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BACKGROUND: The United States Environmental Protection Agency (USEPA) regulates over 80 contaminants in community water
systems (CWS), including those relevant to infant health outcomes. Multi-cohort analyses of the association between measured
prenatal public water contaminant concentrations and infant health outcomes are sparse in the US.
OBJECTIVE: Our objectives were to (1) develop Zip Code Tabulation Area (ZCTA)-level CWS contaminant concentrations for
participants in the Environmental Influences on Child Health Outcomes (ECHO) Cohort and (2) evaluate regional, seasonal, and
sociodemographic inequities in contaminant concentrations at the ZCTA-level. The ECHO Cohort harmonizes data from over 69
extant pregnancy and pediatric cohorts across the US.
METHODS: We used CWS estimates derived from the USEPA’s Six-Year Review 3 (2006–2011) to develop population-weighted,
average concentrations for 10 contaminants across 7640 ZCTAs relevant to the ECHO Cohort. We evaluated contaminant
distributions, exceedances of regulatory thresholds, and geometric mean ratios (with corresponding percent changes) associated
with ZCTA sociodemographic characteristics via spatial lag linear regression models.
RESULTS: We observed significant regional variability in contaminant concentrations across the US. ZCTAs were most likely to
exceed the maximum contaminant level for arsenic (n= 100, 1.4%) and the health-protective threshold for total trihalomethanes
(n= 3584, 64.0%). A 10% higher proportion of residents who were American Indian/Alaskan Native and Hispanic/Latino was
associated with higher arsenic (11%, 95% CI: 7%, 15%; and 2%, 95% CI: 0%, 3%, respectively) and uranium (15%, 95% CI: 10%, 21%;
and 9%, 95% CI: 6%, 12%, respectively) concentrations.
IMPACT: Nationwide epidemiologic analyses evaluating the association between US community water system contaminant
concentration estimates and associated adverse birth outcomes in cohort studies are sparse because public water contaminant
concentration estimates that can be readily linked to participant addresses are not available. We developed Zip Code Tabulation
Area (ZCTA)-level CWS contaminant concentrations that can be linked to participants in the Environmental Influences on Child
Health Outcomes (ECHO) Cohort and evaluated regional, seasonal, and sociodemographic inequities in contaminant concentrations
for these ZCTAs. Future epidemiologic studies can leverage these CWS exposure estimates in the ECHO Cohort to evaluate
associations with relevant infant outcomes.
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INTRODUCTION
Regulated United States (US) public water systems are a
significant source of chronic exposure to contaminants asso-
ciated with adverse birth health outcomes (e.g., arsenic, lead,
nitrates, and disinfection byproducts) [1–4]. More than 94% of
US residents receive at least some drinking water from
community water systems (CWSs), defined as public water
systems that serve the same population year-round [5]. The US
Environmental Protection Agency (USEPA) regulates six classes

of contaminants in CWSs, including inorganic contaminants
(e.g., arsenic), radionuclides (e.g., uranium), and disinfection
byproducts (e.g., total trihalomethanes). Because the USEPA
considers cost and technical feasibility, as well as public
health benefits when setting maximum contaminant levels
(MCLs), US residents are often served by CWSs with contaminant
concentrations that exceed health-protective guidelines and
regulatory standards set by other nations, states, and agencies
[1–3, 6, 7].
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Substantial evidence supports that significant racial/ethnic and
socioeconomic inequities in some CWS contaminant concentra-
tions (e.g., arsenic) and adverse infant health outcomes (e.g.,
preterm birth) persist across the US [7–12]. Extensive scholarship
supports that racism produces health inequalities and is a
fundamental cause of disease [9, 10, 13]. Structural racism is
“the totality of ways in which societies foster racial discrimination,
through mutually reinforcing inequitable systems (in housing,
education, employment, earnings, benefits, credit, media, health
care, criminal justice, and so on)”, and produces disparities in part
through the creation and reinforcement of inequalities in
environmental exposures, health care access and quality, and
other social and psychosocial determinants of health [12, 14–16].
Mechanisms underlying birth outcome disparities include direct
discrimination [14, 17, 18], poor medical treatment including pre-
and post-natal care [19, 20], and elevated environmental
exposures, including toxic metals [21, 22].
Racial/ethnic and socioeconomic inequities in some public

water exposures may underlie infant health disparities, yet this
remains inadequately studied [23]. Nationwide, higher county-
level proportions of Hispanic/Latino and American Indian/Alaskan
Native residents and lower proportions of non-Hispanic White
residents have been associated with higher CWS arsenic and
uranium concentrations (independent of region, source water
type, system size, and socioeconomic vulnerability); similar
associations are observed specifically in California [1, 6–8, 24].
Some evidence supports that Black residents are served by CWSs
reporting higher lead concentrations [3, 7]. Hispanic/Latino
residents are also served by CWSs with higher concentrations of
fluoride and nitrates and are more likely served by CWSs
exceeding arsenic, uranium, and fluoride MCLs [1, 2, 7, 24, 25].
These inequities are more likely and/or more severe in geographic
regions with both a high percentage of marginalized public water
users and relatively high concentrations of specific geogenic
contaminants (e.g., Hispanic/Latino communities in the South-
west) [7, 8, 26]. Mechanisms underlying and reinforcing these
inequities are specific to the contaminant, impacted community,
and region, but include linguistic isolation, direct withholding of
resources and infrastructure investments, selective enforcement of
federal regulations, and bias in targeted tap sampling and
monitoring [7, 27–30]. Inequities specifically impacting Black,
Hispanic/Latino, and American Indian communities reflect white
supremacy and structural racism embedded in infrastructure,
investment, and regulatory decision-making that specifically
benefit non-Hispanic White communities to the detriment of
other communities [7, 10, 27, 28, 31, 32].
Numerous epidemiologic studies [7] have evaluated the

association between these contaminants and relevant infant
health outcomes (arsenic [33], nitrates [34], disinfection bypro-
ducts [35], and others [36]). However, few studies have evaluated
these associations in multi-cohort analyses across the US with
participants from diverse regional, socioeconomic, and racial/
ethnic groups. Drinking water exposure assessment is challenging
in large, multi-cohort consortiums because nationwide areal level
estimates of CWS contaminants that can be leveraged for
epidemiologic research were previously unavailable, and house-
hold sampling is costly. Because distribution boundaries are not
available for most US CWSs, nationwide exposure assessments
must generate estimates at areal-level administrative boundaries
that can be readily linked to participant addresses (similar
approaches have been used for air pollution exposure assessment)
[37, 38]. We recently developed and validated a method for
developing ZIP Code Tabulation Area (ZCTA)-level estimates of
CWS contaminants that can be readily assigned to cohort
participants by residential ZIP Code [4]. In this study, we generated
ZCTA-level water contaminants relevant for observational birth
cohorts in the Environmental influences on Child Health Out-
comes (ECHO) Cohort. The ECHO Program was established in 2016

to understand the effects of environmental exposures on child
health and development and initially included 69 extant
pregnancy and pediatric cohorts across the US. The ECHO Cohort
harmonizes existing data for over 60,000 participants, which are
heterogeneous by geographic location, race, ethnicity, and
socioeconomic status, and uses a standardized protocol to collect
new data. Although the ECHO Cohort is not nationally represen-
tative, it is an excellent resource to evaluate epidemiologic
associations between CWS contaminants and infant health
outcomes and to identify opportunities to reduce inequities in
CWS exposures and birth outcomes.
Our objectives were to (1) develop ZCTA-level contaminant

concentrations for ECHO Cohort sites across the US, and (2)
evaluate regional, seasonal, and sociodemographic inequities in
ZCTA contaminant concentrations. While there are more than 80
federally regulated contaminants, we evaluated 10 inorganic,
radionuclide, and disinfection byproduct contaminants that are
commonly detected in CWSs nationwide (arsenic, barium,
chromium, fluoride, nitrate, nitrite, selenium, uranium, total
trihalomethanes (defined and regulated as the sum of bromoform,
chloroform, bromodichloromethane, and dibromochloromethane)
and haloacetic acids (bromo-, chloro-, dibromo-, dichloro-,
trichloro-acetic acids)). These contaminants were also selected
because prenatal exposure is either established as or potentially
relevant for infant and child health outcomes [39]. We estimated
ZCTA-level contaminant concentrations using previously devel-
oped CWS-level estimates generated from routine compliance
monitoring records compiled by USEPA’s Six Year Review 3 of
Contaminant Occurrence Database (2006–2011) required by the
Safe Drinking Water Act [2, 6, 40]. We predicted that we would
observe substantial regional variability in ZCTA contaminant
concentrations across the US and that higher proportions of
non-Hispanic White residents and higher measures of socio-
economic advantage would be associated with lower contaminant
concentrations, as previously observed at other spatial resolutions
[8, 41]. Areal-level concentrations presented here estimate public
drinking water exposures across the ECHO Cohort and can
facilitate future epidemiologic analyses. Our descriptive analyses
of geographic and sociodemographic inequities in ZCTA concen-
trations can support hypothesis generation for future studies.

