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DCADif: decoupled conditional adaptive
time-dynamic fusion diffusion inpainting
of traditional Chinese mural paintings
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Digital inpainting of traditional Chinese murals is challenged by the difficulty of disentangling intricate
structures from unique artistic styles, often leading to artifacts. To address this, we propose DCADif, a
novel diffusion model for high-fidelity mural restoration. DCADif’s core innovation is a Decoupled
Conditional Encoder that uses parallel pathways a pre-trained CLIP for structural line art and a new
SwinStyle Encoder for stylistic features to achieve independent control. Furthermore, a Time-Adaptive
Feature Fusion (TAFF) module dynamically adjusts the influence of these features during denoising,
prioritizing structure in early stages and style in later ones, mimicking an expert’s coarse-to-fine
workflow. Evaluated on our new large-scale MuralVerse-S dataset, DCADif significantly outperforms
state-of-the-art methods across all degradation levels. It establishes a new benchmark for digital
cultural heritage preservation by effectively balancing structural accuracy with artistic authenticity.
The dataset and code are publicly available.The dataset and code are available at https://github.com/
LPDLG/DCADif.

Traditional Chinese murals, as vital carriers of Chinese civilization, hold
profound cultural significance. Thesemurals, typically found on thewalls of
temples, grottoes, and tombs, document the religious beliefs, lifestyles, and
aesthetic pursuits of ancient societies. They also embody the spiritual
heritage of the Chinese nation, a legacy spanningmillennia. However, these
invaluable artworks are susceptible to damage and deterioration due to
natural erosion and the passage of time. This situation underscores the
critical importance of their preservation and inpainting. Figure 1 is the
artworkMural from Fengguo Temple, painted by anonymous artists of the
Yuan Dynasty. The mural’s unique style and texture render manual
inpainting exceptionally challenging.

Deep learning-based image inpainting techniques now constitute a
primary approach within computer vision for recovering missing infor-
mation. They exhibit considerable promise in the digital preservation of
culturalheritage1.Unlike conventional physical inpainting, this non-invasive
approach enables high-fidelity content generation and texture reconstruc-
tion in damaged regionswhile preserving the integrity of the original artifact.
This characteristic is particularly valuable for traditional Chinese murals,
given their structural complexity, material fragility, and irreplaceability.
Moreover, this technological domain is continuously advancing. In a

seminal study, Yu et al. introduced the gated convolution method2. They
observed that standard convolutional networks fail to differentiate between
valid pixels and invalid values in damaged regions. This deficiency often
results in inpainting marred by color distortion and structural artifacts. To
overcome this limitation, they designed a learnable gating mechanism that
allows the network to selectively process features from valid areas while
disregarding corrupted ones. This innovation significantly enhanced the
model’s ability to handle large, irregularly shaped defects, producing results
with more coherent structures and smoother textural transitions.

The research focus in both academia and industry has recently shifted
towards a new paradigm: diffusion models. Prominent examples, such as
Latent Diffusion Models3 by Rombach et al. and the RePaint4 by Lugmayr
et al., have established a novel generative pathway. The core principle of this
approach is an iterative denoising process that transforms random noise
into high-quality content coherent with the surrounding image context.
Thismethod yields contentwith exceptional photorealism and detail. It also
overcomes critical issues of training instability andmode collapse,which are
inherent in Generative Adversarial Networks. These advancements estab-
lish diffusion models as the current state of the art in image generation and
inpainting.
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However, the inpainting of traditional Chinesemurals presents unique
difficulties, as they are often characterized by complex compositions and
abstract meanings. Figure 2 illustrates this with a mural from the Kizil
Grottoes in Xinjiang. The artistic style of these works is defined by an
intricate interplay of color, brushwork, and material texture. Thus, the
primary challenge is to faithfully restore original details while preserving the
distinctive artistic style. The key challenges in Chinese mural inpainting
therefore encompass the following:

A primary challenge in image inpainting is the tendency to conflate
structural reconstructionwith stylistic information from a reference image5.
This entanglement impedes the simultaneous achievement of structural
accuracy and style fidelity, thereby compromising the inpainting overall
quality and controllability.

The artistic style of traditionalChinesemurals emerges froma complex
interplay of color, brushwork, and material texture. Traditional CNN style
extractors, limited by their local receptive fields, often fail to capture these
global characteristics. Consequently, the inpainting frequently lack the
distinctive historical aesthetic andmaterial qualities of the original artwork6.

An optimal inpainting process requires a dynamic allocation of
generative focus across different denoising stages, initially prioritizing
structure before shifting to style. In contrast, existing methods typically
employ static fusion weights. This rigidity can lead to premature style
influence disrupting structural formation in early stages. Conversely, it
impedes the meticulous refinement of texture in later stages, ultimately
compromising the inpainting fidelity to the artistic integrity of the
original artwork. Similarly, in other image generation tasks such as low
light enhancement, studies have also shown that dynamic guidance is
crucial for context enrichment and detail enhancement7, further
highlighting the necessity of introducing dynamic control in mural
inpainting.

To overcome the aforementioned limitations, we propose the
Decoupled Conditional Adaptive Time dynamic Fusion Diffusion
inpainting Method (DCADif). This novel diffusion model framework is
specifically tailored for the inpainting of traditional Chinesemurals. Its core
innovation lies in the fine grained decoupling and dynamic control of a
mural structural and stylistic attributes.

Fig. 1 | Examples ofMural from Fengguo Temple, painted by anonymous artists of the YuanDynasty. These artworks are characterized by their complex compositions,
distinctive artistic style, and significant physical degradation.

Fig. 2 | The Mural is the artworkMural from the Kizil Grottoes, from the Kucha Kingdom period, created by anonymous artists. Characterized by their unique use of
color, abstract motifs, and distinct shading techniques, these murals represent an aesthetic system different from traditional Central Plains styles.
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The main contributions of this work are as follows:
We propose a Decoupled Condition Encoder that employs parallel

pathways to extract distinct representations: structural information from
line art and stylistic features from reference images. This architectural
separation facilitates independent and precise control over both attributes,
thereby providing a robust framework for high-fidelity mural inpainting.

We introduce the SwinStyle Encoder to overcome the inherent lim-
itations of traditionalmethods in characterizing the complex style ofmurals.
This component is specifically engineered to effectively capture the dis-
tinctive historical aesthetic and material qualities of the original artwork.

A Time step-based Adaptive Feature Fusion (TAFF) module is pro-
posed, which prioritizes structural accuracy during the initial stages of
denoising and later enhances the inpainting of style and texture, thereby
yielding a result that is highly faithful to the original artwork.

