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BACKGROUND: Threshold of Toxicological Concern (TTC) approaches are used for chemical safety assessment and risk-based
priority setting for data poor chemicals. TTCs are derived from in vivo No Observed Effect Level (NOEL) datasets involving an
external administered dose from a single exposure route, e.g., oral intake rate. Thus, a route-specific TTC can only be compared to a
route-specific exposure estimate and such TTCs cannot be used for other exposure scenarios such as aggregate exposures.
OBJECTIVE: Develop and apply a method for deriving internal TTCs (iTTCs) that can be used in chemical assessments for multiple
route-specific exposures (e.g., oral, inhalation or dermal) or aggregate exposures.

METHODS: Chemical-specific toxicokinetics (TK) data and models are applied to calculate internal concentrations (whole-body and
blood) from the reported administered oral dose NOELs used to derive the Munro TTCs. The new iTTCs are calculated from the 5th
percentile of cumulative distributions of internal NOELs and the commonly applied uncertainty factor of 100 to extrapolate animal
testing data for applications in human health assessment.

RESULTS: The new iTTCs for whole-body and blood are 0.5 nmol/kg and 0.1 nmol/L, respectively. Because the iTTCs are expressed
on a molar basis they are readily converted to chemical mass iTTCs using the molar mass of the chemical of interest. For example,
the median molar mass in the dataset is 220 g/mol corresponding to an iTTC of 22 ng/L-blood (22 pg/mL-blood). The iTTCs are
considered broadly applicable for many organic chemicals except those that are genotoxic or acetylcholinesterase inhibitors. The
new iTTCs can be compared with measured or estimated whole-body or blood exposure concentrations for chemical safety
screening and priority-setting.

SIGNIFICANCE: Existing Threshold of Toxicological Concern (TTC) approaches are limited in their applications for route-specific
exposure scenarios only and are not suitable for chemical risk and safety assessments under conditions of aggregate exposure. New
internal Threshold of Toxicological Concern (iTTC) values are developed to address data gaps in chemical safety estimation for
multi-route and aggregate exposures.
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INTRODUCTION

Hazard and exposure data required for the human health
assessment of thousands of chemicals are limited. Risk-based
chemical priority setting methods are being developed and
applied to identify those chemicals that pose the greatest health
concern to focus resources and assessment efforts [1-5]. New
Approach Methods (NAMs) are being developed and applied to
reduce animal testing and address hazard and exposure data
gaps, including the US Environmental Protection Agency’s ToxCast
[6] and ExpoCast [7-9] programs and the Exposure And Safety
Estimation (EAS-E) Suite platform (www.eas-e-suite.com). The
Threshold of Toxicological Concern (TTC) is a well-established
approach [10-14] used to address hazard data gaps by regulatory
agencies such as Health Canada [15], the European Food Safety
Agency (EFSA) [16], and the US Food and Drug Administration

[17]. In the absence of chemical-specific toxicity data, the TTC
approach provides an estimate for a level of exposure in which no
appreciable human health risk is expected [18]. A review by EFSA
and the World Health Organization (WHO) [19] concluded that the
TTC is a fit-for-purpose approach with broad applicability for risk
estimation. Subsequently, Patlewicz et al. [20] selected a daily oral
exposure-based TTC and high throughput exposure predictions
from ExpoCast for approximately 8000 chemicals to demonstrate a
risk-based priority setting method.

Humans can be exposed simultaneously from multiple exposure
pathways, i.e., aggregate exposure, and this limits the application
of route-specific TTCs such as a daily oral exposure-based TTC. For
example, Health Canada discusses the challenge in applying an
oral TTC value for screening risk evaluations to chemicals for
which exposure occurs by other routes, such as dermal or
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inhalation [15]. Current TTCs derived from in vivo experimental
data are exposure-route specific. For example, oral (ingestion)
based TTCs were first developed 15-20 years ago [11, 12, 14].
Following the general approach for ingestion based TTCs,
inhalation TTCs, e.g,, [21], and dermal TTCs, e.g., [22], have also
been developed. Partosch et al. [23] proposed a route-to-route
extrapolation method by revising the TTC to account for oral
bioavailability; however, this proposed method does not ade-
quately address the situation because it ignores other toxicoki-
netic (TK) processes [24, 25]. The concept of an internal TTC (iTTC)
has been proposed, e.g., [26-28] to address current limitations of
the TTC so the approach can be applied more broadly including
comparisons with aggregate exposure estimates. Essentially iTTCs
can be determined from the same data used to derive external
TTCs by applying TK data and models to convert external
exposure doses to internal exposure doses, e.g., concentrations
in blood or plasma [27, 28]. However, as highlighted in proposed
iTTC workflows, e.g., [27-29] one of the principal limitations in
applying TK models in this manner is the paucity of chemical-
specific TK data, e.g., biotransformation rates, for all chemicals in
the TTC databases. The ExpoCast program and other research
have advanced TK modeling for data poor chemicals using in silico
and in vitro NAMs for high throughput toxicokinetic (HTTK) and
exposure models, e.g., [8, 9, 30-33]. Advancements include the
development and validation of quantitative structure-activity
relationships (QSARs) for predicting total (terminal) elimination
half-lives and whole-body biotransformation half-lives in humans
(HLy and HLg, respectively) [34, 35] for parameterizing TK models
for applications in regulatory decision-making [36].

