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Abstract
Background: Many large studies have implemented wrist or thigh accelerometry to capture physical activity, but the
accuracy of these measurements to infer activity energy expenditure (AEE) and consequently total energy expenditure (TEE)
has not been demonstrated. The purpose of this study was to assess the validity of acceleration intensity at wrist and thigh
sites as estimates of AEE and TEE under free-living conditions using a gold-standard criterion.
Methods: Measurements for 193 UK adults (105 men, 88 women, aged 40–66 years, BMI 20.4–36.6 kg m−2) were collected
with triaxial accelerometers worn on the dominant wrist, non-dominant wrist and thigh in free-living conditions for 9–
14 days. In a subsample (50 men, 50 women) TEE was simultaneously assessed with doubly labelled water (DLW). AEE
was estimated from non-dominant wrist using an established estimation model, and novel models were derived for dominant
wrist and thigh in the non-DLW subsample. Agreement with both AEE and TEE from DLW was evaluated by mean bias,
root mean squared error (RMSE), and Pearson correlation.
Results: Mean TEE and AEE derived from DLW were 11.6 (2.3) MJ day−1 and 49.8 (16.3) kJ day−1 kg−1. Dominant and
non-dominant wrist acceleration were highly correlated in free-living (r= 0.93), but less so with thigh (r= 0.73 and 0.66,
respectively). Estimates of AEE were 48.6 (11.8) kJ day−1 kg−1 from dominant wrist, 48.6 (12.3) from non-dominant
wrist, and 46.0 (10.1) from thigh; these agreed strongly with AEE (RMSE ~12.2 kJ day−1 kg−1, r ~ 0.71) with small
mean biases at the population level (~6%). Only the thigh estimate was statistically significantly different from the
criterion. When combining these AEE estimates with estimated REE, agreement was stronger with the criterion (RMSE
~1.0MJ day−1, r ~ 0.90).
Conclusions: In UK adults, acceleration measured at either wrist or thigh can be used to estimate population levels of AEE
and TEE in free-living conditions with high precision.

Introduction

Characterising the energy balance of individuals in free-
living conditions requires an accurate assessment of total
energy expenditure. Total energy expenditure can be mea-
sured with high precision using the doubly labelled water
technique [1], but this is an expensive undertaking that
requires elaborate sample collection and analysis infra-
structure, making it less feasible for large-scale deployment
or application in clinical settings. In most people, the largest
component of total energy expenditure is resting energy
expenditure, which can be predicted from anthropometric
information with reasonable accuracy [2, 3]. Diet-induced
thermogenesis is less variable and ordinarily constitutes
approximately 10% of total energy expenditure [4]. The
predominant source of uncertainty in total energy
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expenditure estimates is the highly variable activity energy
expenditure component, which has proven difficult to cap-
ture by subjective instruments such as questionnaires [5, 6].
Body-worn sensors such as accelerometers have the
potential to provide a relatively cheap and reliable solution
to this problem [7], if valid inference models can be devised
to estimate activity energy expenditure from the measure-
ments they record. In recent years, wrist-worn accel-
erometers have become a popular measurement modality
for objectively capturing free-living physical activity in
large-scale studies [8–10]. Devices worn on the wrist are
generally considered to be less burdensome for participants
than those worn on other anatomical sites [11]. This has led
to improved wear protocol adherence and thus to mea-
surements with potentially greater representation of habitual
physical activity levels. However, despite their recent
increase in popularity, their utility in the estimation of
activity energy expenditure has yet to be tested against
gold-standard techniques in a sufficiently large sample of
men and women in free-living [7]. Furthermore, some large
studies [8–10] have committed to measuring only one of
either the dominant wrist or non-dominant wrist, and the
relationship between these two measurements also remains
understudied. In previous work, we derived parametric
models to estimate activity energy expenditure intensity
from non-dominant wrist acceleration (reproduced in
Table 2) using a dataset (n= 1050) of simultaneous non-
dominant wrist and individually calibrated combined heart
rate and movement sensing signals collected under free-
living conditions [12]. We evaluated the models in a large
holdout sample (n= 645) and found that they explained 44–
47% of the variance in activity energy expenditure with no
significant mean bias at the population level. However, as
this comparison was against a silver-standard measurement
of activity volume, these estimation models could be more
conclusively validated by integrating the estimated activity
energy expenditure signal over time, and assessing agree-
ment of activity volume with a gold-standard criterion such
as doubly labelled water. This approach has been used to
validate combined heart rate and movement sensing [13–
15] against which the models were originally derived.
Thigh-worn devices have typically been employed in
smaller studies to measure time spent in a sitting posture, in
order to infer sedentary time. This is possible because the
distribution of gravity over the three axes can be interpreted
using a simple equation to calculate thigh inclination.
However, thigh acceleration has received comparatively
little attention as a measure of physical activity intensity,
though it features prominently in activity classification
experiments [16]. In epidemiological settings, thigh-worn
sensors have been complemented by other sensors with the
intention to capture physical activity separately [17]. The
primary aim of this study was to describe the absolute