The physical inpainting of traditional murals is a highly specialized
scientific discipline that demands extensive expertise and technical skill
from professional conservators. This process encompasses several key
stages, including structural consolidation, surface cleaning, pigment re-
adhesion, filling of lacunae, and inpainting of lost areas. For example, sta-
bilization may involve applying specialized adhesives to consolidate flaking
pigment layers. To address lost pictorial areas while preserving historical
authenticity, conservators may employ techniques such as ‘tratteggio’
(inpainting with discernible lines) or ‘filling without painting’. However,
physical interventions are often irreversible. They also risk introducing the
conservator’s subjective style, potentially compromising the original artistic
intent. Furthermore, in cases of extensive or severe damage, the efficacy of
physical inpainting is severely limited.

Advances in digital technology have established non contact digital
inpainting as a crucial alternative and supplement to physical methods.
Initial digital techniques primarily involved the manual application of tools
like the clone stampby expert operators.While this approach avoided direct
physical intervention, it suffered from inefficiency and subjectivity, as the
outcome was highly contingent upon the artistic proficiency. These lim-
itations spurred the development of algorithms based on texture synthesis,
such as PatchMatch8, for image inpainting tasks.

Deep generative models have driven significant advancements in
image inpainting. Two primary paradigms have emerged: Generative
Adversarial Networks and DiffusionModels. GANs compared to earlier
methods, are characterized by more sophisticated architectural designs.
The LaMa model9, for instance, utilizes Fast Fourier Convolutions to
leverage global contextual information, achieving exceptional perfor-
mance on large, irregular inpainting tasks. Concurrently, Diffusion
Models have become the dominant paradigm, owing to their superior
generation quality and training stability. Large-scale, pre-trainedmodels
such as the Latent Diffusion Model (LDM)3 can be adapted for this
purpose.When fine-tuned or integratedwithmodules like ControlNet10,
they can adhere to existing structures while generating highly realistic
and diverse content. These advanced technologies offer promising
avenues for the inpainting of ancient paintings.

The iterative denoising process of diffusion models enables the gen-
eration of highly detailed and photorealistic images. To harness this gen-
erative capability for specific tasks, researchers have developed various
guidance and control techniques. PnPDiffusion11, for example, introduced a
plug andplaymethod for injecting external featuremaps to guide generation.
This approach enablesflexible control over structure andappearancewithout
necessitatingmodel retraining. Similarly, InstructPix2Pix12 demonstrated the
capacity for complex semantic modifications by enabling image editing via
natural language instructions. Such guidance techniques have found direct
applications in artistic creation and inpainting. DiffEdit13, for instance, per-
forms semantic modifications on specific image regions based on textual
descriptions, thus offering new approaches for restoring incomplete content.

Despite these significant advances in controllability, the application of
such methods to traditional Chinese murals presents considerable chal-
lenges. The profound stylistic diversity and compositional complexity of
these artworks often lead to a critical trade off. Existing models frequently

struggle to reconcile structural fidelity with stylistic consistency, resulting in
undesirable artifacts such as style drift or structural distortion.

The pursuit of more precise content control in inpainting has spurred
the integration of semantic and stylistic guidance into the generative pro-
cess. A seminal development in this domain is the Contrastive Language
Image Pre training (CLIP) model14. CLIP aligns images and text within a
shared semantic space through training on vast image-text datasets. This
alignment enables CLIP to serve as a powerful semantic guide for image
generation and editing. Blended Diffusion15, for instance, employs CLIP
guidance to perform seamless local edits within specified image regions.
Specifically for inpainting tasks, CLIP often functions as a perceptual loss
that enforces semantic consistency between the restored region and its
surrounding context.

Parallel to semantic control, the precise encoding and transfer of
artistic style constitutes a central challenge. The decoupling and control
of “style” is a broad and active area of research in generative AI. For
example, in the task of stylized image captioning, researchers have
explored how to use style embeddings to control the specific style of
generated text, rather than merely describing image content16–18. Such
works demonstrate the significant potential of modeling style as a
controllable variable, providing valuable insights for a wide range of
style-aware generative tasks, including our mural inpainting. Tradi-
tional style transfer methods19 rely on pre-trained VGG networks for
style extraction. However, this CNN based approach is often inadequate
for capturing the intricate textures and brushwork characteristic of
Chinese murals. This limitation motivated a shift towards the Trans-
former architecture, which excels at modeling long range dependencies.
StyTr2 20 pioneered the use of a pure Transformer architecture for
arbitrary style transfer, and its success is part of a broader trend. The
versatility of Transformer based architectures is evident not only in
vision tasks but also in complex language generation problems like
unified caption summarization21. In low level vision inpainting, this
success is mirrored by models like Uformer22, which have demonstrated
a superior ability to reconstruct fine-grained textures while preserving
global structural integrity. Precisely preserving and reconstructing
structural boundaries is a key challenge for high quality image genera-
tion, not only in inpainting but also across other computer vision
domains. For instance, in medical image segmentation, researchers have
proposed ABANet23, which leverages an attention boundary-aware
module to explicitly refine edge features, highlighting a shared pursuit of
structural fidelity in cross-domain applications.

Effectively fusing complementary information from different sources
is a powerful strategy for enhancingmodel performance. This idea has been
validated in multiple domains; For example, in medical diagnostics,
FusionLungNet24 improves diagnostic accuracy by integrating multi-scale
features to effectively capture fine-grained pulmonary details. Current
fusion strategies for structure and style information typically employ static
weighting. This rigid methodology is misaligned with the intrinsically
dynamic nature of the generative process, which progresses hierarchically
from coarse structural formation to fine grained textural refinement. The
absence of adynamic, stage aware guidancemechanism therefore represents
a critical limitation in current style aware inpainting methods.

Methods
Overall Structure
As illustrated in Fig. 3, our proposed model, DCADif, operates on the
principle of decoupled feature extraction and adaptive fusion.Its archi-
tecture is designed around three core mechanisms:

Guided Denoising UNet. The fused features are injected into our core
UNet to guide the reconstruction.

Decoupled Conditional Encoder. We use a parameter frozen CLIP
Sketch Encoder for structure and a bespoke SwinStyle Encoder for style.

Time Step Adaptive Feature Fusion. A dynamic module that adjusts
the influence of structure and style based on the denoising timestep.

The following sections will detail each component.
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CLIP Sketch Encoder
To achieve decoupled control over structure and style, we designate line art
as the exclusive medium for structural information. Line art inherently
disentangles a mural fundamental structure. Its composition, object con-
tours, and spatial layout, from stylistic attributes such as color, lighting, and
material texture. We then employ the pre-trained CLIP Sketch Encoder to
extract this purified structural representation.