This study applies available TK data and models to derive in vivo
iTTCs for whole-body and blood using No Observed Effect Levels
(NOELSs) reported for oral exposures. This approach is demon-
strated as a case study with the NOEL dataset used to derive the
Munro oral exposure TTCs [11]. A tiered approach for applying TK
data to estimate steady-state internal concentrations preferentially
uses measured in vivo TK data when available and model
estimates for TK parameters when measured in vivo data are
lacking. A one-compartment physiologically-based toxicokinetic
(1-CoPBTK) model for mammals parameterized with available
in vitro, in vivo and in silico data is used to estimate chemical-
specific TK parameters in the absence of measured in vivo TK data.
Cumulative distributions of the new internal exposure concentra-
tions corresponding to the Munro NOELs are used to select the
5th percentile values from which new iTTCs for whole-body and
blood are calculated with commonly applied uncertainty factors.
Recommendations for improving the approach and to expand and
better define the chemical applicability domain of the new iTTCs
are provided.

METHODS

General toxicokinetic model

Figure 1 provides a conceptual overview of the general methods
developed and applied to calculate internal concentrations from exposure
doses and to derive new whole-body and blood iTTCs. The fundamental
relationship between external exposures (used for TTCs) and internal
exposures (used for iTTCs) is determined by chemical- and organism-
specific toxicokinetics. An internal whole-body exposure (dose) can be
calculated from an external oral ingestion rate (dose) as:

Cws = ODXAE/kr = NOEL x AE/kr (1

where Cyp is the steady-state whole-body concentration (mg/kg-body),
OD is the oral dose (mg/kg-body/d), AE is the chemical absorption
efficiency (unitless) from the gastrointestinal tract (GIT), and kr is the first-
order whole-body total (terminal) elimination rate constant (1/d). In the
current application of the models, OD is replaced with reported NOEL (mg/
kg-body/d). The AE parameter is different from oral bioavailability (F; often
expressed as a percentage) because F includes first pass effects in the liver
and AE quantifies chemical absorption from the GIT lumen into blood
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Fig. 1 Conceptual overview of the approaches used in this study
to derive iTTCs. External dose NOELs were converted using a
general toxicokinetic model to generate the cumulative distribution
of internal NOELs, and then lower 5th percentile internal NOEL value
was divided by a 100-fold adjustment factor to calculate the iTTC.

(portal vein) [37]. The ky parameter is the sum of individual chemical
elimination process rate constants as:

kr = kg + ke + ky + kg + kg (2)

where kg, kg, ky and kg are rate constants for respiratory elimination, fecal
egestion, urinary excretion (renal clearance), and biotransformation
(metabolism), respectively. These rate constants constitute the primary
chemical elimination processes in an organism. For persistent chemicals
that are very slowly eliminated and very slowly biotransformed, organism
growth can influence the concentration, therefore, kg (rate constant to
account for growth) can be included as a “pseudo” elimination rate process
in the steady-state calculation. ky can be measured in vivo or calculated
using PBTK models. First order rate constants operating at an organism
level can be converted to whole-body half-lives and vice versa, e.g.,
HLt = In2/ky and HLg = In2/kg. Steady-state blood concentrations (Cg; mg/
L-blood) can be calculated from Cyg using the steady-state volume of
distribution referenced to blood (Vp; L-blood/kg-body) as:

Cs = Cwe/Vp (3)

