks with
mural paintings at 0.1–10%, 10–20%, and 20–30%
coverage. bMask. c w/QF. d w/CF. a1–d1 Enlarged
views, respectively.

(a)                    (b)                    (c)                    (d)

(a1)                  (b1)                  (c1)                   (d1)
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proposed SSCM model effectively resolves color and artistic style incon-
sistencies between filled regions and the original image by integrating
regional semantic information with multi-layer perceptual style features.
Furthermore, the FGRM mechanism enables fine-grained adjustments to
the filling results, ensuring structural consistency and visual coherence

Table 6 | Effectiveness of ODE step sizes in FGRM

Mask Ratio T-step PSNR↑ SSIM↑ LPIPS↓

0.1–10% 20 26.802 0.960 0.014

50 27.891 0.959 0.015

10–20% 20 26.647 0.957 0.023

50 27.304 0.956 0.022

20–30% 20 26.472 0.953 0.034

50 26.853 0.954 0.035

T-Step is 20, 50, 100, respectively
Optimal results are displayed in bold, while suboptimal results are underlined.

Fig. 11 | Illustration of step size ablation study.
a Images combining masks with wall paintings at
0.1–10%, 10–20%, and 20–30% coverage. bMask.
c ODE step = 20. d ODE step = 50. e ODE
step = 100.

(a)              (b)           (c)  (d) (e)

(a1)              (b1)                (c1)               (d1) (e1)

Table 7 | Effectiveness of loss components

Mask ratio Method PSNR↑ SSIM↑ LPIPS↓

0.1–10% w/o Style Loss 27.705 0.962 0.015

w/o Sem Loss 26.403 0.955 0.014

w/o Both Loss 25.397 0.952 0.016

Ours 27.891 0.959 0.015

10–20% w/o Style Loss 27.226 0.957 0.020

w/o Sem Loss 26.052 0.951 0.025

w/o Both Loss 25.378 0.953 0.025

Ours 27.304 0.956 0.022

20–30% w/o Style Loss 26.607 0.952 0.027

w/o Sem Loss 26.319 0.951 0.043

w/o Both Loss 25.680 0.951 0.040

Ours 26.853 0.954 0.035

Optimal results are displayed in bold, while suboptimal results are underlined.
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throughout the restoration process. Research findings indicate that by
deeply integrating deep learning technology with the requirements of cul-
tural heritage preservation, inpainting quality can be effectively enhanced,
creating newpossibilities for the permanent preservation anddissemination
of cultural heritage.

Data availability
The datasets used and analyzed during the current study are available from
the corresponding author upon reasonable request. The dataset in this study
is available at https://github.com/LPDLG/M3SFormer.

(a)           (b)        (c)             (d)           (e) (f)

(a1)             (b1)       (c1)              (d1)             (e1)           (f1)
Fig. 12 | Illustration of loss function ablation study. a 0.1–10%, 10–20%, 20–30% masks combined with murals. b Mask. c Removing style loss. d Removing sem loss.
e Removing both loss. f Ours. a1–f1 Enlarged views of the red region.

Fig. 13 | Illustration of failure cases. a, b Show the
mural before inpainting, while a1, b1 illustrate
examples of inpainting errors.

(a)                         (a1)                               (b)         (b1)
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Code availability
The code used in this study is available from the corresponding author upon
reasonable request.
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