We employ the CLIP image encoder in a parameter frozen, inference
only capacity. This process projects the input line art into a high-
dimensional latent space, yielding a compact and semantically rich vector
we designate as the structural feature fSketch. Formally, this initial extraction
is performed by the pretrainedCLIP encoderECLIP , which processes the line
art, Iline, to produce an intermediate backbone feature fL.

fL ¼ ECLIPðIsketchÞ ð1Þ

To ensure the structural representation is sensitive to stylistic context,
we generate a structural update vector fΔ, via a cross attention mechanism.
In this operation, the initial structural feature fL, serves as the Query, while
an external style feature fS, provides the Key andValue. This process, which
follows the standardmulti head attentionmechanism25, can be summarized
as:

fΔ ¼ MultiHead ðf struct ; f style; f styleÞ ð2Þ

Finally, the structural update vector fΔ is combined with the initial
backbone feature fL via element-wise addition. This design, functioning as a
residual connection, enables fine-grained, context-aware adjustments while
preserving the integrity of the initial structural representation.

f 0struct
� �

i;j;c ¼ f struct
� �

i;j;c þ fΔ
� �

i;j;c; 8ði; j; cÞ 2 I ð3Þ

This design enables fine grained, context aware adjustments while
preserving the integrity of the initial structural representation.

SwinStyle Encoder
To effectively capture the intricate, multi scale stylistic attributes inherent in
murals, we employ a Swin Transformer based encoder. This encoder’s
primary function is to extract a comprehensive and robust style prior from
the reference mural image, yielding the style feature vector, fstyle.

The encoding process begins by converting the input image into a
sequence of feature tokens through a standard patch embedding process,
which typically involves a convolutional layer followed by a linear projec-
tion. These feature tokens are then processed by a multi stage Swin
Transformer backbone. This network constructs a hierarchical feature
representation through the systematic alternation of Swin Transformer
blocks and Patch Merging layers. The Swin Transformer block performs
local feature modeling, while the Patch Merging layer downsamples the
feature map, thereby expanding the receptive field.

Swin Transformer Block. The ℓ block processes the input features Zℓ−1

through the following sequence of operations:

bZl ¼ SMSAðLN ðZl�1ÞÞ þ Zl�1 ð4Þ

Zl ¼ MLPðLN ðbZlÞÞ þ bZl ð5Þ
where LN denotes Layer Normalization (LayerNorm), SMSA signifies
Shifted Window Multi-head Self-Attention, and MLP is a Multi-Layer
Perceptron.

PathMerging. The downsampling operation performed by this layer is
formally defined as:

fout ¼ ðL2 � LN � L1 �RÞðf inÞ ð6Þ

where fin represents the input feature map, R denotes the reshaping and
concatenation operation, L1 and L2 are the first and second linear layers,
respectively, and LN denotes Layer Normalization.

This hierarchical architecture, characterized by a progressive increase
in channel depth and attention heads, enables the encoder to transition its
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focus from fine grained textural details in shallow layers to more holistic
stylistic patterns in deeper layers. This multi stage process of extraction and
abstraction culminates in the generation of a single, highly condensed, and
discriminative style vector fS.

fS ¼ SwinBackbone ðIdamÞ ð7Þ

where Idam is the damaged mural image serving as the input into the
SwinBackbone network.

Finally, to further enhance the representational power, the backbone
style feature fS is fed into a style self-attentionmodule, L-Self Attention. This
module computes a style update vector by identifying and amplifying the
most salient patterns within the feature itself. This update vector is then
integrated with the backbone feature fS via a residual connection, yielding
the final, refined style vector, fstyle. This entire refinement operation is for-
mally defined as:

f style ¼ fS þMLSAðfSÞ ð8Þ

where the L-Self Attention module MLSA, is a self-attention mechanism
designed to refine the feature representation by allowing its most salient
stylistic patterns to interact and reinforce one another. It is defined as:

MSAðXÞ ¼ Pro Softmax
ðXWQÞðXWK ÞTffiffiffiffiffi

dk
p

 !
ðXWV Þ

 !
ð9Þ

where Pro denotes the linear projection layer, which maps the features
aggregated from the value vectors back to the original C dimensional space
to ensure that the output can be residually connected with the input. fs ∈
RN×C represents the input backbone style feature tensor, where N is the
number of token and C is the channel dimensionality.

MLSA denotes the style self-attention module, and
ffiffiffiffiffi
dk

p
is the scaling

factor used to prevent vanishing gradients. WQ;WK 2 RC × dk and WV 2
RC × dv are the learnable linear projection weight matrices for generating the
query, key, and value, respectively.

Time Step Adaptive Feature Fusion
Conventional conditional diffusion models typically employ static
mechanisms, such as cross attention, to integrate external guidance. This
rigid approach is fundamentally misaligned with the dynamic nature of the
denoising process, where structural guidance is paramount in early stages
and stylistic refinement is critical in later ones. Consequently, this mis-
alignment often results in the corruption of structural integrity by pre-
mature stylistic influence, leading to significant inaccuracies in the final
reconstruction.

To address this challenge, we introduce a novel adaptive fusion
mechanism that emulates the coarse to fine strategy of human inpainting
experts. This mechanism dynamically modulates the relative influence of
structural and stylistic features as a function of the current denoising
timestep, t. This ensures that structural guidance dominates in the early,
high noise stages, while stylistic and textural refinement prevails in the later,
low noise stages.

As illustrated inFig. 3 (d), the core of theproposedTAFFmodule lies in
generating a set of time dependent weight functions, t ∈ (T, . . . , 1) and T.
Based on the diffusionmodel current timestepωstruct(t) and total number of
time steps ωstyle(t).

The core of the TAFF module lies in generating a pair of time
dependent weights, and, which are computed as a linear function of the
normalized timestep :

ωstructðtÞ ¼ 0:1þ 0:9 × ðt=TÞ ð10Þ

ωstyleðtÞ ¼ 0:9� 0:1 × ðt=TÞ ð11Þ

where T is the total number of diffusion steps. As denoising proceeds, the
style weight becomes is completely dominant.

Upon obtaining this set of dynamic weights, we perform a weighted
fusion of the final structural feature fStruct and the style feature fStyle to yield
the time dependent fused conditional feature.

f fuðtÞ ¼ f struct ; f style
� � � wðtÞ ð12Þ

where w is the time dependent weight vector wðtÞ ¼ ½ωstructðtÞ;ωstyleðtÞ�T .
This fused feature ffu(t) is subsequently injected into the UNet bot-

tleneck layer of the diffusion model to provide dynamic guidance for each
denoising step.