Munro TTC dataset

The NOELs from the original Munro database derived from administered
oral doses were used in Eq. 1, i.e, OD = NOEL, to calculate internal dose
Cwg and Cg. The original Munro oral TTC values were derived from 613
organic chemicals associated with 2941 NOELs from non-cancer endpoints
in toxicity studies conducted in rats (n =489), mice (n=90), hamsters
(n=131), and rabbits (n=3). As detailed in Munro et al. [11] the 613
chemicals were assigned to three Cramer classes based on the Cramer
classification scheme [38] (i.e., Class | — low; n =137, Class Il — medium;
n =28, Class Ill - high level of concern; n =448). A TTC for each Cramer
class used by Munro et al. [11] was determined using the 5th percentile
NOEL and dividing by an uncertainty factor of 100 to obtain intake rate
based TTCs of 30, 9.0 and 1.5 pg/kg-bw/d for Cramer class |, Il and Ill,
respectively for a 60 kg adult. The “original” Munro dataset [11] as reported
by Bassan et al. [39] which includes Simplified Molecular Input Line Entry
System (SMILES) notations [40] was used. The Munro et al. NOEL toxicity
data summarized by Bassan et al. [39] were not critically evaluated;
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Fig. 2 Tiered approach and workflow for parameterizing toxicokinetics models with whole-body total (terminal) elimination rate
constant (ky) and whole-body biotransformation rate constant (kg) data to calculate internal doses from the reported NOELs in the
Munro TTC database [11, 39] as derived from external oral doses. Blood concentrations (Cg or Cp 004q) are then calculated from whole body
concentrations (Cyg) as shown in Eq. (3). Absorption efficiency (AE) is used in the parameterization of the default and alternative #1 models
while oral bioavailability (F) is used in the alternative model #2 calculations.

however, a cursory analysis of the SMILES associated with the database
was conducted. The exposure dose was determined as chemical quantity
(e.g., mmol-chemical/kg/d), not mass (e.g., mg-chemical/kg/d) because it is
the quantity of chemical, not its mass, at a site of toxic action that may
elicit a biological response. Further comments on the Munro data are in
the Supplementary Information (Sl). Chemicals identified as genotoxic or
acetylcholinesterase inhibitors as used in other TTCs were not
included here.

Model parameterization

Figure 2 shows tiers of TK data used to parameterize kr in Eq. 1 to estimate
internal doses (Cyg and Cg) from the NOELs reported in the Munro TTC
dataset [11, 39]. In Tier 1 measured in vivo ky data are used to parameterize
Eqg. 1. For chemicals without in vivo k; data, Tier 2 uses the 1-CoPBTK
model parameterized with in vitro and in silico (QSAR) estimates for kg to
calculate kr that is then used in Eq. 1. The 1-CoPBTK model is generic in the
sense that it can be readily parameterized for (i) many mammalian species
requiring only minimal organism specific parameters to predict physiolo-
gical processes, and (i) many organic chemicals requiring only minimal
chemical-specific parameters, e.g., kg and distribution ratios. The 1Co-PBTK
model is part of a general modeling framework that has been applied and
evaluated for various mammals over the past 20 years, e.g., [33, 34, 41-44].
Details of the 1-CoPBTK model are presented in the SIl. The 1Co-PBTK
models are coded in the EAS-E Suite HTTK module (www.eas-e-suite.com)
for HTTK applications for an adult male human and rat.

A literature search for measured in vivo mammalian TK data for the
chemicals in the Munro database [11] was conducted. Rat in vivo k; data
were selected preferentially for toxicity studies for rats, and mouse in vivo
kr were selected preferentially for toxicity studies using mice; however, if
there were no rat data for a chemical but mouse data were available then
the in vivo mouse data were used and vice versa using allometric scaling.
In vivo human kg values were scaled to test animal specific kya values
using the following allometric relationship:

kra = krpx (My/Ma)*? ()

where My is the human body mass (70 kg) assumed for the empirical kry
data and M, is the experimental animal body mass (assumed 0.025 kg for
mouse, 0.25 kg for rat and hamster, and 5 kg for rabbit studies).

In absence of any empirical in vivo kr data, the Tier 2 methods for
parameterizing Eq. (1) were applied. In Tier 2 test animal specific kr  values
were calculated using the 1-CoPBTK model with kg estimates from (i)
hepatocyte assays and common in vitro-in vivo extrapolation (IVIVE)
models and (ii) QSARs for predicting HLgy (in humans). Details of the IVIVE
calculations for scaling in vitro biotransformation rates to kg are provided
in the SI. The five HLgy QSARs [34, 35] used here were developed from
in vivo human data as described by Arnot and colleagues [34]. Predicted
HLg 4 values were converted to kg as kg = In2/HLg 4 and kg values were
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then scaled to toxicity test animal body mass values (kg ) using allometric
scaling Eq. 4 replacing ky with kg. The QSARs have been developed and
validated following OECD guidance for QSAR applications in regulatory
decision-making [36]. The QSAR predictions include Applicability Domain
(AD) information as detailed in the SI. When in vitro biotransformation
rates were available from rodents or humans the IVIVE estimates of kg were
combined with “in” domain HLg-QSAR predictions to calculate a geometric
mean for kg that was then used to parameterize the test animal 1-CoPBTK
models. If in vitro biotransformation rates were not available, the
geometric mean of the “in” domain QSAR predictions for kg were
calculated to parameterize the 1-CoPBTK models.