MATERIALS AND METHODS
Study population and exclusion criteria
Our objective was to develop areal-level estimates of CWS contaminant
concentrations at the ZCTA-level that could be merged to participants in
the ECHO Cohort by residential address. Our study population therefore
consisted of US ZCTAs (using 2010 boundaries) overlapping counties that
contained at least one ECHO Cohort pregnant person. The ECHO Cohort
contains over 60,000 participants from 69 pregnancy and pediatric cohort
sites. We identified 34 observational birth cohort sites in the ECHO Cohort
(recruiting from 32 states) and identified counties relevant to recruitment
areas for these cohort sites, as we did not have access to participant ZIP
Code information. We excluded ECHO Cohort sites from cohorts that were
outcome-enriched (e.g., cohorts that recruited only preterm infants
because our interest is in developing water exposure estimates and
evaluating associations with birth outcomes), that exclusively enrolled
participants reliant on private wells or water hauling, and that exclusively
enrolled participants from states that did not have CWS contaminant
estimates available (e.g., CO, DE, MS, GA, and Puerto Rico) [42]. We
identified a total of 466 potentially relevant counties and proceeded to
develop ZCTA-level estimates for all 2010 ZCTAs overlapping with these
county boundaries.

Developing CWS contaminant concentration estimates
All data management and analyses were conducted in R version 4.2.3. In
order to develop population-weighted, average ZCTA-level contaminant
concentrations for all ZCTAs overlapping with the 466 relevant counties,
we used a method previously developed and validated by our team for
other large, multi-site cohorts in both urban and rural areas [4]. Briefly,
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CWS-level contaminant concentration estimates were previously gener-
ated by our team using routine compliance monitoring records collected
for the USEPA’s Six Year Review 3 of Contaminant Occurrence Database,
which represents over 95% of all public systems nationwide (further details
are available in Supplemental Material Methods and prior publications)
[6, 40, 42, 43]. CWS-level concentration estimates reflect average
concentrations distributed to consumers (i.e., in finished water) and were
aggregated to time periods that correspond to USEPA’s Standard
Monitoring Framework to reduce differential missingness and bias by
source water type, system size, and prior contaminant violations and
detections (2006–2011, 2006–2008, and 2009–2011 for arsenic; 2006–2011
for barium, chromium, and selenium; 2000–2011 for uranium; and
seasonally/quarterly from 2006–2011 for disinfection byproducts) [6, 40].
For disinfection byproducts, USEPA defines and regulates total trihalo-
methanes and haloacetic acids as the sum of four (bromoform, chloroform,
bromodichloromethane, and dibromochloromethane) and five (bromo-,
chloro-, dibromo-, dichloro-, trichloro-acetic acid) contaminants, respec-
tively, although hundreds of drinking water disinfection byproducts have
been identified [44]. In this analysis, we aggregated all contaminant
concentrations to the overall 2006-2011 time period, except for uranium,
which we aggregated to the 2000-2011 time period to account for
differences in monitoring requirements under the Radionuclide Rule [42].
To reflect differences across contaminants in method detection limits and
concentration distributions, we rounded arsenic, barium, chromium, nitrite,
selenium, and uranium concentrations to two decimal places, disinfection
byproduct concentrations to one decimal place, and fluoride and nitrate
concentrations to integers [6].
We first assigned all relevant CWSs to ZCTAs (some ZCTAs are served by

multiple CWSs, and some CWSs serve multiple ZCTAs) [4]. One major
challenge in public water exposure assessment is that only 16 states
publish CWS distribution boundaries which can be intersected with ZCTA
boundaries. Therefore, we utilized two complementary approaches to
assign CWSs to ZCTAs. For each county in DC, FL, IA, KY, MA, MD, MI, MT,
ND, NE, NY, OH, RI, SD, TN, VA, and WI, we extracted all CWSs serving that
county (reliably reported in the USEPA’s Safe Drinking Water Information
System) and assigned each CWS to all relevant ZCTAs by joining reported
city-served and/or water system name to ZCTAs via the US Census 2010
ZCTA to Place Relationship File and USPS ZIP to Locale file [45, 46]. We
generated weights for each CWS within a ZCTA based on the adjusted total
population served as reported by USEPA. For the states of AR, AZ, CA, CT,
IL, MN, MO, NC, NJ, NM, OK, PA, TX, UT, and WA, shapefiles of the
distribution boundaries of water systems were publicly available and we
assigned CWSs to ZCTAs by overlapping CWS distribution boundaries with
2010 Census ZCTA boundaries using the “st_intersection” function in the sf
package in R [47]. We generated weights for each CWS within a ZCTA
based on overlapping Census block population counts. For all states, we
then generated population-weighted average estimates of CWS contami-
nants at the ZCTA-level.
ZCTAs within ECHO-relevant counties were missing water contaminant

estimates when either (a) we did not identify any CWSs that served this
ZCTA (residents in these areas may be exclusively served by transient or
non-transient non-community water systems, exclusively served by private
wells, or served by CWSs that did not submit data to the USEPA’s Six Year
Review 3), or (b) the CWSs which were identified as serving these ZCTAs
did not report relevant contaminant routine compliance monitoring
records to the Six Year Review 3. For example, the CWS TN0000450
(Memphis Light, Gas, & Water) was assigned to 33 ZCTAs. Because
TN0000450 did not report routine compliance monitoring records for
arsenic to the Six Year Review 3, many of these ZCTAs are missing arsenic
concentration estimates. Supplementary Table 1 presents overall and
state-specific findings for the percentage of ZCTAs with CWS contaminant
estimates, the mean and range of CWSs per ZCTA, and the total population
served by all ZCTAs with CWS contaminant estimates. To assess CWS
variability within ZCTAs and assess the potential for measurement error,
we evaluated arsenic as a case study. We mapped population-weighted
standard deviation values and calculated the number of ZCTAs served by
multiple CWSs with arsenic concentration differences greater than the
overall arsenic standard deviation.

ZCTA-level sociodemographic variables
We followed a previously developed conceptual model when evaluating
sociodemographic inequities in water contaminants at the ZCTA-level
(Supplementary Fig. 4) [8]. We downloaded ZCTA-level sociodemographic
characteristics from the 2010 decennial US Census via the tidycensus

package, including: total population, population density, and the propor-
tion of residents who identify as non-Hispanic Black, non-Hispanic White,
Hispanic/Latino, non-Hispanic Asian, and non-Hispanic American Indian/
Alaskan Native [48]. We additionally downloaded the following variables
from the 2006–2010 US Census Bureau’s American Community Survey
5-year dataset (2006–2010) that were not available in the decennial
Census: median household income; proportion of residents living below
150% of the federal poverty line; proportion of adults aged 25–64 without
a high school diploma; the proportion of households receiving supple-
mental nutrition assistance program (SNAP) benefits; proportion of
residents who were children; proportion of residents who were foreign-
born; and proportion of residents who reported speaking English “less than
very well.” We further categorized ZCTAs as rural or urban using the 2010
US Department of Agriculture Rural-Urban (RUCA) continuum codes [49].
Rural ZCTAs were defined as those in non-metropolitan areas and include
micropolitan areas, small towns, and rural areas (RUCA codes 4
through 10).