Within the UNet denoising process at each time step t, the input
noisy latent Xt, is processed by the downsampling path to produce a
bottleneck feature representation hbo. This bottleneck feature is then
modulated by our time adaptive fused feature ffu(t). To ensure dimen-
sional compatibility, ffu(t) is first passed through a linear projection layer
ϕ to match its dimensionality and then inject it into the network via
feature addition to guide the generation process. This guidance step can
be formulated as:

h0boðXt ; tÞ ¼ hboðXt ; tÞ þ ϕðf fuðtÞÞ ð13Þ

where hbo(Xt, t) is the original feature extracted from the noisy image Xt by
the U-Net bottleneck layer at timestep t. ϕ is a lightweight projection
network for feature alignment, and h0boðXt ; tÞ is the updated bottleneck
feature after dynamic conditional guidance.

This strategic temporal decoupling facilitates the reconciliation of
macro-structural integrity with fine-grained stylistic details. The result is a
reconstruction that achieves a superior degree of fidelity to the original
artwork.

Loss Function
The training is governed by a composite objective function that integrates
several loss components to jointly optimize for both structural fidelity and
stylistic realism.

L1 Loss. It is particularly effective at preserving high frequency struc-
tural details, such as edges and contours. This effectiveness stems from its
superior robustness to outliers compared to other pixel level losses. The
formal is as follows:

L1 ¼
1
n

Xn

i¼1
yi � f ðxiÞ
�� �� ð14Þ

where yi denotes the ground truth image, and f xi
�

is the reconstructed
output image.

MSE Loss. It evaluates error by computing the sum of the squared
differences between predicted and ground truth values. However, the
quadratic nature of this penalty renders MSE highly sensitive to large pixel
deviations, which in practice often leads to overly smoothed results that lack
the fine textures crucial to artworks. It is formulated as:

LMSE ¼ 1
n

Xn

i¼1
ðyi � f ðxiÞÞ2 ð15Þ

Preceptual Loss. It does not performadirect comparison in pixel space.
It computes the feature distance between image patches within the feature
space of a pre-trained VGGNet. It can be summarized as:

LPreceptual ¼
1
n

Xn

i¼1
ðFiðxÞ � FiðyÞÞ2 ð16Þ

where x is the input image and y is the target image, Fi(x) and Fi(y)
respectively denote their feature representations at the i layer of a pretrained
neural network, and N is the number of feature layers.
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LPIPS Loss. The Learned Perceptual Image Patch Similarity loss is
designed to more accurately reflect human perceptual judgment than tra-
ditional perceptual losses. It calculates the distance between deep features of
two images, weighted by learned linear layers to better match human per-
ception. The loss is computed as:

LLPIPS ¼
X
l

Wl FlðxÞ � FlðyÞ
�� ��2

2 ð17Þ

where x is the generated image and y is the target image,Fl(x) and Fl(y) are
the unit normalized feature representations extracted from the l− th layer of
a pretrained network, and Wl is a learned weight vector used to scale the
contribution of each layer’s feature distance.

Total Loss. It is represented as:

Ltotal ¼ λ1L1n þ λ2LMSEn

þλ3L1i þ λ4LPrei þ λ5LLPIPS
ð18Þ

where L1n , LMSEn
represent the L1 andMean Squared Error losses calculated

between the predicted noise and the ground truth noise, respectively.While
L1i , LPrei enote the L1 and perceptual losses computed between the denoised
image and the ground truth image. The weight parameters λ1, λ2, λ3, λ4 and
λ5 are weight parameters set to 0.5, 0.5, 0.5, 1, 0.1, respectively.

Datasets
MuralVerse-S. We propose a dataset of murals from various regions of
China, comprising 1396 extended and cropped images of Dunhuang
murals, 2335 images of Gansu murals, 2950 images of Hebei murals, and

1482 images of InnerMongoliamurals, as illustrated in Fig. 4.All images are
cropped to a resolution of 256 × 256 and divided into training, validation,
and test sets in a ratio of 8:1:1.

The dataset was curated from images procured from collaborating
institutions and digital art databases. The curation process involved
a rigorous screening and classification performed by professional
artists. Artworks were categorized based on their distinct styles, dynas-
ties, and color palettes to ensure the final dataset diversity and
representativeness.

The data preparation pipeline for each mural initiates with the
extraction of its corresponding line art. Subsequently, natural damage is
simulated by manually applying masks to the intact ground truth image.
This process yields a complete training sample, consisting of the damaged
image, the binarymask, and the structural line art,which collectively serve as
the input for network training.

MaskCLP-S. The dataset is obtained from relevant cooperative
research institutions. It comprises 8273 images of Chinese landscape
paintings, as illustrated in Fig. 5. The dataset is divided into 7446 training
images and 827 testing images, all cropped to 256 × 256. This dataset
encompasses a wide range of traditional paintings from various historical
dynasties, featuring the unique styles of numerous outstanding artists.

Ethics Statement
The dataset used in this study is publicly available and has received the
necessary approval for use. All images, videos, and associated personal
information are published in accordance with the licensing terms of the
dataset, and the researchers have adhered to the terms provided by the
dataset’s publisher. Since the dataset is publicly accessible and includes

Fig. 4 | Examples of Mural paintings. a is Dunhuang murals. b is the line sketch of
the Dunhuang murals. c is the real mask. Unlike commonly used synthetic masks,
these masks realistically replicate the complex patterns of cracks, fading, and

pigment loss that occur over time. Training with such real-world degradation pat-
terns enables ourmodel to generalizemore effectively to authentic mural restoration
scenarios.
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content with the required authorization, we confirm that the individuals
involved have provided consent at the time of dataset publication.

Implementation Details
In our experiments, models implemented with PyTorch were trained on
NVIDIA H20 GPUs. Prior to training, we employed a series of data aug-
mentation techniques to enhance model performance and robustness.
These techniques include resizing, cropping, rotation, flipping, and noise
addition. Original painting images were resized to a uniform resolution of
256 × 256. The batch size was set to 32. The models were trained for 2000
epochs. A dynamic learning rate schedule was utilized, which progressively
annealed the learning rate throughout the training process to ensure stable
convergence.

To rigorously evaluate the model’s generalization ability to unseen
artistic styles, we carefully partitioned our dataset. Specifically, we ensured
that artworks from the same dynasty or by the same artist did not simul-
taneously appear in both the training and testing sets. This partitioning
strategy, analogous to a leave one dynasty out cross validation, is designed to
prevent the model from achieving high scores simply by memorizing spe-
cific styles.