Alternative TK model assumptions. Equation (1) requires an estimate for
oral AE. An AE model that is primarily a function of the octanol-water
partition coefficient (Kow) and chemical residence time in the GIT [45] was
used in the default calculations (see Sl for details). One principal limitation
when applying the general TK model described in Eq. 1 is the absence of a
first-pass effect in the liver. The parameter AE in Eqg. (1) considers
absorption from the GIT into the portal vein and does not explicitly
account for the potential reduction in systemic blood concentrations (and
whole-body concentrations) that may occur if there is significant
biotransformation in GIT tissues or the liver. While AE is conservative for
exposure assessment it may be inappropriate when estimating internal
hazard values from external doses. Empirical estimates of bioavailability (F)
from the literature from studies with mammals (humans, rats) were
obtained to address the potential error of ignoring first-pass effects in the
default model parameterization. In the absence of empirical estimates of F,
predictions from the ACD Labs model (Release 2019.2.1, Build 3285. 16 Jan
2020) were obtained. The general model was then parameterized with F
instead of AE for a second set of calculations and this is referred to as
alternative model #1. For the TK model calculations, a minimum value of
1% was set for AE and F when estimates were < 1%.

The HTTK model used to estimate kr for the test animals includes two
options for predicting renal clearance. The first option used in the default
model assumes urine excretion is a function of equilibrium partitioning
between the body and urine as is commonly used in 1-CoPBTK models used
for environmental exposure estimation [33, 34, 41, 44]. A second option
assumes the glomerular filtration rate methods that are more commonly
used in IVIVE TK models [31, 32]. The glomerular filtration prediction method
results in faster rates of renal clearance compared to the partitioning model
for more water-soluble chemicals, i.e., log Kow < 3. When urinary excretion of
chemicals is faster, kt becomes faster resulting in lower predicted internal
concentrations. To address some of the uncertainty in renal elimination rates
an additional set of simulations using the glomerular filtration calculation
method was combined with the assumption of using F instead of AE and this
approach is referred to as alternative model #2.

Hepatic blood flow limitations can occur for chemicals that are rapidly
biotransformed in the liver and biotransformed slowly, or not at all, in other
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compartments of the body. Under these conditions the net effect of error is
that ky values calculated from a 1-CoPBTK model can be faster than ky values
calculated from a multicompartment PBTK model parameterized with
hepatic clearance estimates only [44]. Many chemicals are biotransformed in
other compartments of the body and for such chemicals the potential
hepatic blood-flow limitations could be irrelevant. It is not currently possible
to explicitly address the potential errors that may exist in the 1-CoPBTK
model kr calculations for these conditions because the uncertainty in
potential extra-hepatic clearance is not known for most chemicals in the
Munro database. Fortunately, in the absence of empirical k; data, the
approach here uses whole-body estimates of biotransformation (kg) that
account for hepatic as well as extra-hepatic biotransformation [34].

Physical-chemical properties. Physical-chemical properties required to
parameterize the generic 1-CoPBTK models include molar mass, pKa (for
ionizable organics), Kow and octanol-air partition coefficients (Koa).
Chemical data are summarized in the SI.

RESULTS

Model input parameters

Munro dataset. The NOELs in the Munro TTC dataset span about
6 orders of magnitude ranging from 0.005 (Haloxyfop-methyl) to
7,203 (Calcium cyclamate) mg/kg/d with a median value of 30 mg/
kg/d. When the NOELs were converted to a molar basis for the
discrete organic moiety, the external NOELs span about 7 orders
of magnitude ranging from 1.3 x 102 (dieldrin) to 114 mmol/kg/d
(ethanol) with a median of 0.14 mmol/kg/d. When expressed as
external molar concentrations some of the chemicals with the
lowest NOEL doses (~ 107> mmol/kg/d) are dieldrin, haloxyfop-
methyl, abamectin B1, zeranol. Chemicals with some of the
highest external NOEL doses (~ 10-100 mmol/kg/d) include
alcohols, e.g., ethanol, methanol, glycerol, propylene glycol.