Statistical analysis
We first mapped population-weighted, average ZCTA-level concentrations
for each contaminant across the study area using the tigris package [50].
We next summarized the distribution (range, 75th and 95th percentiles,
arithmetic mean, and geometric mean) of population-weighted, average
ZCTA-level concentrations for each contaminant. We also determined the
frequencies and percentages of ZCTAs with concentrations exceeding the
current USEPA MCL value and health-protective thresholds. Because
USEPA is mandated to consider cost, technical feasibility, and health
benefit when setting MCLs, MCLs often exceed health advisory levels that
are based solely on health impact (e.g., USEPA MCL goals) [51]. Therefore,
we selected health protective thresholds to represent the most health-
protective standard, guideline, or advisory level set by a governing body or
agency (e.g., USEPA maximum contaminant level goal, World Health
Organization (WHO) Guidance level, regulatory standard) that could be
reliably detected during the compliance monitoring period (≥ the
minimum reporting level set by USEPA) (Table 1). When the most
health-protective threshold was less than the minimum reporting level set
by the USEPA (i.e. the MCL goal is zero for arsenic and uranium), we used
the next most health-protective threshold. We selected the following
values as health protective thresholds: 1 μg/L for arsenic, reflecting the
regulatory standard for the Netherlands (1 μg/L) [52], the USEPA MCL goal
of zero [51], and the USEPA minimum reporting limit of 1 μg/L [53];
1300 µg/L for barium, the current WHO Guidance level [54]; 50 µg/L for
chromium, the current WHO Guidance level [54]; 700 µg/L for fluoride, the
optimal concentration recommended by the US Public Health Service [55];
40 µg/L for selenium, the current WHO Guidance level [54]; 2 µg/L for
uranium, reflecting a previous WHO Guidance level [56] and the USEPA
MCL goal of zero [51]; 13 µg/L for trihalomethanes, reflecting the sum of
the USEPA MCL goals for the four trihalomethanes [51] (although, several
nations including New Zealand, South Africa, and Nigeria set a MCL of
1 µg/L) [57]; 9 µg/L for haloacetic acids, reflecting the sum of the USEPA
MCL goals for the five haloacetic acids [51]. We did not establish a health-
protective threshold for nitrite and nitrate as we were unable to find a
MCL, MCL goal, or WHO Guidance level lower than the current USEPA MCL
for both contaminants. We constructed raincloud plots to display the full
distribution for each contaminant alongside the current USEPA MCL and
the most health protective threshold [58]. To aid cohorts in determining
the distribution of contaminants within cohort-specific states and regions,
we present these distributions stratified by state (Supplementary Table 2,
Supplementary Table 3) and US region (Supplementary Fig. 2, Supple-
mentary Fig. 3). Because the occurrence of some disinfection byproducts
are heavily influenced by temporal changes, we stratified our raincloud
plots by season (Fall = October-December; Winter = January-March;
Spring = April-June; Summer = July-September) [59]. These season
periods align with USEPA’s quarterly compliance monitoring schedule for
disinfection byproducts [60].

Spatial lag linear regression
We next evaluated potential sociodemographic inequities in ZCTA
contaminant concentrations. For these analyses, we focused on arsenic,
uranium, fluoride, total trihalomethanes, and total haloacetic acids because
concentrations of these contaminants exceeded the health-protective
threshold while nitrate, nitrite, barium, chromium, and selenium did not
(effect estimates for these other contaminants are reported in Supple-
mentary Table 5). First, we compared sociodemographic characteristics for
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all ZCTAs in our analysis to ZCTAs with contaminant concentrations
exceeding the most health-protective threshold. We then evaluated the
association between ZCTA racial/ethnic composition and socioeconomic
disadvantage with contaminant concentrations in spatial lag linear
regression models using the spatialreg R package to account for spatial
dependence. We selected spatial lag models over spatial error models
because the multiplier diagnostics function (lm.LMtest) indicated that
model estimates were larger for spatial lag models [61]. We used k-nearest
neighbor distance-based weights, with neighbors defined as ZCTAs with
boundaries within 20 km of each ZCTA centroid. We evaluated inequities
by socioeconomic status independent of racial/ethnic composition, and by
racial/ethnic composition independent of socioeconomic status. To assess
the association between racial/ethnic composition and contaminants, we
assessed the geometric mean ratio (GMR) and corresponding percent
difference of CWS contaminant concentrations per 10% higher proportion
of residents classified as non-Hispanic Black, non-Hispanic White, Hispanic/
Latino, non-Hispanic Asian, and non-Hispanic American Indian/Alaskan

Native. We ran analyses for each racial/ethnic group separately. For each
analysis, we excluded ZCTAs with less than 100 residents in the racial/
ethnic group of interest to ensure model stability. Because racial/ethnic
composition sums to 100%, we used a “leave-one-out” modeling approach
and adjusted for the proportion of residents in racial/ethnic groups other
than non-Hispanic White to ensure interpretable effect estimates that
aligned with our conceptual model (Supplementary Fig. 4). Effect estimates
are interpreted as associations for higher proportions of residents in one
racial/ethnic group specifically because the proportion of non-Hispanic
White residents is lower.
In selecting other covariates, we followed a previously developed

conceptual model to estimate associations for racial/ethnic composition
adjusting for socioeconomic disadvantage, and vice-versa [8]. Model 1 was
adjusted for population density, proportion of adults without a high school
diploma, median household income, rural vs. urban location, and racial/
ethnic composition of all groups other than non-Hispanic White residents.
For models evaluating higher proportions of non-Hispanic White residents,

Table 1. Distribution of average, population-weighted, ZIP Code tabulation area (ZCTA)-level contaminant concentrations relevant for the ECHO
Cohort (N= 7640 ZCTAs overall).

Arsenic Barium Chromium Fluoride Nitrate

ZCTAs, n 7401 7021 7018 6175 6116

Range (μg/L) <0.50–62.59 <0.80–35,504.43 <0.08–244.85 <0.01–5729 <0.002–9372

Arithmetic mean (95% CI)
(μg/L)

1.52 (1.46, 1.58) 56.87 (46.81, 66.94) 1.06 (0.97, 1.14) 329 (319, 339) 1086 (1050, 1122)

Geometric mean (95% CI)
(μg/L)

0.82 (0.80, 0.84) 18.41 (17.65, 19.19) 0.23 (0.22, 0.24) 55 (51, 60) 162 (148, 177)

75th and 95th percentile
(μg/L)

1.62, 5.49 61.30, 186.24 1.10, 4.41 496, 1128 1600, 4274

USEPA MCL 10 μg/L 2000 μg/L 100 μg/L 4000 μg/L 10,000 μg/L
n (%) > MCL 100 (1.4%) 1 (<1%) 1 (<1%) 3 (<1%) 0 (0%)

Health protective
threshold

1 μg/La 1300 μg/Lb 50 μg/Lc 700 μg/Ld –

n (%) > HPT 2678 (36.2%) 2 (<1%) 1 (<1%) 731 (11.8%) –

Nitrite Selenium Uranium Total
trihalomethanes

Total haloacetic
acids

ZCTAs, n 2937 7016 4165 5601 4942

Range (μg/L) <0.004–1,000.00 <0.60–24.21 <0.50–151.79 <0.1–189.1 <0.1–1000.0

Arithmetic mean (95% CI)
(μg/L)

14.77 (12.22, 17.31) 0.88 (0.85, 0.91) 3.18 (3.00, 3.35) 29.7 (29.6, 29.8) 17.6 (17.5, 17.7)

Geometric mean (95% CI)
(μg/L)

0.11 (0.09, 0.12) 0.64 (0.63, 0.65) 1.22 (1.16, 1.27) 15.4 (15.2, 15.6) 10.5 (10.4, 10.6)

75th and 95th percentile
(μg/L)

2.56, 55.00 0.91, 2.86 3.46, 11.69 39.8, 55.9 20.8, 41.0

USEPA MCL 1,000 μg/L 50 μg/L 30 μg/L 80 μg/L 60 μg/L
n (%) >MCL 0 (0%) 0 (0%) 17 (<1%) 16 (<1%) 36 (<1%)