Model Complexity and Efficiency
The proposed DCADif is a large scale diffusion model, reflected in its
complexity metrics. It comprises a total of 561.68 million parameters,
positioning it as a substantial network designed to capture intricate artistic
features. The computational cost for a single denoising step on a 256 × 256

input is 486.14GFLOPs. As a diffusionmodel, the final image generation
is an iterative process. The total end to end inference time, which
includes the full sampling loop, was benchmarked on a single NVIDIA
H20 GPU at 377.00 ms per image. This corresponds to a throughput of
approximately 2.65 FPS. While computationally intensive, this scale is
crucial for achieving the high fidelity restoration results demonstrated in
our experiments.

Evaluation Metrics
Wequantitatively assess the inpainting quality using three standardmetrics:
PSNR26, SSIM27, and LPIPS28. PSNR and SSIM quantify pixel level fidelity
and structural correspondence, respectively, while LPIPS evaluates per-
ceptual realism by measuring similarity in a deep feature space. We quan-
titatively assess the inpainting quality using four standard metrics: PSNR26,
SSIM27, LPIPS28, and Gram-matrix style loss19. PSNR and SSIM quantify
pixel-level fidelity and structural correspondence, respectively, while LPIPS
evaluates perceptual realism andGram-matrix style loss specifically assesses
artistic style fidelity.

Results
Baselines
For a comprehensive performance evaluation, we benchmark our model
against nine representative baseline methods, which are grouped into three
distinct categories:

(1) CNN. These methods employ CNN architecture for image
inpainting.

Fig. 5 | Demonstrating the generalization capability of our model on the related
domain of Chinese landscape paintings. Row a presents examples from various
Qing Dynasty landscape paintings, including works by artists such asWang Jian,
Hua Yan and so on. Although these paintings differ from murals in medium and

brushwork techniques, they share a common emphasis on linear structure and
stylistic mood. Row b contains the corresponding line art extracted for structural
guidance, and Row c shows the degradation masks applied for testing.
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AdaIR29: An adaptive image inpainting network that handles diverse
degradations through frequency-domain feature modulation and learnable
degradation adaptation mechanisms.

CTSDG30: A coupled texture structure decomposition network
implementing dual-stream inpainting through task-specific subnetworks.

RFR31: A progressive inpainting framework employing iterative
refinement with cascaded recurrent feedback modules.

EC32: A CNN based line art colorization model that uses adaptive
normalization to inject structural prior, yielding high-fidelity colorization
without diffusion steps.

(2) Transformer. Thesemethods employ Transformer architecture for
image inpainting.

MAT33: The pioneering transformer based large hole inpainting fra-
mework combining global attention mechanisms with local convolutional
features for high resolution inpainting.

PromptIR34: A prompt driven transformer that unifies all image
inpainting tasks via textual degradation queries, dispensing with task spe-
cific branches.

(3) Diffusion. These methods employ diffusion model architecture for
image inpainting.

Strdiffusion35: A lightweight diffusion sampler with momentum based
skip for fast, multi scale inpainting.

SDE36: Score based generative framework using stochastic differential
equations for high-quality image synthesis and inpainting.

RePaint37: A diffusion inpainting method that couples denoising sam-
pling with mask-aware reverse SDE for structure and texture consistency.

Quantitative Analysis
Tovalidate the efficacy of theproposedDCADif framework,we conducted a
comprehensive benchmark against leading state-of-the-art methods using
our proprietary MuralVerse-S dataset. This evaluation encompassed both
quantitative metrics and qualitative visual comparisons.

We conducted a comprehensive quantitative benchmark of the pro-
posed DCADif model against a diverse set of leading image inpainting
methods. This selection intentionally spans multiple architectural para-
digms, including CNN based, Transformer based, and Diffusion based
approaches.

Table 1 summarizes the quantitative results. To guarantee a rigorous
and unbiased comparison, all baselinemethods were retrained from scratch
on our proprietaryMuralVerse-S dataset. Themodelswere evaluated across
three distinct ranges of randommask ratios (0.1-10%, 10-20%, and 20-30%)
to assess their performance under varying levels of degradation.

In terms of PSNR, DCADif consistently outperforms all baseline
methods. This performance advantage becomes increasingly pronounced at
higher mask ratios, demonstrating the superior robustness to severe
degradation. This trend is best illustrated by the comparisonwith its leading
Diffusion based competitor, RePaint. In the most challenging scenario,
20–30% mask ratio, DCADif achieves a performance margin of 0.51 dB.

DCADif demonstrates exceptional performance stability on the SSIM
metric, particularly as the degree of image degradation increases. This sta-
bility stands in sharp contrast to methods like EC, which exhibit a perfor-
mance degradation of over 25% at high mask ratios, indicating a critical
failure in structural reconstruction. Furthermore, DCADif surpasses the
similarly robust RePaint model, achieving a 3.6% relative performance gain
under high mask ratios. This margin underscores its superior capacity for
maintaining global structural consistency.

DCADif demonstrates a commanding lead on the LPIPS metric,
indicating a substantial improvement in perceptual realism. Relative to the
second-best performing model, RePaint, DCADif reduces perceptual error
by a remarkable 50% to 57%. Notably, this performance gap widens as the
level of image degradation increases.

Moreover, its exceptional performance stability across varying levels of
inpainting difficulty validates the sophistication and efficiency of our
model’s design, establishing it as a robust and reliable newbenchmark in the
field of image inpainting Fig. 6. T
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Qualitative Analysis
As shown in the comparative results in Figs. 7 and 8, our model demon-
strates a superior capability to generate visually plausible and high-fidelity
results, markedly outperforming other mainstream methods.

The task in Fig. 8a requires the reconstruction of significant facial and
sartorial details. The magnified inset (a1) highlights the limitations of the
baseline methods. CTSDG and MAT, for instance, generate overly
smoothed results that fail to recover crucial facial features or the hat’s
texture. RFR exhibits catastrophic failure, producing incoherent artifacts
with no semantic relevance to a face. While the result from RePaint is
plausible, it lacks the requisite sharpness and fine detail of the ground truth
(GT). In contrast, DCADif successfully reconstructs the face with well
defined features and contours. It also restores the hat’s intricate texture,
yielding a final inpainting nearly indistinguishable from the ground truth.

In Fig. 8b showcases the inpainting of an ornate headdress, a task
defined by its intricate details and fine linework. The magnified inset (b1)
underscores the difficulty of preserving such high frequency details. RFR
again fails to generate coherent content, producing chaotic artifacts and
demonstrating an inability to model the image underlying structure.
CTSDG and MAT render the fine lines as an indistinct blur, thereby
compromising the design structural integrity. Although RePaint captures
the overall form, it fails to reproduce the linework with sufficient sharpness,
resulting in a loss of definition. In contrast, our model performs excep-
tionally well, accurately reconstructing both the fine linework and the subtle
background color gradations.