The Munro TTC dataset comprises a diverse range of chemical
classes and properties. The molar mass of the administered
chemicals (including salt formulations) ranges from 30 to 1,135 g/
mol with a median of 223. The molar mass of the discrete organic
molecules in the dataset ranges from 23 to 1,135 g/mol with
a median of 220. For the discrete organic chemical structures, the
measured log Koy values (n =402/613) range from —5.4 to 10.0
and the geometric means of the predicted log Kow values range
from —6.0 (B-cyclodextrin) to 16.2 (stearyl tartrate) for the
remaining chemicals. Due to a general lack of measured Koa
data, the Koa values required to parameterize the 1-CoPBTK model
were predicted from QSARs and polyparameter linear free energy
relationship (ppLFERs). The geometric means of the predicted log
Koa values range from 1.2 to 25. One hundred ninety-six of the
chemicals were classified as mono-protic acids with pKas ranging
from —3.6 to 11.3, with a median of 4.6. Fifty-eight of the
chemicals were classified as mono-protic bases with pKas ranging
from 4.0 to 13.6, with a median of 7.6.

Summary of in vitro, in vivo and in silico TK data. In vivo rat and
mouse HL; data were found for 38 and 4 chemicals in the Munro
database, respectively. In vivo HLy data from human studies were
found for 63 chemicals. Combined there were empirical in vivo
HL; estimates for 91 of the 613 chemicals. In vitro rat and human
hepatocyte biotransformation rates were obtained for 18 and 102
chemicals, respectively. The in vitro biotransformation rates were
critically evaluated for data quality using methods and criteria
described elsewhere [46]. Combined there are in vitro measure-
ments for 111 of the chemicals for which there were no in vivo HL;
measurements. Whole-body biotransformation half-lives (HLg)
predicted by QSARs [34, 35] that were within their defined
applicability domains were used for 522 of the 613 Munro TTC
database chemicals.

The measured in vivo HLy data (at 0.25 kg-bw) range from 0.02
to 4700 hours with a median of 1.6 h. The in vitro and in silico HLy
data (at 0.25 kg-bw) range from 0.02 to 8,100 hours with a median
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of 1.1 h. Combining the in vivo with the in vitro and in silico
estimates, the HL; values used to estimate internal exposures
range from 0.02 to 4700 hours (spanning about 6 orders of
magnitude) with a median of 1.1 h. The distribution of estimated
HLt is very similar to the distribution of empirical HLy. Chemicals
with the shortest HLt (ca. a few minutes) include formaldehyde,
formic acid, and vinyl chloride. Chemicals with the longest HL; (ca.
60 to 200 d) include Persistent Organic Pollutants (POPs) listed
under the Stockholm Convention like PCBs, mirex, polybromi-
nated diphenyl ethers (PBDEs), p,p-DDT, lindane, dieldrin, and
hexachlorobenzene.

Empirical estimates of oral bioavailability (F) from experimental
studies with mammals were found for 53 chemicals (see TK
databases in EAS-E Suite; www.eas-e-suite.com). The empirical
estimates for F range from 5 to 100% (median = 74%) and are in
reasonable agreement with the default AE model calculations and
the ACD Labs F calculations. The net result of applying the
alternative model #1 is a lower value in the numerator (Eq. 1) and
hence a lower predicted internal concentration for chemicals
when F is lower than AE. Most potential errors in estimating AE
and F are considered relatively minor in the current context
because if for example the true value is 50% instead of 100% then
the predicted steady-state internal exposure concentrations are
overestimated by only a factor of 2.

Model calculations

Default model. The calculated whole-body concentrations for the
database range from 9.9x10™* to 1.3x10* pmol/kg (spanning over
7 orders of magnitude) with a median of 9.7 pmol/kg. The
calculated molar blood concentrations for the database range
from 3.2x10™* to 2.1x10® pmol/L-blood (spanning almost 7 orders
of magnitude) with a median of 3.9 pmol/L-blood. When
expressed as internal molar concentrations (whole-body or blood),
many of the more potent chemicals in the dataset are known
bioactive chemicals and biocides, e.g., glufosinate, abamectin B1,
zeranol, haloxyfop-methyl, tetrakis(hydroxymethyl)phosphonium,
and paraquat. Some examples of chemicals with the highest
internal molar doses (indicating relative lower potency) are those
often included in food, e.g., quercetin, various simple alcohols,
some dyes (food additives), and relatively unreactive chemicals
like DDT, PBDEs, and PCBs.