validity of a previously established activity energy expen-
diture prediction model [12] when applied to both wrists,
and to evaluate the validity of this estimation in predicting
total energy expenditure when combined with a simple
anthropometric prediction of resting energy expenditure [2].
The second aim was to use the same approach to derive and
validate similar energy expenditure estimation models using
thigh acceleration. The third aim was to explore the rela-
tionship between the dominant wrist, non-dominant wrist,
and thigh acceleration measures in free-living, and to derive
intensity models to facilitate harmonisation.

Subjects and methods

Participants were recruited from the Fenland study, an
ongoing cohort described in detail elsewhere [18]. We
aimed to recruit approximately 200 participants who had
previously indicated that they were interested in partici-
pating in future studies, were aged between 40 and 70 years,
with a BMI between 20 and 50 kg m−2. Recruitment aimed
to balance age, sex, and BMI distributions. Participants
were invited to attend an assessment centre on two separate
occasions, separated by a free-living period of 9 to 14 days.
Ethical approval for the study was obtained from Cam-
bridge University Human Biology Research Ethics Com-
mittee (Ref: HBREC/2015.16). All participants provided
written informed consent. Weight was measured to the
nearest 0.1 kg using calibrated digital scales (TANITA
model BC-418 MA; Tanita, Tokyo, Japan) at both visits.
Height was measured to the nearest 0.1 cm using a stadi-
ometer (SECA 240; Seca, Birmingham, UK) at the first
clinic visit. Body composition was also measured by DXA
(Lunar Prodigy Advanced, GE Healthcare, USA) as part of
the Fenland study. Total energy expenditure was measured
by doubly labelled water in 100 of the participants. Prior to
the first clinic visit, participants self-reported their current
weight, which was used to provide a body-weight-specific
dose of 2H2