Health protective
threshold

– 40 μg/Le 2 μg/Lf 13 μg/Lg 9 μg/Lh

n (%) > HPT – 0 (0%) 1412 (33.9%) 3584 (64.0%) 2788 (56.4%)

All concentration estimates are based on average community water system (CWS) contaminant concentrations of finished water distributed to consumers,
which were previously published and derived from routine compliance monitoring records compiled by the United States Environmental Protection Agency
(USEPA) for the third Six Year Review period (2006–2011; estimates for uranium are from 2000–2011 to coincide with the Radionuclides Rule compliance
monitoring requirements). Values lower than the maximum method limit of detection for each contaminant are displayed as “< (value of the detection limit)”.
For each contaminant, the most health-protective threshold was selected from state, national, and international regulatory standards and guidelines,
including enforceable regulatory standards, USEPA maximum contaminant goal levels, and the World Health Organization’s Guidelines for Drinking-water
Quality.
ZCTA ZIP Code tabulation area, CWS community water system, USEPA United States Environmental Protection Agency, MCL maximum contaminant level, HPT
health protective threshold, CI confidence interval. n number.
aWe selected the following values as health protective thresholds: 1 μg/L for arsenic, reflecting the regulatory standard for the Netherlands (1 μg/L) [52], the USEPA
MCL goal of zero [51], and the USEPA minimum reporting limit of 1 μg/L [53]; b1300 µg/L for barium, the current WHO Guidance level [54]; c50 µg/L for chromium,
the current WHO Guidance level [54]; d700 µg/L for fluoride, the optimal concentration recommended by the US Public Health Service [55]; e40 µg/L for
selenium, the current WHO Guidance level [54]; f2 µg/L for uranium, reflecting a previous WHO Guidance level [56] and the USEPA MCL goal of zero [51]; g13 µg/L
for total trihalomethanes, reflecting the sum of the USEPA MCL goal for the four trihalomethanes that comprise total trihalomethanes [51]; h9 µg/L for total
haloacetic acids, reflecting the sum of the USEPA MCL goal for the five haloacetic acids that comprise haloacetic acids [51].
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models leave out the proportion of Hispanic/Latino residents because this
was the next most populous group. To assess the association between
socioeconomic disadvantage and CWS contaminants, we assessed the
GMR and corresponding percent difference of CWS contaminant
concentrations per higher value corresponding to the interquartile range
(IQR). Fully adjusted models (Model 2) were adjusted for population
density, rural vs. urban location, and racial/ethnic composition of all
groups. Following our conceptual diagrams from prior work, models
evaluating median household income further adjust for the proportion of
adults without a high school diploma, and models for all other
socioeconomic disadvantage metrics adjust for median household income
[8]. Following best practice, we considered the direction, magnitude, and
precision of the effect estimates rather than relying solely on p-values
when interpreting these effect estimates [62, 63].

Sensitivity analyses
To assess potential differences in final CWS contaminant concentrations across
states with and without a published distribution boundary shapefile, we
selected 19 ZCTAs from states with boundary shapefiles available and re-
assigned CWSs to ZCTAs, using the US Census 2010 ZCTA to Place Relationship
File and USPS ZIP to Locale file. We found no systematic differences in final
population-weighted, ZCTA-level contaminant concentrations by analyzing
Bland-Altman/Tukey mean difference plots and Spearman correlation coeffi-
cients across these approaches (rho= 0.99 for 2006–2011 arsenic, rho= 0.86
for 2000–2011 uranium, rho= 0.93 for 2006–2011 total trihalomethanes,
rho= 0.99 for 2006–2011 haloacetic acids, Supplementary Fig. 5). However, we
did observe that some CWSs were not represented in the service area
boundary file but could bematched to ZCTAs via system name and city-served
(Supplementary Fig. 5). We further re-evaluated spatial lag regression models
with neighbors defined as ZCTAs within 40 km of each other to determine how
robust findings were to more generous neighbor definitions (given that CWSs
vary greatly in distribution area size). For models evaluating the association
between racial/ethnic composition and contaminants, we additionally

evaluated associations per higher proportion of residents in each racial/
ethnic group that corresponded to the standard deviation for each racial/
ethnic group (rather than a 10% higher value). Finally, we assessed
whether associations between sociodemographic characteristics and
contaminant concentrations were robust when considering alternative
adjustments for socioeconomic disadvantage.

RESULTS
We generated contaminant concentrations for 7,640 ZCTAs relevant
to 34 observational ECHO cohort sites (Table 1, Supplementary
Table 1). CWSs serving these ZCTAs served a total of approximately
179 million people. The median number of CWSs assigned to a ZCTA
was 2. Among ZCTAs served by more than 1 CWS (n= 4634 out of
7401 ZCTAs total with arsenic), the number with arsenic concentra-
tion differences exceeding 2.88 µg/L (the overall ZCTA-level standard
deviation) was n= 1141 (~25%) (Supplementary Table 1). Within-
ZCTA standard deviations of arsenic were highest in ZCTAs with
higher mean arsenic concentrations (Supplementary Fig. 1). For each
of the contaminants assessed, the total number of ZCTAs with
reported contaminant concentrations ranged from 7401 (96.9%,
arsenic) to 2,937 (38.4%, nitrite) (Table 1). Concentrations ranged
from undetectable to 62.59 μg/L (arsenic), 35,504.43 μg/L (barium),
244.85 μg/L (chromium), 5729 μg/L (fluoride), 9372 μg/L (nitrate),
1000.00 μg/L (nitrite), 24.21 μg/L (selenium), 151.79 μg/L (uranium),
189.1 μg/L (total trihalomethanes), and 1000.0 μg/L (haloacetic
acids). Distributions for arsenic, chromium, selenium, and uranium
were right-skewed; distributions for fluoride, nitrate, total trihalo-
methanes, and haloacetic acids were left-skewed; distributions
for nitrite and barium were bimodal (Fig. 1). Contaminants
were frequently measured below the limit of detection (Fig. 1).
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Fig. 1 Raincloud plot displaying the distribution of average, population-weighted, ZIP Code tabulation area (ZCTA)-level contaminant
concentrations (μg/L) relevant for birth cohorts in the ECHO Cohort (N = 7640 ZCTAs overall). All concentration estimates are based on
average community water system (CWS) contaminant concentrations of finished water distributed to consumers, which were previously
published and derived from routine compliance monitoring records compiled by the United States Environmental Protection Agency (USEPA)
for the third Six Year Review period (2006-2011; estimates for uranium are from 2000-2011 to coincide with the Radionuclides Rule compliance
monitoring requirements). Filled polygons represent density plots. Box plot upper, middle, and lower hinges correspond to the 25th, 50th, and
75th percentiles, respectively. The average contaminant concentration for each CWS is represented by the outlined white circle; mean
(standard deviation) is also listed for each contaminant in Table 1. The contaminant-specific maximum contaminant level is indicated by the
red solid line. The most health protective threshold is indicated by the green dashed line. A Inorganics: For nitrate and nitrite, the health-
protective threshold is the same as the maximum contaminant level. B Disinfection byproducts: seasonal time periods correspond to the
USEPA’s quarterly compliance monitoring schedule for disinfection byproducts: Winter = January-March; Spring = April-June; Summer = July-
September; Fall = October-December.
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ZCTAs were most likely to exceed the USEPA MCL for arsenic (1.4%),
and most likely to exceed the health-protective threshold for total
trihalomethanes (64.0%), haloacetic acids (56.4%), and arsenic
(36.2%). Nitrate and nitrite levels did not exceed the USEPA MCL
(Table 1, Fig. 1).
For disinfection byproducts, contaminant concentrations and

exceedances of regulatory standards and health-protective thresh-
olds differed by season. The number of ZCTAs exceeding the
health-protective threshold for total trihalomethanes (9) was
lowest in the winter and the number of ZCTAs exceeding the MCL
for haloacetic acids (6) was lowest in the fall. The distribution of
total trihalomethanes slightly shifted towards higher concentra-
tions and more exceedances (220) during the summer monitoring
period. (Fig. 1). Concentrations were most variable in the summer
and least variable in the winter (Supplementary Fig. 6). We did not
observe changes in the distribution of either disinfection
byproduct by year (Supplementary Fig. 6).