External and internal chemical concentration comparisons. Fig-
ure 3 compares administered external doses (umol/kg/d) and

internal whole-body concentration doses (umol/kg)
6
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Fig. 3 External and internal doses corresponding to NOELs in the
Munro TTC database [11, 39]. The dashed diagonal line represents
the 1:1 line.
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Table 1. Summary of new iTTCs derived in this case study.

Modeling approach

Default Alternative #1 Alternative #2 Selected*
Blood iTTC (nmol/L) 0.22 0.085 0.083 0.10
Whole-body iTTC (nmol/kg) 0.74 0.29 0.23 0.50

*Given the general uncertainty in the hazard and TK data, a value approximating central tendency from the three estimation methods is selected and
recommended for iTTCs for organic chemicals other than those indicating genotoxicity or acetylcholinesterase inhibition.
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Fig. 4 Cumulative distribution of modeled blood concentrations corresponding to NOELs reported in the Munro TTC database [11, 39]
using the default and alternative assumptions (Alt #1, Alt #2, see “Methods” section). The figure on the right provides a better view of the

lower 20% of the data in the cumulative distribution.

corresponding to the reported NOELs for the parent (discrete
organic moiety) chemicals (n =613). The internal concentrations
include explicit consideration for chemical-specific toxicokinetics
(i.e., absorption, elimination, and biotransformation of parent
chemical) and thus the relative potencies are more directly
comparable between chemicals in the internal dose dataset. While
there is a positive correlation between the two datasets, the
external dose only explains about 56% of the chemical potency,
the rest can be explained by toxicokinetics. Many chemicals that
appear to be relatively “more toxic” because of lower oral intake
NOELs are actually relatively “less toxic” than other chemicals with
respect to internal dose. In some cases, the apparent toxicity and
relative potency as indicated by the two approaches differ by
several orders of magnitude reflecting the influence of HLy, and to
some degree AE, on internal exposure.

Alternative models. The model that considers some uncertainty in
possible first-pass effects (alternative model #1) calculated whole-
body molar concentrations ranging from 7.4x10~* to 3.9x10% pmol/
kg with a median of 6.2 pmol/kg. The molar blood concentrations
range from 3.1x10~* to 2.0x10® umol/L-blood with a median of 2.3
pumol/L-blood. As expected, the internal concentrations for some
chemicals are lower and the median concentrations are slightly less
than twofold lower compared to the default model. The model that
includes the potential for first-pass effects and higher rates of
urinary excretion for lower Koy chemicals (alternative model #2)
calculated whole-body molar concentrations ranging from
6.3x10~* to 3.8x10% umol/kg with a median of 5.5 umol/kg. The
calculated molar blood concentrations from 3.1x10™* to 2.0x10°
pumol/L-blood with a median of 2.0 umol/L-blood. Here again for
some chemicals the internal concentrations decrease but the
distributions remain largely similar compared to the default and
alternative #1 model calculations.

Deriving new TTCs and iTTCs
In this case study the database was not split into the three Cramer
Classes associated with Munro TTCs so that the new iTTCs could

be applied generally to organic chemicals that are not identified
as being genotoxic or acetylcholinesterase inhibitors, i.e., certain
carbamates and organophosphates, thus minimizing the need for
decision-trees for an initial screening. The fifth percentile of the
cumulative distribution of all NOELs in the Munro database
expressed on a chemical mass oral intake rate basis is 280 pg/kg/d
(not shown). Applying an assumed uncertainty factor of 100
consistent with previous methods for deriving TTCs from this
dataset, the TTC is 2.8 ug/kg/d. This TTC for the entire database is
included for context when comparing against other TTCs and
iTTCs calculated in this study, and not as another TTC for
consideration for regulatory applications. For example, the TTC
based on the total Munro dataset is more conservative than the
Cramer Class | and Il TTCs and within a factor of 2 of the Cramer
Class Ill TTC (1.5 pg/kg/d). The fifth percentile of the cumulative
distribution of all NOELs expressed on a molar basis for the
discrete organic molecules is 0.83 pmol/kg/d (not shown).
Applying an uncertainty factor of 100 to this value results in a
TTC of 0.0083 pmol/kg/d. Recall the range of molar mass for
administered chemicals in the dataset is large, but the median is
220 g/mol approximating the difference between the two TTCs.
The actual factor difference between the mg and mmol oral intake
TTCs is 337 which is a result of treating the discrete organic
molecules separately from the administered salt formulations (see
S| for details).