18O (70 mg 2H2O and 174 mg H2
18O per kg

body weight). Participants brought a baseline urine sample
to their first clinic visit, and a second baseline sample was
taken at the clinic visit, prior to dosing. Participants were
provided labelled sampling bottles and asked to collect one
urine sample per day for the next 9–10 days, at a similar
time each day but not the first void of the day. Participants
were asked to record the date and time of each measurement
on the sample bottle label and separately on a provided
timesheet. Participants were asked to store the samples in a
container in a cool, dry place, such as a refrigerator, and to
return those samples at their second clinic visit at the end of
their free-living measurement period. Isotope ratio mass
spectrometry (2H, Isoprime; GV Instruments, Wythenshaw,
Manchester, UK and 18O, AP2003, Analytical Precision
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Ltd, Northwich, Cheshire, UK) was used to measure the
isotopic enrichment of the samples. All samples were
measured alongside laboratory reference standards, pre-
viously calibrated against the international standards
Vienna-Standard Mean Ocean Water (vSMOW) and
Vienna-Standard Light Antarctic Precipitate (vSLAP)
(International Atomic Energy Agency, Vienna, Austria).
Sample enrichments were corrected for interference
according to Craig [19] and expressed relative to vSMOW.
Rate constants and pool sizes were calculated from the
slopes and intercepts of the log-transformed data, with total
CO2 production (RCO2) calculated using the multi-point
method of Schoeller [20]. RCO2 was converted to total
energy expenditure [21] where the respiratory quotient was
informed by the macronutrient composition of the diet (see
below). Resting metabolic rate was measured at the start of
both clinic visits during a 15-min rest test in a supine
posture by respired gas analysis (OxyconPro, Jaeger, Ger-
many), after an overnight fast. Participants were asked not
to eat or drink anything but water 2 h prior to the appoint-
ment, and to refrain from smoking, chewing nicotine gum,
wearing nicotine patches, or engaging in heavy physical
activity. A seven-breath running median was calculated and
the lowest observed average rate over a 5 min consecutive
window was found, which was scaled down by 6% to
compensate for within-day elevation of resting metabolic
rates [22]. Basal metabolic rate was also estimated via three
different equations which differ in the specific body com-
position information utilised [2, 23, 24]. Resting energy
expenditure was primarily characterised as the nearest
measured value to the mean average estimated value, and a
further sensitivity analysis was conducted using exclusively
measured values. The final 24-h resting energy expenditure
estimates also included an adjustment for a 5% lower
metabolic rate during sleep [25], according to their reported
mean sleep duration. At the second clinic visit, participants
were asked to complete a Food Frequency Questionnaire
[26], which was used to estimate dietary intake over the past
year. The food frequency data was processed using FETA
[27], and the resulting calorie-weighted macronutrient pro-
file was used to calculate the Food Quotient and diet-
induced thermogenesis [28]. Diet-induced thermogenesis
was normalised by the total energy expenditure to total
energy intake ratio, as done previously [13]. At the first
clinic visit, participants were fitted with three waterproof
triaxial accelerometers (AX3, Axivity, Newcastle upon
Tyne, UK); one device was attached to each wrist with a
standard wristband, and one was attached to the anterior
midline of the right thigh using a medical-grade adhesive
dressing. The devices were setup to record raw, triaxial
acceleration at 100 Hz with a dynamic range of ±8g (where
g refers to the local gravitational force, roughly equal to
9.81 m s−2). Participants were asked to wear them

continuously for the following 8 days and nights while
continuing with their usual activities. They were also asked
to record their main sleep using a sleep diary throughout the
free-living period. The signals were resampled from their
original irregularly timestamped intervals to a uniform 100
Hz signal by linear interpolation, and then calibrated to
local gravity using a well-established technique [29, 30],
without adjustment for temperature changes within the
record. Periods of nonwear were identified as windows of
an hour or more wherein the device was inferred to be
completely stationary [11], where stationary is defined as
standard deviation in each axis not exceeding the approx-
imate baseline noise of the device itself (10 milli-g). Vector
Magnitude (VM) was then calculated from the three axes
(VM (X, Y, Z)= (X2+ Y2+ Z2)0.5), from which two accel-
eration intensity metrics were derived [31]; Euclidean Norm
Minus One (ENMO) subtracts 1 g from VM and truncates
any negative results to 0, and High-Pass Filtered Vector
Magnitude (HPFVM) applies a fourth-order high-pass filter
to the signal at a 0.2 Hz cut-off (3 dB). These analyses were
performed using pampro v0.4.0 [32]. In the non-doubly
labelled water group (n= 93), multi-level linear regression
with random effects at the participant level was used to
characterise each of the pairwise relationships between
dominant wrist, non-dominant wrist, and thigh acceleration
intensity using synchronised 5-min level data from each
source. We used these intensity relationships to derive new
activity energy expenditure estimation models for thigh and
dominant wrist-worn devices, by substituting the non-
dominant wrist term in our original models with the derived
equation to harmonise either dominant wrist or thigh
acceleration to non-dominant wrist acceleration. Activity
energy expenditure was estimated separately from each of
the acceleration signals by directly applying the appropriate
linear and quadratic equations given in Table 2 to 5-s level
data; the resulting 5-s level estimated activity energy
expenditure signal was then summarised to a mean-per-day
average activity energy expenditure using diurnal adjust-
ment to compensate for any between-individual bias intro-
duced by periods of nonwear [33]. To ensure a stable
estimate of this circadian model, a minimum of 72 h of valid
data was required per signal to be included in the analyses.
Predicted total energy expenditure (in MJ day−1) was cal-
culated as the sum of predicted activity energy expenditure
and predicted resting energy expenditure from the simplest
model (using only age, sex, height and weight) [2], and
dividing the result by 0.9 to account for diet-induced ther-
mogenesis [4]. Agreement between these two predictions
against measured activity energy expenditure and total
energy expenditure from doubly labelled water was for-
mally tested by calculating the pairwise mean bias and 95%
limits of agreement, Root Mean Squared Error (RMSE), and
Pearson’s correlation coefficient. Linear regression was
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used to characterise the relationship between the accelera-
tion measurements and activity energy expenditure/total
energy expenditure derived from doubly labelled water. As
the main focus of this paper is on absolute validity, these
relative validity results are supplied in the supplementary
material. The statistical tests were performed using Python
v3.6 and Stata v14 (StataCorp, TX, USA).