We observed regional variability in contaminant concentrations
across the US (Fig. 2, Supplementary Fig. 2, Supplementary Fig. 3).
Contaminant concentrations were highest in the Central Midwest
for nitrate, nitrite, and barium, in the Southwest for arsenic and
uranium, in the Eastern Midwest for fluoride, and in New England
for chromium and selenium. Very few ZCTAs in the Pacific
Northwest reported nitrite concentrations, potentially because
CWSs can measure total nitrate and nitrite concentrations to
comply with nitrate monitoring requirements (Supplementary
Fig. 2). For disinfection byproducts, contaminant concentrations
were highest in the Mid-Atlantic and Southeast for both total
haloacetic acids and total trihalomethanes (Supplementary Fig. 3).
By state, mean contaminant concentrations were highest for
arsenic in Iowa (8.59 µg/L, above the health protective threshold),
for uranium in Utah (9.90 µg/L, above the health protective
threshold), for fluoride in Minnesota (1,014 µg/L, above the health
protective threshold), for nitrate in New Jersey (2663 µg/L), for

Fig. 2 Population-weighted average contaminant concentrations at the ZIP Code tabulation area (ZCTA)-level in community water
systems (CWSs), for ZCTAs relevant for observational birth cohorts participating in the Environmental influences on Child Health
Outcomes (ECHO) Cohort (N= 7640 ZCTAs). A Arsenic 2006–2011; B uranium 2000–2011; C nitrate 2006–2011; D fluoride 2006–2011; E total
trihalomethanes 2006–2011, and F total haloacetic acids 2006–2011. All concentration estimates are based on average community water
system (CWS) contaminant concentrations of finished water distributed to consumers, which were previously published and derived from
routine compliance monitoring records compiled by United States Environmental Protection Agency (USEPA) for the third Six Year Review
period (2006–2011; estimates for uranium are from 2000–2011 to coincide with the Radionuclides Rule compliance monitoring requirements).
For all contaminants, the highest concentration category corresponds to the current USEPA maximum contaminant level, and the other three
categories correspond to cut-points that might be considered for future regulatory decisions.
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nitrite in Utah (112.75 µg/L), for barium in New York (162.08 µg/L),
for chromium in Arizona (6.28 µg/L), for selenium in North Dakota
(3.73 µg/L), for total trihalomethanes in Kentucky (43.2 µg/L, above
the health protective threshold), and for total haloacetic acids in
Kentucky (34.6 µg/L, above the health protective threshold)
(Supplementary Table 2, Supplementary Table 3).
The number of ZCTAs exceeding the health-protective thresh-

old during the 2006–2011 period was 2678 (arsenic), 1412
(uranium, 2000–2011), 731 (fluoride), 3,584 (total trihalomethanes),
and 2788 (haloacetic acids) (Table 2). Compared to all ZCTAs,
ZCTAs exceeding the disinfection byproduct health protective
threshold had higher population density and were less likely to be
rural. For uranium, ZCTAs with contaminant concentrations
exceeding the health-protective threshold had a higher percen-
tage of Hispanic/Latino residents, a higher percentage of foreign-
born residents, and a lower percentage of non-Hispanic White
residents. ZCTAs exceeding the arsenic health protective thresh-
old had higher average contaminant concentrations for uranium
and fluoride than all ZCTAs.
Table 3 presents fully adjusted GMRs and corresponding

percent differences in ZCTA contaminant concentrations per a
10% higher proportion of residents belonging to each racial/
ethnic group and per IQR higher value for measures of
socioeconomic disadvantage. In fully adjusted models, a 10%
higher proportion of American Indian/Alaskan Native residents
was associated with higher arsenic (11%, 95% CI 7%, 15%) and
uranium (15%, 95% CI 10%, 21%) concentrations. A higher
proportion of Hispanic/Latino residents was also associated with
higher uranium (9%, 95% CI 6%, 12%) concentrations. Higher
proportions of non-Hispanic Black, American Indian/Alaskan
Native, and Hispanic/Latino residents were associated with higher
fluoride concentrations (6%, 95% CI 1%, 11%; 35%, 95% CI 20%,
52%; and 21%, 95% CI 13%, 28%, respectively). In contrast, a
higher proportion of non-Hispanic White residents was associated
with lower concentrations of uranium (−8%, 95% CI −10%, −5%)
and fluoride (−22%, 95% CI −26%, −17%), as well as lower arsenic
concentrations and higher concentrations of total trihalomethanes
and haloacetic acids (although these effect estimates were small
in magnitude). A higher proportion of Hispanic/Latino residents
was also associated with lower disinfection byproducts concen-
trations (−5%, 95% CI −8%, −1%; for total trihalomethanes, and
−4%, 95% CI −6%, −1% for haloacetic acids). A higher proportion
of residents living below 150% of the federal poverty line was
associated with higher uranium (7%, 95% CI 0%, 14%), and
fluoride (16%, 95% CI −1%, 36%) concentrations. In contrast, a
higher proportion of adults without a high school diploma was
associated with lower fluoride (−21%, 95% CI −29%, −11%)
concentrations. A higher percentage of residents receiving SNAP
was associated with lower uranium (−8%, 95% CI −12%, −4%)
and fluoride (−10%, 95% CI −19%, 0%) concentrations. Median
household income was not associated with contaminant
concentrations.
In sensitivity analyses, model results were similar when

considering neighbor weight matrices using 40 km distances,
further adjustment for the proportion of households receiving
supplemental nutrition assistance, further adjustment for the
proportion of residents below 150% of the federal poverty line,
and for models evaluating a higher proportion of residents in each
racial/ethnic group corresponding to the standard deviation
(Supplementary Table 4). For additional analyses evaluating
barium, chromium, selenium, nitrate, and nitrite, we found
positive associations between (a) higher proportions of American
Indian/Alaskan Native residents with higher barium, selenium, and
nitrate concentrations, (b) higher proportions of Hispanic/Latino
residents with higher chromium and nitrite concentrations, (c)
higher proportions of non-Hispanic White residents with lower
chromium and nitrate concentrations, (d) and higher proportions
of non-Hispanic Asian residents with lower barium concentrations

(Supplementary Table 5). Effect estimates for higher proportions
of American Indian/Alaskan Native residents and barium and
nitrate were the largest in magnitude.

DISCUSSION
We present novel estimates of regulated public drinking water
contaminants from 2006-2011 in ZCTAs relevant for observational
ECHO birth cohort sites. We find substantial regional variability in
estimated contaminant concentrations, a high number and
percentage of ZCTAs with contaminant concentrations exceeding
the most health-protective thresholds, and significant socio-
demographic inequities at the ZCTA-level that mirror and expand
upon prior findings at the CWS and county-level. These findings
indicate that prenatal public drinking water exposure differs
meaningfully across the ECHO Cohort, and exposure estimates can
be leveraged in future epidemiologic studies to generate
individual-level, time-weighted exposure estimates and evaluate
associations with relevant pregnancy outcomes, birth outcomes,
and other relevant outcomes across the lifespan.
Federally regulated public water contaminants differ greatly in

their source profiles and associated health impacts [7]. Contami-
nants may be geogenic and present in source water (e.g., arsenic,
uranium, fluoride), released via anthropogenic activity (e.g.,
nitrate), added by utilities as a public health measure (e.g.,
fluoride, disinfectants), generated as a consequence of disinfec-
tion (e.g., disinfection byproducts), or released from water system
infrastructure (e.g., lead, copper). Epidemiologic evidence for
relevant birth outcomes is often limited to cohorts with estimated
or measured water contaminants, to studies of relatively high
exposure levels that are not common in the US, or to biomarker
studies that may introduce reverse causality concerns when
exposure influences kidney function and excretion [64, 65]. The
ECHO Cohort represents an excellent opportunity to fill in many of
these research gaps.
The ZCTAs analyzed in the current study are not representative