Table 1 summarizes the new iTTCs. Figure 4 shows the
cumulative distributions of the blood concentrations for the
discrete organic molecules (n = 613) calculated from the Munro
TTC NOELs using the three different model assumptions. There is
general consistency between the 3 distributions and the
alternative models #1 and #2 show slightly lower blood
concentrations largely reflecting the differences in assumptions
relating to reduced uptake and enhanced renal clearance. The 57
percentiles of steady-state blood concentrations are 22, 8.5 and
8.3 nmol/L for the default, alternative #1 and alternative #2 model
calculations, respectively. Following the general operating proce-
dures for applying safety (uncertainty) factors for calculating TTCs
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Fig. 5 Cumulative distribution of modeled whole-body concentrations corresponding to NOELs reported in the Munro TTC database
[11, 39] using the default and alternative assumptions (Alt #1, Alt #2, see “Methods” section). The figure on the right provides a better

view of the lower 20% of the data in the cumulative distribution.

from NOELs an uncertainty factor of 100 was applied to account
for interspecies differences (factor of 10) and human variability
(factor of 10) [47-49]. The new blood iTTCs are 0.22, 0.085 and
0.083 nmol/L for the default, alternative #1 and alternative #2
model calculations, respectively. Given the consensus in the iTTCs
from the three models and the underlying uncertainty in the
hazard and TK data a blood iTTC of 0.1 nmol/L (or pmol/mL-blood)
is selected for organic chemicals that are not considered
genotoxic and are not acetylcholinesterase inhibitors. This iTTC
is therefore rather broadly applicable for a range of organic
chemicals. Furthermore, because the new iTTC is expressed on a
molar basis it can be readily converted to an iTTC expressed on a
chemical mass basis by multiplying 0.1 nmol/L by the molar mass
of the chemical of interest, for example when comparing to
human exposure blood concentrations expressed in units of ng/L
or pg/mL. As a first approximation, using the median value for
molar mass in the dataset (220 g/mol) corresponds to a blood iTTC
of 22 ng/L-blood (or 22 pg/mL-blood).

Figure 5 shows the cumulative distributions of the whole-body
concentrations for the discrete organic molecules (n=613)
calculated from the NOELs using the three different model
assumptions. As with blood, there is general consistency between
the 3 distributions and the alternative models #1 and #2 show
slightly lower concentrations. The 5th percentiles of steady-state
whole-body concentrations are 0.074, 0.029 and 0.023 pmol/kg for
the default, alternative #1 and alternative #2 model calculations,
respectively. Applying an uncertainty factor of 100 results in new
whole-body iTTCs of 0.74, 0.29 and 0.23 nmol/kg, respectively.
Given the consensus in the iTTCs from the three models a whole-
body iTTC of 0.5 nmol/kg is selected for organic chemicals that are
not genotoxic and are not acetylcholinesterase inhibitors. This
whole-body iTTC is therefore rather broadly applicable for a range
of organic chemicals. As with the new blood iTTC, the whole-body
iTTC can be expressed on a chemical mass basis by multiplying 0.5
nmol/kg by the molar mass (g/mol) of the chemical of interest. For
example, using the median value for molar mass in the dataset
(220 g/mol) corresponds to a whole-body iTTC of 110 ng/kg-bw.
While the blood iTTC will likely be more applicable to human
health studies, the whole-body iTTC may be helpful for applica-
tions to non-human receptors or when exposure estimates can
only be obtained at a whole-body level.

Examining the steady-state assumption in the Munro TTC database.
It has been recommended by experts at EFSA [49] that the TTC
approach is not applicable “for chemicals that are known or
predicted to bioaccumulate.” However, there was no practical or
quantitative guidance provided for determining what constitutes
a “bioaccumulative chemical” for exclusion. Leeman et al. [50]

highlight that the Munro TTC database includes many POPs and
“bioaccumulative chemicals” including PCBs (Arochlor 1254),
PBDEs, chlordane, p,p-DDT, mirex and hexachlorobenzene [11].
Kroes et al. [14] had previously indicated that bioaccumulation is
not accounted for in the TTC approach. We analyzed the
experimental NOEL data to determine if the exposure durations
in the sub-chronic and chronic experiments were sufficiently long
for the organism to approach steady-state. The time to approach
95% of steady-state can be estimated as 4 x HLy. Using the in vivo,
or default model estimates for HLy when necessary, and the
reported experimental exposure durations, all but three chemicals
are expected to approach 95% of steady-state within the
experimental test duration (SI Section S5). Thus, from a hazard
threshold perspective, the Munro TTCs can be considered “valid”
with respect to the steady-state assumption and the exclusion of
the TTC approach for bioaccumulative chemicals seems
unwarranted.