Results

A descriptive summary of participant characteristics is
given in Table 1. We recruited 193 participants, and the
group measured by doubly labelled water was split equally
between men and women. According to the doubly labelled
water measurements, mean (standard deviation) total energy
expenditure was 11.6 (2.3) MJ day−1, of which 6.6 (1.2)
MJ day−1 was resting energy expenditure. Mean (standard
deviation) activity-related acceleration (ENMO) per day
was 32.4 (8.3) mg on the dominant wrist, 28.8 (7.7) mg on
the non-dominant wrist, and 27.8 (10.9) mg on the thigh.
Mean dominant wrist acceleration was higher than non-
dominant wrist in 84% of participants.

Some accelerometry measurements were not included in
the analyses due to a combination of devices being lost by
participants (n= 7), device failures (n= 3), user error upon
download (n= 3), and insufficient wear time (n= 3). Of
those files that overlapped with doubly labelled water mea-
surements, three were dominant wrist records, three were non-
dominant wrist and nine were thigh records. There was no
loss of data in the doubly labelled water, anthropometry or
food frequency questionnaire measurements. Table 2 lists the
derived equations to predict activity energy expenditure from
each of the sensors, as informed by the harmonisation equa-
tions which are supplied in Supplementary Table 1. For
brevity, Table 3 summarises the absolute validity of the
quadratic HPFVM models applied to measurements from
both wrists and thigh with respect to activity energy expen-
diture and total energy expenditure derived from doubly
labelled water. A Bland–Altman plot illustrating the agree-
ment of these estimates is supplied in Fig. 1. A table sum-
marising the remaining models is given in Supplementary
Table 2. The difference in performance between each esti-
mation model was very minor; all activity energy expenditure
estimates had small negative mean biases (underestimates)
at the population level (average −2.8 kJ day−1 kg−1) but of

Table 1 Participant
characteristics, provided
separately for the doubly
labelled water and non-doubly
labelled water groups

DLW (n=100) Non-DLW (n=93)