of all ZCTAs nationwide (for example, only 15% of ECHO Cohort
ZCTAs were categorized as rural, compared to 40% nationwide)
[66]. Still, our findings largely mirror those of prior analyses at the
CWS and county-level identifying nationwide inequities by race
and ethnicity [2, 8]. We find that disinfection byproducts
measured in drinking water are not associated with socio-
demographic characteristics, which is consistent with a study
conducted in Spain [67]. Also, higher proportions of Hispanic/
Latino and American Indian/Alaskan Native residents are asso-
ciated with higher inorganic contaminant (arsenic, uranium,
fluoride) concentrations, specifically because the proportions of
non-Hispanic White residents are lower. We did find, however,
that higher proportions of non-Hispanic Black residents are
associated with higher fluoride concentrations, which conflicts
with a recent nationwide county-level analysis that observed a
null association [2]. These conflicting results may be explained by
the geographic distribution and urbanicity of ECHO Cohort
participants. ECHO Cohort participants are largely from urban
areas, and the current study included very few ZCTAs in the
Southeastern US where the proportion of non-Hispanic Black
residents is high relative to the rest of the US [66]. Prior studies
support that racial inequities in public water contaminants are
more likely or extreme in areas where there is a higher proportion
of marginalized residents and adequate variability in the
contaminant of interest [8]. Thus, our current findings support
prior evidence that nationwide studies may mask inequities
occurring within regions or individual states. Future studies in the
ECHO Cohort can evaluate participant-level sociodemographic
inequities in estimated exposures (including potential non-linear
associations) and determine if well-documented disparities in
relevant adverse outcomes are explained by these observed
inequities in public water contaminants [3, 8, 68].
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Our analysis has several limitations. First, because we did not
have access to participant ZIP Codes, it is possible that our
current estimates do not include some ECHO Cohort partici-
pants. Although ECHO Data Analysis Center analysts (authors
AMK, MB) have access to participant ZIP Codes and can merge in
ZCTA-level water estimates, they were unable to provide these
ZIP Codes to the other study authors to generate estimates for
this study. We therefore aimed to generate contaminant
estimates for all ZCTAs which could be relevant for observational
ECHO Cohort sites with pregnant participants. Because our
analysis was focused on generating public water system
contaminant concentrations that could be readily assigned to
participants based on residential address, we did not generate
estimates for ZCTAs reliant on private wells or water hauling,
and therefore excluded some cohort sites in rural areas.
Epidemiologic analyses utilizing these estimates can restrict to
participants who reported a public water system as their tap
water source. Participants reliant on a public well at home may
still consume public drinking water from secondary and tertiary
sources (e.g., school, work). Additionally, we were not able to
account for the number of ECHO participants within each ZCTA
and, although it is likely that more ECHO participants lived in
some ZCTAs than others, each ZCTA was equally weighted in our

analyses. We previously validated these population-weighted,
average ZCTA-level concentrations of arsenic and uranium in
multi-site urban (the Multi-Ethnic Study of Atherosclerosis) and
multi-site rural (the Strong Heart Family Study) cohorts [4]. Even
when water concentrations were below USEPA MCLs, ZCTA-level
estimates were statistically associated with urinary arsenic and
uranium biomarkers reflecting total internal dose and explained
a higher proportion of variability in biomarker concentrations
than previously estimated (~31-60% in urban areas). However,
for other contaminants, the contribution of public drinking
water to total exposures is not yet clear for US communities
because (a) regulated public water contaminants differ greatly
by source profile and metabolic transformation and elimination,
(b) communities differ in their drinking water sources and use of
treatment devices, especially by socioeconomic advantage, and
(c) contributions from non-drinking water sources differ greatly
by contaminant (e.g., dermal and inhalation exposure for
disinfection byproducts, dust and paint exposure for lead, food
for nitrates) [7, 69, 70].
However, it is not currently clear if assigning residential ZCTA-

level estimates (rather than CWS-level or county-level, for
example) is the best approach to estimating actual public water
contaminant exposures. Assigning CWS-level estimates is only

Table 3. Geometric mean ratios (GMRs, 95% CIs) and corresponding percent differences of ZIP Code tabulation area (ZCTA)-level community water
system (CWS) contaminant concentrations per difference in ZCTA sociodemographic characteristics (N= 7640 ZCTAs).

GMR (95% CI)

N ZCTAs Arsenic
(2006–2011)

Uranium
(2000–2011)

Fluoride
(2006–2011)

Total trihalomethanes
(2006–2011)

Total haloacetic
acids
(2006–2011)

Per 10% higher proportion:a

% non-Hispanic
Black

4454 1.00 (0.98, 1.01)
0% (−2%, 1%)

1.00 (0.98, 1.02)
0% (−2%, 2%)

1.06 (1.01, 1.11)
6% (1%, 11%)

1.01 (0.98, 1.04)
1% (−2%, 4%)

1.00 (0.98, 1.02)
0% (−2%, 2%)

% American Indian/
Alaskan Native

1422 1.11 (1.07, 1.15)
11% (7%, 15%)

1.15 (1.10, 1.21)
15% (10%, 21%)

1.35 (1.20, 1.52)
35% (20%, 52%)

1.03 (0.96, 1.10)
3% (−4%, 10%)

0.97 (0.92, 1.02)
−3% (−8%, 2%)

% Hispanic/Latino 5484 1.02 (1.00, 1.03)
2% (0%, 3%)

1.09 (1.06, 1.12)
9% (6%, 12%)

1.21 (1.13, 1.28)
21% (13%, 28%)

0.95 (0.92, 0.99)
−5% (−8%, −1%)

0.96 (0.94, 0.99)
−4% (−6%, −1%)

% non-Hispanic
White

7385 0.97 (0.96, 0.99)
−3% (−4%, −1%)

0.92 (0.90, 0.95)
−8% (−10%, −5%)

0.78 (0.74, 0.83)
−22% (−26%, −17%)

1.02 (0.99, 1.05)
2% (−1%, 5%)

1.02 (1.00, 1.04)
2% (0%, 4%)

% non-Hispanic
Asian

4264 0.98 (0.93, 1.03)
−2% (−7%, 3%)

1.05 (0.97, 1.14)
5% (−3%, 14%)

1.09 (0.91, 1.30)
9% (−9%, 30%)

0.94 (0.84, 1.04)
−6% (−16%, 4%)

1.02 (0.94, 1.12)
2% (−6%, 12%)

Per IQR higher:b

Median household
income

7544 0.99 (0.97, 1.01)
−1% (−3%, 1%)

1.01 (0.97, 1.04)
1% (−3%, 4%)

0.92 (0.84, 1.02)
−8% (−16%, 2%)

0.97 (0.92, 1.03)
−3% (−8%, 3%)

0.97 (0.93, 1.01)
−3% (−7%, 1%)

% adults without a
high school diploma

7459 1.00 (0.97, 1.03)
0% (−3%, 3%)

0.99 (0.95, 1.04)
−1% (−5%, 4%)

0.79 (0.71, 0.89)
−21% (−29%, −11%)

0.98 (0.91, 1.05)
−2% (−9%, 5%)

1.04 (0.99, 1.10)
4% (−1%, 10%)

% receiving SNAP 7499 0.98 (0.95, 1.00)
−2% (−5%, 0%)

0.92 (0.88, 0.96)
−8% (−12%, −4%)

0.90 (0.81, 1.00)
−10% (−19%, 0%)

1.04 (0.98, 1.11)
4% (−2%, 11%)

1.05 (1.00, 1.09)
5% (0%, 9%)

% below 150% of
federal poverty line

7552 1.03 (1.00, 1.07)
3% (0%, 7%)

1.07 (1.00, 1.14)
7% (0%, 14%)

1.16 (0.99, 1.36)
16% (−1%, 36%)

1.06 (0.97, 1.17)
6% (−3%, 17%)

1.02 (0.95, 1.09)
2% (−5%, 9%)

% speaking English
“less than very well”

7552 0.98 (0.97, 1.00)
−2% (−3%, 0%)

1.02 (0.99, 1.04)
2% (−1%, 4%)

0.99 (0.92, 1.08)
−1% (−8%, 8%)