These visual comparisons provide empirical validation for our quan-
titative results. While competing methods often suffer from blurring, arti-
facting, and structural inconsistencies, DCADif consistently delivers

inpaintings that are semantically coherent, rich in detail, and stylistically
faithful to the original artwork.

Comparision with Celebrated Tanditional Mural Painting
To further assess its generalization and practical utility, the DCADif fra-
meworkwas applied to the inpaintingof authentic ancientmurals exhibiting
natural degradation. Unlike the synthetic masks used for training, these
cases feature complex, compound forms of degradation, including color
fading, pigmentflaking, and structural cracks, posing a formidable test of the
robustness. The successful outcomes of these inpainting underscore the
substantial potential of DCADif as a viable tool for digital cultural heritage
preservation.

In Fig. 9, we present the inpainting results for three cases of authentic
murals. The versatility and robustness are evident in its handling of diverse
degradation types. It successfully addresses the diffusemottled stains of ‘the
Winged Beast mural’, reconnects the fractured structural lines of ‘the
Charging Bull mural’, and reconstructs the holistically deteriorated scene of
‘the Court Ladies and Apsaras mural’. This performance on authentic
artifacts validates the efficacy of DCADif as a practical inpainting tool.
Furthermore, this success underscores the significant potential for con-
tributions to digital archaeology, museology, and the broader field of cul-
tural heritage preservation.

Comparision on Diverse Datasets
To further validate ourmodel, we conducted additional experiments on the
MaskCLP-S dataset. This dataset encompasses a wide range of traditional
paintings from various historical dynasties, featuring the unique styles of
numerous outstanding artists.

Fig. 6 | A visualization of the quantitative comparison results from Table 1. These line plots track the performance trends of our proposed model (Ours) against baseline
methods across varying mask ratios. Each subplot corresponds to one of four metrics: PSNR, SSIM, LPIPS, and Gram matrix style loss.
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GT RFR Repaint MATCTSDGMask

a

b

b1

a1

Ours

Fig. 8 | Qualitative comparison with state of the art methods, including SDE,
Strdiffusion, PromptIR, AdaIR, and EC.The figure presents restoration results for
two different examples: (a) The first example, and (b) the second example. Rows (a1)
and (b1) provide zoomed in views of the regions highlighted by red boxes for detailed

comparison. Note that baseline methods often suffer from artifacts, blurriness, or
stylistic inconsistencies. In contrast, our DCADif successfully reconstructs both fine
textures and clean contours with high fidelity to the original artwork in both
examples.

GT Strdiffsuion PromptIR AdaIRSDEMask

a

b

b1

EC

a1

Ours

Fig. 7 | Qualitative comparison with state of the art methods, including SDE,
Strdiffusion, PromptIR, AdaIR, and EC.The figure presents restoration results for
two different examples: (a) The first example, and (b) the second example. Rows (a1)
and (b1) provide zoomed in views of the regions highlighted by red boxes for detailed

comparison. Note that baseline methods often suffer from artifacts, blurriness, or
stylistic inconsistencies. In contrast, our DCADif successfully reconstructs both fine
textures and clean contours with high fidelity to the original artwork in both
examples.
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The experimental results demonstrate that, during the pixel wise
decoding of missing regions, the model not only aligns the local brushwork
with the style of the original artwork but also, through its adaptive fusion
strategy, ensures that the ink tones create a natural transition with the
surrounding strokes. As shown in Fig. 10, in a landscape painting byWang
Shiguwhere approximately 18% of the left mountain ridge was damaged by
mildew, the inpainting result not only recovers the fine layers of the ‘hemp
fiber strokes’but also precisely reproduces the texture of the dry brushwork,
rendering the repaired boundary virtually imperceptible.

Comparision with Celebrated Traditional Chinese Painting
Digital inpainting must strike a balance between semantics and aes-
thetics. It must not only precisely restore the physical structure and
stylistic characteristics of missing areas but, more importantly, ensure
that the result integrates seamlessly with the original artwork. By

incorporating a multi level style perception mechanism and global
context modeling, our model effectively captures the subtle continuity
of artistic intent across broken brushstrokes a key characteristic of
traditional painting thereby achieving a new equilibrium between visual
realism and aesthetics. For our experiments, we cropped sections from
the Tang dynasty painting Court Ladies Wearing Flowered Headdresses
and a landscape painting by Wang Shigu to create the images for
inpainting. Figure 10 presents the qualitative inpainting results of our
proposed model on the renowned painting Court Ladies Wearing
Flowered Headdresses, with source data details provided in Fig. 11. The
experimental results demonstrate that our model achieves a remarkable
balance between semantic coherence and aesthetic fidelity. The model
transcends basic pixel filling to perform context aware semantic
inpainting. For instance, in subplot (b), the model not only recovers the
correct color of the dog’s coat but also precisely reconstructs its

Fig. 9 | Comparison on Traditional Chinese
Painting. Comparison on Traditional Chinese
Painting. The figure displays results from three dif-
ferent examples, shown in rows (a), (b), and (c). ‘GT’
denotes the ground truth image. ‘Line’ represents
the corresponding line art. ‘Mask’ indicates the
synthetically damaged painting, and ‘Inpainted’
shows the restored image.

GT Mask InpaintedLine

a

b

c

Fig. 10 | Comparison on Traditional Chinese
Painting. Comparison on Traditional Chinese
Painting. The figure displays results from three dif-
ferent examples, shown in rows (a), (b), and (c). ‘GT’
denotes the ground truth image. ‘Line’ represents
the corresponding line art. ‘Mask’ indicates the
synthetically damaged painting, and ‘Inpainted’
shows the restored image.

GT Mask InpaintedLine

a

b

c
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directional flow, maintaining fine grained textural consistency. Fur-
thermore, subplot (c) highlights the exceptional ability to preserve
structural integrity, as evidenced by the high fidelity reconstruction of
facial contours and edges. Collectively, these results demonstrate that
our model is capable of understanding and generating content that is
both visually plausible and semantically meaningful within the context
of classical Chinese painting.

User Study
We recruited 50 participants, including faculty and graduate students
specializing in art. We used several competing models, as well as our own,
to restore a set of murals and presented the resulting images to the parti-
cipants. They were then asked to rate the results based on the following
three criteria: (a) Content Consistency: the degree to which the content of
the restored image is consistent with the original. (b) Style Fidelity: the
extent to which the brushwork, color, and texture reproduce those of the
original mural. and (c) Degree: a comprehensive assessment of how well
the mural was restored. As shown in Fig. 12, DCADif demonstrates out-
standing performance.