Mean SD Min Max Mean SD Min Max

Sex (% women) 50% 41%

Age (years) 54.4 7.2 40.0 65.0 54.0 6.7 41.0 66.0

Height (m) 1.71 0.09 1.51 1.94 1.72 0.10 1.53 1.96

Weight (kg) 78.2 13.6 48.7 110.8 77.1 12.4 56.4 112.3

BMI (kg m−2) 26.5 3.4 20.4 36.6 25.9 2.9 20.4 35.3

TEE (MJ day−1) 11.60 2.32 6.52 16.43 – – – –

REE (MJ day−1) 6.61 1.24 3.74 9.86 – – – –

DIT fraction 0.10 0.01 0.08 0.12 – – – –

AEE (MJ day−1) 3.87 1.38 0.72 7.56 – – – –

AEE (kJ day−1 kg−1) 49.8 16.3 8.5 92.6 – – – –

kO 0.119 0.03 0.066 0.257 – – – –

kH 0.093 0.028 0.044 0.228 – – – –

NO (moles) 2124 434 1215 3131 – – – –

NH (moles) 2188 447 1251 3224 – – – –

DW ENMO (mg) 32.4 8.3 15.4 64.7 33.1 10.5 18.8 82.4

NDW ENMO (mg) 28.8 7.7 15.6 59.0 29.3 8.3 16.2 63.2

Thigh ENMO (mg) 27.8 10.9 13.2 76.3 28.2 10.0 12.6 80.5

DW HPFVM (mg) 48.5 11.0 25.7 85.9 49.6 12.8 31.4 105.7

NDW HPFVM (mg) 43.5 10.3 25.8 85.4 44.7 11.0 27.3 89.2

Thigh HPFVM (mg) 37.4 12.7 17.7 77.0 38.6 11.8 17.7 94.6

DLW doubly labelled water, BMI body mass index, TEE total energy expenditure, REE Resting energy
expenditure, AEE activity energy expenditure, DIT Diet-Induced Thermogenesis, DW Dominant Wrist,
NDW Non-Dominant Wrist, ENMO Euclidean Norm Minus One, HPFVM High-Pass Filtered Vector
Magnitude
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these only the thigh model biases were statistically significant.
RMSEs for activity energy expenditure ranged from 11.9 to
13.5 kJ;day

−1 kg−1 (24–27% of the mean), and 1.0 to 1.2 MJ
day−1 for total energy expenditure (8–10% of the mean).
Pearson correlations ranged from 0.6 to 0.69 with
activity energy expenditure, and from 0.87 to 0.91 with total
energy expenditure. Combined estimates using two or more
sensors lead to very negligible performance improvements
over single-sensor estimates. Signed estimation errors
were nominally positively correlated with body fat percentage
when using our primary characterisation of resting
energy expenditure (r= 0.18–0.25), and less so with exclu-
sively measured values (r= 0.10–0.17). For each estimate
there was a significant trend of overestimation in the
least active to underestimation in the most active (mean trend
r= 0.7 for activity energy expenditure and 0.45 for total

energy expenditure). In the non-doubly labelled
water group, 88 participants had at least 3 days of valid
simultaneous wrist signals during free-living, and 84 had
simultaneous wrist and thigh signals; around 200,000 5-min
observations were included in each of the regression
analyses. The between-individual explained variance between
dominant and non-dominant wrist intensity signals was
approximately 86% (99% within-individual), and the average
between-individual explained variance between wrist and
thigh intensities was approximately 49% (97% within-
individual). The derived linear models to harmonise the
acceleration signals are listed in Supplementary Table 1. The
final models given to estimate activity energy expenditure
from dominant wrist and thigh in Table 2 were the result of
substituting these harmonisation equations into the original
non-dominant wrist models.

Table 2 Derived linear and
quadratic equations to estimate
activity energy expenditure
(J min−1 kg−1) from wrist and
thigh acceleration intensity
(4.184 J min−1 kg−1= 1 cal, and
71.225 J min−1 kg−1= 1 net
metabolic equivalent task
(MET))

Placement Metric Formulae to estimate AEE in J min−1 kg−1

NDWa ENMO 5.01+ 1.000*x

NDWa ENMO −10.58+ 1.1176*x+ 2.9418*sqrt(x)−0.00059277*(x^2)

NDWa HPFVM −4.65+ 0.8537*x

NDWa HPFVM −1.25+ 1.1353*x − 2.4281*sqrt(x)−0.00040270*(x^2)

DW ENMO 5.01+ 1.000*(1.5+ .8517*x)

DW ENMO −10.58+ 1.1176*(1.5+ .8517*x)+ 2.9418*sqrt((1.5+ 0.8517*x))−0.00059277*
((1.5+ .8517*x)^2)

DW HPFVM −4.65+ 0.8537*(1.3+ .8781*x)

DW HPFVM −1.25+ 1.1353*(1.3+ .8781*x)−2.4281*sqrt((1.3+ 0.8781*x))−0.00040270*
((1.3+ .8781*x)^2)

Thigh ENMO 5.01+ 1.000*(13.4+ .5674*x)

Thigh ENMO −10.58+ 1.1176*(13.4+ 0.5674*x)+ 2.9418*sqrt((13.4+ 0.5674*x))
−0.00059277*((13.4+ .5674*x)^2)