1.00 (0.96, 1.04)
0% (−4%, 4%)

1.03 (1.01, 1.06)
3% (1%, 6%)

Sociodemographic characteristics are from the 2011 US Census American Community Survey (5-year estimates). Spatial autocorrelation was modeled in spatial
lag models with k nearest neighbor distance-based weights, with neighbors defined as those within 20 km. When assessing racial/ethnic composition, the
GMRs of ZCTA-level CWS concentrations are calculated per 10% higher proportion of residents in a given racial/ethnic subgroup. For analyses of
socioeconomic status, the GMRs of ZCTA-level CWS concentrations are calculated per higher value corresponding to the interquartile range. For models
evaluating higher proportions of residents in a given racial/ethnic subgroup, the number of ZCTAs differs across each analysis because we excluded ZCTAs
without at least 100 residents in the main racial/ethnic subgroup of interest to avoid positivity violations (extrapolating beyond the range of observed data).
Percent differences are calculated as the (GMR −1)*100.
SNAP supplemental nutrition assistance program.
aModels adjusted for population density, proportion of adults without a high school diploma, median household income, rural vs. urban location, and the
racial/ethnic composition of all racial/ethnic groups other than non-Hispanic White residents (“leave-one-out” modeling approach). For models evaluating
higher proportions of non-Hispanic White residents, models leave out the proportion of Hispanic/Latino residents.
bModels adjusted for population density, rural vs. urban location, and the racial/ethnic composition of all racial/ethnic groups. Models evaluating median
household income further adjust for the proportion of adults without a high school diploma, and models evaluating the proportion of adults without a high
school diploma adjust for median household income. The value of the interquartile range (IQR) was $23,327 for median household income, 10.5% for the
percentage of adults without a high school diploma, 9.4% for the percentage of households reliant on supplemental nutrition assistance program (SNAP),
17.2% for the percentage of households below 150% of the federal poverty line, and 3.2% for the percentage of residents speaking English “less than very
well.”
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feasible for participants in the 15 ECHO states that publish CWS
distribution boundaries. Assigning ZCTA-level estimates assumes
that participants consume public water within their residential
ZCTAs only, and this may not accurately reflect secondary and
tertiary drinking water sources, such as those at places of work,
school, worship, and recreation. Due to differences in ZCTA size,
and frequent transit between ZCTAs, the accuracy in assignment
may be differential by rural-urban status, and power may be
limited for analyses across rural-urban locations. A quarter of
ZCTAs served by multiple CWSs had CWS arsenic concentration
differences greater than the overall standard deviation, high-
lighting that nearby water systems may distribute water with
meaningfully different contaminant concentrations. ZCTA-level
estimates will introduce some measurement error relative to
assigning individual residential water system estimates, although
this remains poorly quantified and is a critical area for further
research. These findings further support the critical need for
higher resolution public water system distribution area shapefiles
to facilitate the assignment of water-system level estimates for the
entire US. These assumptions should be evaluated in further high-
quality studies to improve exposure estimation and assignment.
To our knowledge, no relevant ECHO cohort sites collected
address information at places of secondary and tertiary drinking
water consumption that could be leveraged to generate more
accurate exposure estimates. An advantage of our current
approach is that ZCTA-level estimates can be readily assigned
based on residential addresses across diverse cohorts. In addition,
exposure measurement error may be largest at the extremes of
the distribution; some laboratories might have rounded values to
the nearest whole numbers, especially when values are at the
highest end of the quantifiable range.
Because only 15 states publish high-quality public water system

distribution boundaries, we relied on two distinct approaches to
assign CWSs to ZCTAs: (a) overlapping boundary shapefiles for
15 states and (b) assignments made via the USPS ZIP to Locale and
US Census Place Relationship files. Although we did not observe
systematic differences in contaminant concentrations when
comparing these two methods, we did observe that many active
CWS were missing from service area shapefiles, yet could be
matched to ZCTAs via city-served and water system name. This
approach could have introduced differential measurement error by
state, and thus, by contaminant concentration. Sensitivity analyses
could be restricted to participants living in states that do publish
boundary shapefiles, where primary residential water systems can
be assigned; ZCTA-level averages can still be incorporated to
account for secondary and tertiary sources. It is not clear if either
approach more accurately estimates actual contaminant concen-
trations at the ZCTA- or individual-level. Currently, all US public
drinking water epidemiology is limited by the lack of high-quality,
nationwide shapefiles of public water system distribution bound-
aries [37]. Moreover, the accuracy of published shapefiles is not
clear and likely differs by the entity with enforcement responsibility
[37]. To aid in efforts to replace all lead service lines across the US,
the USEPA Lead and Copper Rule Revisions now require public
water systems to create and maintain an inventory of service line
material by October 2024 [71]. Similarly, requiring public water
systems to generate, maintain, and publicly publish public water
system boundaries would significantly advance public water
epidemiology and policy analyses across the US. As more data is
collected, future epidemiologic analyses would benefit from
accounting for the uncertainty in estimates of ZCTA-level
contaminant concentrations.
Although we have developed ZCTA-level lead and copper

concentration estimates, we did not include these in the current
study, as these estimates may not be reasonable estimates of CWS
exposure when assigned at either the CWS or ZCTA-level. Lead is
rarely present in source water and instead enters drinking water
from distribution system components (e.g., lead solder or

plumbing and service lines) [72]. Our lead concentration estimates
were derived from compliance monitoring records reported in
accordance with the Lead and Copper Rule and represented the
90th percentile value of concentrations sampled at the tap for a
small subset of homes. Prior studies have identified inadequacies
and biases in the Lead and Copper Rule compliance monitoring
and reporting requirements, and there is substantial variability in
water lead concentrations throughout water system distribution
systems and across seasons [30, 72]. Future studies should
specifically evaluate these lead 90th percentile concentration
estimates in the ECHO Cohorts and determine whether they are
associated with blood lead concentrations (validated measure of
internal dose) when assigned at the water system or ZCTA level.
Similarly, there is meaningful variability in disinfection byproduct
concentrations within water distribution systems, that likely
warrant many spatial samples within a CWS or modeling effort
to capture continued DBP degradation and formation over time
and space [7]. Disinfection byproduct concentrations are influ-
enced by the disinfectant type, residence time, season/tempera-
ture, occurrence and type of organic matter [59, 73]. Our
water system and ZCTA-level estimates of total trihalomethanes
and total haloacetic acids are not able to account for differences in
concentrations within distribution systems that are related
to residence time. Seasonal estimates of disinfection byproduct
concentrations may not sufficiently capture acute changes in
contaminant concentrations. In addition, we relied on the
most recently published compliance monitoring records pub-
lished in the Six Year Review 3 (2006–2011), which does not
overlap with all prenatal time periods in the ECHO Cohort.
Contaminant concentrations can be updated when the USEPA
releases the Six Year Review 4 (covering 2012–2019). While most
geogenic contaminants are considered to be relatively stable over
time, changes in contaminant concentrations are more likely
for contaminants subject to temporal variability or a major
regulatory change (we are not aware of any major federal
regulatory changes that would reduce contaminant concentra-
tions from 2011–2019).
Despite these limitations, this work enables the study of

federally regulated public drinking water contaminant exposures
within the ECHO Cohort and provides an opportunity to evaluate
CWS contaminant exposures with infant and child health out-
comes. We propose that public drinking water contaminant
estimates should be regularly included as part of a comprehensive
assessment of environmental exposures in major National Institute
of Health (NIH)-funded cohorts. Modeled estimates of PM2.5 and
other air pollutants are routinely estimated for cohort participants,
and epidemiologic evidence using these modeled exposures was
cited by the USEPA in the Agency’s proposed decision to revise
the annual PM2.5 standard from 12.0 µg/m3 to 9.0–10.0 µg/m3

[74, 75]. While the exposure estimates we generate here can be
improved with the additional methodological advances proposed
above, estimates can support critical epidemiologic assessments,
especially for contaminants with a MCL, action level, or trigger
level above the maximum contaminant goal level (e.g., arsenic,
uranium, lead, and disinfection byproducts). High-quality, nation-
wide epidemiologic studies of CWS contaminant exposures and
adverse birth and infant outcomes are needed in large, diverse US
populations. Major maternal and infant health disparities persist,
and inequities in public drinking water contaminant exposures
might be an under-recognized and immediately modifiable driver
of these disparities.