A rating scale from 0 (Worst) to 5 (Best) was used for each criterion,
where a higher score indicates amore favorable evaluation. The rating scale

was defined as follows:

Score ¼
Pn

i¼1ðf i � wiÞ
P

ð19Þ

whereP is the number of participantswho answered the question, fi denotes
the frequency of the i-th option being selected, andwi represents the weight
of the i-th option determined by its ranking.

Effectiveness of Componets
To systematically deconstruct the DCADif model and validate its archi-
tectural design, we conducted a key ablation study focused on the selection
of the Style Encoder and the Sketch Encoder. We evaluated four different
combinations of two powerful encoders for extracting style and structure
information: CLIP, for its high-level semantic understanding, and Swin-
Style, for its ability to capture both local and global visual features. The
qualitative results are shown in Fig. 13. The quantitative results presented in
Table 2.

The experimental results in Fig. 13 demonstrate that the heterogeneous
combination, employing SwinStyle as the style encoder and CLIP as the
sketch encoder achieved decisively superior performance. This

Fig. 11 |The image isOne ofTopTenChina FamousPaintings.This is the artwork
Court Ladies Wearing Flowered Headdresses, painted by the Tang Dynasty artist
Zhou Fang. The red boxes indicate two representative regions chosen for our
inpainting experiments: the lady’s face with her high chignon, and the small dog

below. The two panels on the right are the corresponding magnified views of these
regions, which serve as the Ground Truth for our experiments. The unique style and
fine details of this artwork present a challenging scenario for validating the cap-
abilities of our model.

Fig. 12 | Illustration of the User Study.
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configurationnotonly attains thebest results across all threekeymetrics but,
more significantly, a comparison with the other combinations provides
profound insight into the intrinsic logic.

First, when we used SwinStyle to extract style and CLIP to extract the
sketch, a catastrophic decline in performance was observed: the PSNR
plummeted by over 5.0 dB, and both SSIM and LPIPS deteriorated sub-
stantially. This provides compelling evidence that SwinStyle expertise in
precisely parsing the local structure and edge information of line art is
irreplaceable byCLIP,while concurrently demonstrating thatCLIP capacity
for capturing and encoding high level, abstract style semantics far surpasses
that of SwinStyle. This finding clearly delineates the ‘capability boundaries’
of the two encoders, confirming that their assigned roles are both correct
and uniquely suited.

Second, the performance of the homogeneous combinations further
reinforces our design rationale. When two CLIP encoders were used, the
model demonstrated the poorest performance in structural reconstruction
despite its stylistic understanding, registering one of the lowest SSIM scores
among all combinations. This underscores CLIP shortcomings in fine
grained structural perception. Conversely, when two SwinStyle encoders
were used, themodel excelled on the SSIMmetric, performing nearly on par
with the optimal configuration, but showed a noticeable gap in PSNR and

LPIPS. This indicates that while SwinStyle is highly effective at processing
structural information, it lacks CLIP ability to associate image content with
high level semantic style, resulting in generated textures and details that are
less rich and realistic.

In conclusion, CLIP powerful semantic understanding makes it the
ideal choice for extracting style information, while SwinStyle fine grained
perception of visual patterns makes it most effective for parsing structural
contours. The ability of DCADif to synergistically process these two distinct
information streams iswhat enables it to achieve state of the art performance
in image inpainting tasks.

Effectiveness of Frozen CLIP for Structural Guidance
To justify the use of a frozen CLIP encoder for structure extraction,
we balanced the trade-off between fine-tuning for domain adaptation
and freezing the weights to preserve robust, general-purpose features.
While fine-tuning may enhance specialization, it carries the risk of
catastrophic forgetting of the extensive knowledge acquired during
large-scale pre-training. To validate this design choice, we conducted
an ablation study comparing our full model against a baseline variant
devoid of the CLIP encoder. As demonstrated in Table 3, the
quantitative results highlight the significant contribution of the fro-
zen CLIP guidance.

The results of the ablation study demonstrate the nuanced role of the
frozen CLIP encoder. Regarding pixel-level fidelity, both configurations
achieved identical performance, and the perceptual quality (LPIPS) showed

Mask S / C C / S C / C S / S GT

Fig. 13 | Ablation Study of Encoder-Decoder.Visual ablation study of our encoder
design. `GT' denotes the ground truth and `Mask' is the damaged input. The other
columns compare different encoder combinations for style and line art extraction,

formatted as [Style]/[Line Art], using either a CLIP encoder (C) or our SwinStyle
encoder (S).

Table 2 | Ablation study on the Style Encoder and Sketch
Encoder within the DCADif framework

Style/Sketch PSNR↑ SSIM↑ LPIPS↓

SwinStyle/CLIP 21.887 0.821 0.043

CLIP/CLIP 21.455 0.875 0.028

SwinStyle/SwinStyle 24.596 0.922 0.019

CLIP/SwinStyle 26.942 0.925 0.013

In the first column of the table, the encoder configurations are specified as (Style Encoder / Sketch
Encoder). The ablation study was conducted with a mask ratio of 20%-30%. The output images of
the generators are used for metrics computation. ↑ Higher values are better, ↓ Lower values are
better. *Optimal results are displayed in bold.

Table 3 | Ablation study on the structural encoder

CLIP Model PSNR ↑ SSIM ↑ LPIPS ↓

w/o Frozen CLIP 26.942 0.926 0.013

Frozen CLIP (Ours) 26.942 0.925 0.013

We compare the performance with a frozen CLIP encoder versus without it (W/O frozen CLIP). The
test was conducted on masks with a 20%-30% corruption ratio. *Optimal results are displayed
in bold.
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no variance. This suggests that the main diffusion model is already capable
of handling overall color and texture generation.

A minor discrepancy, however, was observed in the SSIMmetric. The
baseline model without the encoder reached an SSIM of 0.926, slightly
higher than the 0.925 achievedwith the frozenCLIP. This implies that while
the frozenCLIP provides robust structural priors, itmay introduce a level of
’rigidity,’ potentially limiting the model’s flexibility to match local ground
truth details perfectly.

Despite this slight drop in SSIM, we incorporate the frozen CLIP
encoder in the final design. It acts as a critical structural backbone, ensuring
stability andpreventingmajor distortions in largemissing regions—benefits
that extend beyond what standardmetrics canmeasure. Overall, the results
confirm that using a frozen, pre-trained encoder is a robust and effective
strategy for ensuring structural fidelity in inpainting.

Effectiveness of Loss Fuction
During the training process, we observed that for diffusion models, relying
solely on an L1 loss to constrain the predicted and ground truth noise can
sometimes lead to subtle color discrepancies between the final generated
image and the ground truth image, thereby compromising the fidelity of the
inpainting. To address this, we introduced an additional L1 loss term that
directly computes the difference between the generated image and the
ground truth image, with the aim of enhancing the pixel level alignment
capability. To validate the necessity and effectiveness of this design choice,
we conducted a key ablation study. The qualitative results are presented in
Fig. 14, and the quantitative results are shown in Table 4.