Thigh HPFVM −4.65+ 0.8537*(20.3+ 0.6401*x)

Thigh HPFVM −1.25+ 1.1353*(20.3+ 0.6401*x)−2.4281*sqrt((20.3+ 0.6401*x))
−0.00040270*((20.3+ 0.6401*x)^2)

x refers to acceleration (mg) measured at the relevant anatomical site, characterised with the relevant metric
aPublished in ref. [12]

Table 3 Agreement between
estimated activity energy
expenditure from the HPFVM
quadratic models with those
derived from doubly labelled
water

Placement Activity energy expenditure
(kJ day−1 kg−1)

Total energy expenditure
(MJ day−1)

N Biasa 95% LoA r RMSE N Biasa 95% LoA r RMSE

Dominant wrist 97 −1.9 −26.0 22.2 0.644 12.4 97 −0.3 −2.2 1.7 0.903 1.0

Non-dominant wrist 97 −1.5 −25.1 22.1 0.676 12.1 97 −0.3 −2.1 1.6 0.911 1.0

Thigh 91 −4.2 −29.6 21.2 0.599 13.6 91 −0.5 −2.7 1.7 0.874 1.2

Both wrists 94 −1.9 −25.1 21.3 0.669 11.9 94 −0.3 −2.1 1.6 0.911 1.0

Non-dominant wrist &
Thigh

89 −3.3 −26.2 19.6 0.687 12.1 89 −0.4 −2.3 1.5 0.909 1.0

Dominant wrist & Thigh 88 −3.5 −27.2 20.1 0.644 12.5 88 −0.4 −2.4 1.5 0.902 1.1

Both wrists & Thigh 86 −3.4 −25.9 19.2 0.675 11.9 86 −0.4 −2.2 1.4 0.914 1.0

aBias estimates in bold are statistically significant at p < 0.05 (none of the TEE estimates were statistically
significantly different)
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Discussion

In this work, we have applied our previously derived
activity intensity estimation models [12] to wrist accelera-
tion signals (after harmonising the intensity of dominant
wrist to non-dominant wrist) and investigated their

agreement with a gold-standard measure of activity energy
expenditure. We arrived at estimates that were moderately
correlated with the criterion (r > 0.6) with small and non-
significant mean biases at the population level from both
wrists and RMSEs of approximately 12 kJ day−1 kg−1. We
have also introduced and validated new intensity estimation

Fig. 1 Bland–Altman plots illustrating agreement between the activity energy expenditure and total energy expenditure estimates from HPFVM
quadratic models with those from doubly labelled water, where the X-axis indicates the observed values
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models for thigh acceleration, demonstrating similar per-
formance to the wrist models. We then used the activity
energy expenditure estimates to model total energy expen-
diture by combining with anthropometry-based predictions
of resting energy expenditure; we found stronger agreement
with the criterion (r= 0.9, RMSE= 1.0 MJ day−1) due in
part to the relatively high accuracy of resting energy
expenditure prediction equations. We observed that domi-
nant wrist acceleration was on average 12% higher than
non-dominant wrist in free-living individuals, but that those
measures were very highly correlated (r= 0.93), allowing
us to derive conversion models which harmonise accelera-
tion intensity measured at either wrist. To our knowledge,
this is the first demonstration of the absolute validity of a
time-integrated predictive model of activity intensity for
either wrist or thigh accelerometry. Our findings on the high
correlation between dominant wrist and non-dominant wrist
acceleration in free-living individuals are consistent with a
previous study in a small convenience sample (n= 40) [34].
They also observed ~5% higher dominant wrist than non-
dominant wrist acceleration, but it was not a statistically
significant difference, perhaps due to the shorter duration of
measurement and smaller sample size. In our relative
validity tests, we found that each wrist separately explained
a similar variance in activity energy expenditure, and
inclusion of both wrist measurements in the linear models
did not drastically improve performance over either wrist
measurement alone. Taken together, these results are indi-
cative of a high degree of upper-body symmetry. One
implication of these findings is that irrespective of hand
dominance, wrist acceleration measurements are naturally
conducive to harmonisation across studies, making them
well suited to pooled- and meta-analysis. Conversely, it
implies that implementing dual wrist measurements may be
a largely redundant exercise for studies whose primary
intention is to capture activity energy expenditure. How-
ever, there is a possibility that future methodological
advances in the field of activity recognition may be able to
better utilise simultaneous wrist signals, which could yield a
more precise instantaneous estimation of activity energy
expenditure. The estimation models validated herein for the
wrist were derived using a training dataset in which non-
dominant wrist acceleration data was collected at 60 Hz
with a GeneActiv device [12], and were successfully vali-
dated using 100 Hz data collected with an Axivity AX3.
The acceleration sampling frequency difference proved not
to be an issue, because both likely satisfy the Nyquist
sampling theorem across most or all human activities, and
the models use mean movement intensity calculated over a
5-s window which make them robust to the number of
samples that contribute to that mean. With an additional
harmonisation step, the model also translated to acceptably
strong inferences on the dominant wrist, albeit with a