DISCUSSION

The Munro dataset comprises a diverse range of chemical classes,
structures, physical-chemical properties, and biological half-lives.
The new in vivo iTTCs for whole-body and blood concentrations
from the Munro NOEL dataset can be considered for thousands of
data poor chemicals in absence of chemical-specific hazard data.
The iTTCs can be compared against measured blood concentra-
tions and against predicted whole-body or blood concentrations
from multi-route and aggregate exposure scenarios for risk (or
safety) based screening and priority setting assessment objectives.
For example, while existing oral-dose based TTCs have been
compared with high-throughput external exposure estimates for
risk-based priority setting [20], the new iTTC can be used with
internal aggregate exposure estimates using tools like the
PROduction-To-EXposure High Throughput (PROTEX-HT) model
[33]. Blackburn et al., [25] have previously proposed an in vitro
derived iTTC of 1 pmol/L for cosmetics; however, this proposed
value was associated with several caveats and exclusions making
it difficult to directly compare with the new in vivo blood iTTC
derived herein, i.e., 0.10 nmol/L-blood. We are not aware of any
other reported iTTCs for blood and whole-body level.

Ignoring TK obscures the true potency and relative hazard of
chemicals when they are expressed in terms of external doses,
e.g., Fig. 3. While whole-body and blood concentrations are still
only surrogates for concentrations at target sites corresponding to
molecular initiating events and biological perturbations, the
internal exposures are much more representative than the
external administered doses. Possible exceptions are for chemicals
that exert effects upon epithelial tissues at the site of contact or
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portal of entry for which the administered concentrations and
applied doses may be better surrogates than systemic blood
concentrations.

This study highlights opportunities for more broadly converting
external exposure doses to internal exposure doses to better
compare and rank chemicals for relative potency in combination
with other lines of evidence to address uncertainty in hazard
characterization. Internal concentrations corresponding to oral
NOELs and the iTTC can be compared against other existing and
emerging data sources; however, it is imperative that the values
used in the comparisons are in equal units and dimensions, e.g.,
[4]. The new internal concentrations can be compared with in vitro
bioactivity data, e.g., from ToxCast, provided in vitro toxicokinetics
are also considered, e.g.,, [51] and with in vivo tissue and body
residues corresponding to effect responses, e.g., critical body
residues [52]. Future comparisons of internal doses corresponding
with biological effect, perturbations and no effects obtained from
in vivo, in vitro and in silico methods will help strengthen weight
of evidence approaches when establishing chemical-specific
hazard thresholds and provide opportunities for further advancing
Adverse Outcome Pathways (AOPs) by quantitatively linking
internal exposure to key events and key event relationships.

Recommendations for future iTTCs
In future work, the new tiered TK methods can also be applied to
other TTC datasets (e.g., acetylcholinesterase inhibitors, inhalation,
and dermal data) to expand and better define the applicability
domain of the new iTTCs. Multi-compartment PBTK models can
also be considered when they can be parameterized with required
TK data [29]. Future work to derive iTTCs should include a more
intensive examination of in vitro, in vivo and in silico estimates for
TK data used to parameterize the models and the development of
validated QSARs for predicting in vitro or in vivo biotransformation
rates and whole-body clearance in rodent species would be
helpful. To address uncertainty in biotransformation rate data and
to reduce unnecessary animal testing, long-term integrated
testing strategies combining in vitro, in vivo and in silico methods
for estimating biotransformation rates are strongly encouraged.
The emerging iTTC approach can also be aligned with general
recommendations for improving the TTC approach, e.g., [53] and
other on-going efforts to develop iTTCs [29]. There may be value
in developing Cramer Class iTTCs in future work to better align
with existing decision-trees, e.g., [14, 15]; however, we recom-
mend a thorough evaluation of the in vivo NOEL data before-
hand. Moreover, while the Cramer Class TTCs and other TTCs
have proven useful, there are unique opportunities with iTTCs
that could be explored for alternative classifications. Approaches
to derive iTTCs for chemicals grouped by Mode of Action (MOA)
or chemical class, may prove fruitful. The iTTC approach also
fosters the capacity for improved inter-species comparisons and
potential species sensitivities where uncertainties in inter-
species toxicokinetics are greatly reduced. Finally, as discussed
by Dankovic et al. [47] general approaches for applying
uncertainty factors i.e., 100x, that seek to account for TK and
toxicodynamic differences may or may not be sufficient to
account for differences between animals and humans and thus
examination of the application of uncertainty factors for
extrapolating hazard data is warranted as more explicit TK
modeling efforts are developed and applied.
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