When the L1i loss was removed, a significant decline was observed
across all performance metrics. Specifically, the PSNR dropped by a sub-
stantial margin of over 1.8 dB, a considerable gap that directly validates the
critical role of the L1i loss in color correction and overall fidelity
enhancement.

This performance degradation was also evident at the structural and
perceptual levels. In the absence of theL1i loss, the SSIMdecreased by nearly
5%, indicating that direct image level supervision is crucial for helping the
model better reconstruct local structures and ensure the seamless integra-
tion of the restored region with its surroundings. The most remarkable
change, however, occurred in the LPIPS score, which increased by 84%
without the L1i loss. This highlights how theL1iloss effectively aligns the
model’s optimization objective with the human perceptual space, enabling
the generation of more natural-looking images.

Effectiveness of Time Step Ratio
Within TAFF module, the fusion ratio of sketch and style features is not
static but changes dynamically over time. To determine the optimal pro-
portion for model performance, we conducted experiments with various
feature fusion ratios. The qualitative results are illustrated in Fig. 15, and the
quantitative results are presented in Table 5.

The experimental results indicate that the model achieves compre-
hensively optimal performancewhen theweight for sketch guidance is set to
0.1 and theweight for style guidance is set to 0.9.However, a deeper analysis
of the performance variations under different weight configurations reveals

W/O L1i L1iGTGT Mask

Fig. 14 | Loss Ablation Study. Visual comparison illustrating the effect of the image space L1 loss. `GT' denotes the ground truth and `Mask' is the damaged input.

Table 4 | Ablation study on the L1 loss components

Loss Config PSNR ↑ SSIM ↑ LPIPS ↓

w/o L1i 25.095 0.881 0.024

L1i (Ours) 26.942 0.925 0.013

Wecompare the performancewith andwithout the L1 loss on the predicted image (L1i). The test was
conducted on masks with a 20%-30% corruption ratio. *Optimal results are displayed in bold.

Table 5 | Ablation Study of feature fusion weight

λsketch/λstyle PSNR ↑ SSIM ↑ LPIPS ↓

0.3/0.7 22.150 0.828 0.017

0.2/0.8 24.964 0.923 0.041

0.1/0.9 26.942 0.925 0.013

Ablationstudyon the fusion ratioof the sketchandstyle encoders inDCADif.Weevaluate the impact
of differentweighting coefficients for the sketch (λsketch) and style (λstyle) conditions. *Optimal results
are displayed in bold.
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amore profound synergistic and constraining relationship between the two
information sources.

The performance exhibits high sensitivity to this fusion ratio.Whenwe
increased the sketch weight from 0.1 to 0.2, although the SSIM decreased
only negligibly, the PSNR experienced a drastic drop of nearly 2.0 dB, while
the LPIPS worsened by more than threefold.

Upon further increasing the sketch weight to 0.3, this trend of per-
formance degradation continued. Both the PSNR and SSIM metrics con-
tinued to fall sharply, indicating that an overreliance on the given sketch
information impedes the model’s ability to learn from the data driven style
features and generate natural inpainting content that matches the sur-
rounding context.

In summary, a 0.1/0.9 ratio represents the optimal fusion balance for
sketch and style guidance. Style guidance serves as the core driving force for
generating highfidelity and photorealistic content, whereas sketch guidance,
within theConditionEncoder, should play a subtle, auxiliary corrective role.
Overemphasizing external structural constraints severely undermines the
model’s powerful internally learned generative capabilities. This finding
provides a solid experimental basis for the design, validating the effective-
ness and rationality of the current weight configuration.

Discussion
Wepropose an innovative framework for the inpaintingof damagedmurals,
termed DCADif. We employ two encoder modules, the CLIP Sketch
Encoder and the SwinStyle Encoder, to learn the deep features of the image
in a decoupled and progressive manner. Specifically, within DCADif, we
introduce aTime stepAdaptive Feature Fusionmodule. Thismodule deeply
couples the denoising process with information injection by dynamically
modulating the weights of structural and stylistic features according to the
current timestep, thereby prioritizing the establishment of the macro
structure in the earlydenoising stagesand themeticulous renderingofmicro
details in the later stages to achieve a harmonious synthesis of both.

Experimental results demonstrate that DCADif exhibits superior
performance in processing murals, particularly in the task of restoring

damaged murals, where it shows exceptional capabilities in artistic style
preservation and detail inpainting. This validates its effectiveness in the
field of cultural heritage preservation and inpainting. Furthermore, the
model achieves excellent visual results on a dataset of Chinese paintings,
which further substantiates its generalization capability in image
inpainting tasks.

Despite the promising results achieved by DCADif in mural inpaint-
ing, it is subject to several limitations that offer clear avenues for future
research.

First, the model faces challenges when dealing with extremely large,
contiguous areas of damage. When critical structural information in a
region is completely lost, the line art condition ourmodel relies on becomes
unreliable. In such cases, the model may generate content that is visually
plausible but historically inaccuratea phenomenon known as hallucination
which is a critical concern for the rigorous demands of cultural heritage
preservation.

Second, as a diffusion based model, the iterative denoising process of
DCADif is computationally intensive. This leads to slower inference speeds
compared to single pass architectures like GANs, which could be a practical
constraint in applications requiring rapid processing or large batch
restoration.

Finally, while our SwinStyle Encoder effectively captures artistic style,
its ability to reproduce highly specific material textures could be further
improved. For instance, the model may not perfectly distinguish between
the unique craquelure patterns on aged plaster and the fibrous texture of
ancient silk paintings. Developing more refined restoration algorithms
specifically tailored to the material characteristics of cultural artifacts
remains an important direction for future work.

Recent studies have shown that frequency aware learning can offer
finer control over detail generation across different frequency bands38.
Incorporating such mechanisms could potentially enhance our model’s
ability to restore the full spectrum of details in murals from coarse wall
textures to delicate brushstrokes thereby further advancing thefidelity of the
restoration.

0.3/0.7 0.2/0.8 0.1/0.9GT Mask

Fig. 15 | Visual ablation study on the fusion ratio for the line art and style conditions in TAFFmodule. `GT' denotes the ground truth, and `Mask' is the damaged input.
The other columns show inpainting results for different [Line Art Weight] / [Style Weight] ratios.
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Data Availability
The datasets used and analyzed during the current study are available from
the corresponding author upon reasonable request. The dataset in this study
is available at https://github.com/LPDLG/DCADif.

Code availability
The code used in this study is available from the corresponding author upon
reasonable request.
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