slightly increased error. This indicates that our models
capture a generalised biomechanical relationship of wrist
movement, rather than being superficial transformations of a
specific device’s output to activity energy expenditure. It
therefore suggests that these models are applicable to any
wrist-worn device which provides raw, unfiltered triaxial
acceleration data expressed in SI units. The associations
between wrist acceleration and observations from DLW
have been reported before, in pregnant and non-pregnant
Swedish women [11]. In that population it explained
27% of the variance in activity energy expenditure
(kJ day−1 kg−1) in non-pregnant women (n= 48), but only
5% in pregnant women (n= 26); however, those wrist
measurements were evenly divided between left and right
wrist, which most likely lead to a mix of dominant and non-
dominant wrist measurements and potentially attenuated the
correlations. The previously established estimation models
applied to the non-dominant wrist resulted in robust esti-
mates with small, non-significant mean biases, which is a
strong justification for using this inference scheme to infer
activity energy expenditure in free-living individuals. The
higher average of the dominant wrist would have led to a
significant overestimation had we applied the original non-
dominant wrist model, but our harmonisation approach
effectively scaled the dominant wrist measure down to the
level of non-dominant wrist, ultimately leading to virtually
identical results. We used simple linear models to harmo-
nise movement intensities between the different anatomical
sites, which while evidently effective, may be improved
upon in the future using more sophisticated techniques,
such as nonlinear equations or neural networks. The Bland–
Altman analyses showed trends of overestimation in the
least active to underestimation in the most active across all
estimation models, indicating that the models performed
less precisely in absolute terms towards the extremes of
high and low activity levels. These trends were stronger in
the dominant wrist and thigh-based estimates, which may be
a consequence of the additional harmonisation step causing
an attenuation of the relationship.

We note that physical activity was measured by domi-
nant wrist accelerometry in UK Biobank [8]. We have now
demonstrated the validity of this approach in a demo-
graphically comparable sample. Specifically, the absolute
validity result for ENMO in Supplementary Table 2
demonstrates that our linear estimation model applied to
ENMO at 5-s resolution yielded a valid activity energy
expenditure estimate, with a small mean bias and a RMSE
of 13 kJ day−1 kg−1 and moderately high correlation (r=
0.61). Consequently, we can use the equations for dominant
wrist in Table 2 to solve for salient energy expenditure
values—for example, three metabolic equivalents (activity
energy expenditure ~142 J min−1 kg−1) is the generally
accepted threshold for “moderate” activity intensity, and our
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ENMO equations suggest this is approximately 159 mg on
the dominant wrist. Our findings for the thigh acceleration
models demonstrate that thigh-worn accelerometers capture
an information-rich biomechanical signal, from which valid
estimates of activity energy expenditure can be made. As a
consequence of the larger y-intercepts of the thigh models,
their minimum estimated activity energy expenditure ranges
from 10 to 18 J min−1 kg−1 (0.15–0.25 metabolic equiva-
lents). To our knowledge, only one previous study has
described the association between thigh acceleration and
activity energy expenditure from doubly labelled water, in a
small study of free-living cancer patients and controls [35];
which reported very low agreement between the manu-
facturer’s proprietary activity energy expenditure prediction
and the criterion. While thigh-worn sensors do not yet have
the same popularity as wrist-worn sensors [36, 37], large-
scale data collections are planned for the future [38]. Our
models enable new analyses to be conducted in those
existing datasets, and may make thigh-worn accelerometry
a more appealing option for future studies if issues of fea-
sibility can be addressed. Some have suggested that simple
movement intensity approaches should be replaced by more
sophisticated models that utilise a broader range of signal
features [39, 40]. Recent efforts to estimate energy expen-
diture have utilised a range of machine learning approaches,
such as neural networks [41–43] and random forests [39].
While we are not aware of any such methodology with a
performance that exceeds the simpler models validated in
this paper, this is an interesting area of future work. The
results of our absolute validity tests demonstrate that
deriving intensity models using a “silver-standard” criterion
(such as individually calibrated heart rate and uniaxial
movement sensing) in a large sample of free-living adults is
a sound approach. The combined sensing estimate of
activity energy expenditure is less precise than respiratory
gas analysis which can be captured in laboratory studies
[44] but there are several reasons why we have been able to
derive superior models to previous approaches. Firstly, the
dataset was collected in free-living participants, and is
therefore representative of the intended application, as
opposed to artificial scenarios and activities performed in a
laboratory. Secondly, the combined sensing approach
embedded in a cohort study allowed the collection of a
volume of data many orders of magnitude greater than any
laboratory study has for this purpose. Our training
dataset alone contained over 16.6 person-years of obser-
vation (>1.7 million data points). One disadvantage of this
approach is that we are unable to capture categorical
labelled data, so there is no opportunity to explore activity
type recognition. It is appropriate to compare our absolute
validity results here with those of combined sensing itself
[13]. The best estimate with treadmill test calibration
resulted in a RMSE of 20 kJ day−1 kg−1 (30% of the 66 kJ

day−1 kg−1 criterion mean), non-significant positive mean
bias of approximately 4 kJ day−1 kg−1 (6%) at the popula-
tion level, and a correlation of 0.67 in a sample of 50 UK
adults. Compared to the present results, all estimations here
had considerably lower RMSEs of around 12 kJ day−1 kg−1

(25% of the 50 kJ day−1 kg−1 mean), similar magnitude but
negative mean biases (~6%), but generally higher correla-
tions. However, our study participants were significantly
less active overall according to the criterion, ultimately
leading to a similar relative accuracy. Combined sensing
model errors were also uncorrelated to body fat percentage,
whereas errors of accelerometry-only models seem to dis-
play this characteristic, albeit less so in the present study (r
= 0.22 versus r= 0.63 for uniaxial trunk acceleration).
Contrasting the feasibility of the methods, however, wrist
accelerometry has the advantages of being cheaper, less
burdensome to both participants and research staff, and does
not require individual calibration using an exercise test.
Comparing performance of other devices worn on the upper
limbs, validation of the now-discontinued SenseWear Pro3
and Mini also achieved no significant bias with respect to
total energy expenditure, but with lower correlations
(r= 0.84) than any of our total energy expenditure models
(r= 0.9) and wider limits of agreement [45] and with lower
feasibility. An evaluation of activity energy expenditure
estimates based on waist-worn accelerometry in 683 adults
observed a mean estimation bias of −2.5 kJ day−1 kg−1 and
95% limits of agreement between −33 and 30 kJ day−1 kg−1

[46]. Unlike our study design their measurements were not
strictly simultaneous, so their results describe the ability of
estimates to characterise the latent activity level of the
population, for which uncertainty would be expected to be
higher. In summary, we have evaluated the absolute validity
of intensity models of activity energy expenditure from
wrist and thigh accelerometry, and concluded that they
provide sufficiently precise and accurate estimates in free-
living adults. With the addition of predicted resting energy
expenditure to produce total energy expenditure, we found
even stronger validity at the population level. Considering
its feasibility, wrist accelerometry emerges as a viable
candidate for deployment in a large-scale studies, including
physical activity surveillance and the prediction of total
energy expenditure in dietary surveys.
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