DATA AVAILABILITY
All data used in this analysis are publicly available. The CWS concentration data are
available at: https://msph.shinyapps.io/drinking-water-dashboard/. Citations for
shapefiles used to generate ZCTA-level data are available in Supplementary Table 1.
ZCTA-level racial/ethnic composition and ZCTA-level sociodemographic data are
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available from the 2010 decennial US Census and the 2006-2010 US Census Bureau’s
American Community Survey (5-year estimates). The 2010 US Department of
Agriculture Rural-Urban (RUCA) continuum codes are also publicly available. A full
description of all variables used in this analysis is listed in the Methods. ZCTA-level
public water contaminant estimate data are available from the authors upon request.

REFERENCES
1. Nigra AE, Chen Q, Chillrud SN, Wang L, Harvey D, Mailloux B, et al. Inequalities in

public water arsenic concentrations in counties and community water systems
across the United States, 2006–2011. Environ Health Perspect. 2020;128:127001
https://doi.org/10.1289/EHP7313.

2. Hefferon R, Goin DE, Sarnat JA, Nigra AE Regional and racial/ethnic inequalities in
public drinking water fluoride concentrations across the US. J Expo Sci Environ
Epidemiol. 2023:1–9. https://doi.org/10.1038/s41370-023-00570-w.

3. Danziger J, Mukamal KJ, Weinhandl E. Associations of community water lead
concentrations with hemoglobin concentrations and Erythropoietin-stimulating
agent use among patients with advanced CKD. J Am Soc Nephrol.
2021;32:2425–34. https://doi.org/10.1681/ASN.2020091281.

4. Spaur M, Glabonjat RA, Schilling K, Lombard MA, Galvez-Fernandez M,
Lieberman-Cribbin W, et al. Contribution of arsenic and uranium in private wells
and community water systems to urinary biomarkers in US adults: The Strong
Heart Study and the Multi-Ethnic Study of Atherosclerosis. J Expo Sci Environ
Epidemiol. 2023. https://doi.org/10.1038/s41370-023-00586-2.

5. U.S. Environmental Protection Agency. Report on the Environment (ROE). US EPA. 2015.
URL: https://cfpub.epa.gov/roe/indicator.cfm?i=45 (Accessed 12 November 2023).

6. Ravalli F, Yu Y, Bostick BC, Chillrud SN, Schilling K, Basu A, et al. Socio-
demographic inequalities in uranium and other metals in community water
systems across the USA, 2006-11: a cross-sectional study. Lancet Planet Health.
2022;6:e320–30. https://doi.org/10.1016/S2542-5196(22)00043-2.

7. Levin R, Villanueva CM, Beene D, Cradock AL, Donat-Vargas C, Lewis J, et al. US
drinking water quality: exposure risk profiles for seven legacy and emerging
contaminants. J Expo Sci Environ Epidemiol. 2023:1–20. https://doi.org/10.1038/
s41370-023-00597-z.

8. Martinez-Morata I, Bostick BC, Conroy-Ben O, Duncan DT, Jones MR, Spaur M,
et al. Nationwide geospatial analysis of county racial and ethnic composition and
public drinking water arsenic and uranium. Nat Commun. 2022;13:7461. https://
doi.org/10.1038/s41467-022-35185-6.

9. Bailey ZD, Krieger N, Agénor M, Graves J, Linos N, Bassett MT. Structural racism
and health inequities in the USA: evidence and interventions. Lancet.
2017;389:1453–63. https://doi.org/10.1016/S0140-6736(17)30569-X.

10. Bailey ZD, Feldman JM, Bassett MT. How structural racism works — racist policies
as a root cause of U.S. Racial Health Inequities. N. Engl J Med. 2021;384:768–73.
https://doi.org/10.1056/NEJMms2025396.

11. Scanlon BR, Reedy RC, Fakhreddine S, Yang Q, Pierce G. Drinking water quality
and social vulnerability linkages at the system level in the United States. Environ
Res Lett. 2023;18:094039. https://doi.org/10.1088/1748-9326/ace2d9.

12. Adkins-Jackson PB, Chantarat T, Bailey ZD, Ponce NA. Measuring structural
racism: a guide for epidemiologists and other health researchers. Am J Epidemiol.
2022;191:539–47. https://doi.org/10.1093/aje/kwab239.

13. Paradies Y, Ben J, Denson N, Elias A, Priest N, Pieterse A, et al. Racism as a
determinant of health: a systematic review and meta-analysis. PLoS ONE.
2015;10:e0138511. https://doi.org/10.1371/journal.pone.0138511.

14. Nardone AL, Casey JA, Rudolph KE, Karasek D, Mujahid M, Morello-Frosch R.
Associations between historical redlining and birth outcomes from 2006 through
2015 in California. PLoS One. 2020;15:e0237241. https://doi.org/10.1371/
journal.pone.0237241.

15. Kwate NOA, Goodman MS. Cross-sectional and longitudinal effects of racism on
mental health among residents of black neighborhoods in New York City. Am J
Public Health. 2015;105:711–8. https://doi.org/10.2105/AJPH.2014.302243.

16. Krieger N, Sidney S. Racial discrimination and blood pressure: The CARDIA Study
of young black and white adults. Am J Public Health. 1996;86:1370–8. https://
doi.org/10.2105/ajph.86.10.1370.

17. Chae DH, Clouston S, Martz CD, Hatzenbuehler ML, Cooper HLF, Turpin R, et al.
Area racism and birth outcomes among Blacks in the United States. Soc Sci Med.
2018;199:49–55. https://doi.org/10.1016/j.socscimed.2017.04.019.

18. Collins JW, David RJ, Symons R, Handler A, Wall SN, Dwyer L. Low-income African-
American mothers’ perception of exposure to racial discrimination and infant
birth weight. Epidemiology. 2000;11:337–9. https://doi.org/10.1097/00001648-
200005000-00019.

19. Howell EA, Janevic T, Blum J, Zeitlin J, Egorova NN, Balbierz A, et al. Double
disadvantage in delivery hospital for Black and Hispanic women and high-risk
infants. Matern Child Health J. 2020;24:687–93. https://doi.org/10.1007/s10995-
020-02911-9.

20. Travers CP, Carlo WA, McDonald SA, Das A, Ambalavanan N, Bell EF, et al. Racial/
Ethnic disparities among extremely preterm infants in the United States From
2002 to 2016. JAMA Netw Open. 2020;3:e206757. https://doi.org/10.1001/
jamanetworkopen.2020.6757.

21. Behrman RE, Butler AS Preterm Birth: Causes, Consequences, and Prevention.
Washington, D.C.: National Academies Press; (2007).

22. Taylor CM, Golding J, Emond AM. Adverse effects of maternal lead levels on birth
outcomes in the ALSPAC study: a prospective birth cohort study. BJOG.
2015;122:322–8. https://doi.org/10.1111/1471-0528.12756.

23. Bellavia A, Zota AR, Valeri L, James-Todd T. Multiple mediators approach to study
environmental chemicals as determinants of health disparities. Environ Epide-
miol. 2018;2:e015. https://doi.org/10.1097/EE9.0000000000000015.

24. Pace C, Balazs C, Bangia K, Depsky N, Renteria A, Morello-Frosch R, et al. Inequities
in drinking water quality among domestic well communities and community
water systems, California, 2011‒2019. Am J Public Health. 2022;112:88–97.
https://doi.org/10.2105/AJPH.2021.306561.

25. Schaider LA, Swetschinski L, Campbell C, Rudel RA. Environmental justice and
drinking water quality: are there socioeconomic disparities in nitrate levels in U.S.
drinking water? Environ Health. 2019;18:3. https://doi.org/10.1186/s12940-018-
0442-6.

26. Nigra AE, Navas-Acien A. Arsenic in US correctional facility drinking water, 2006-
2011. Environ Res. 2020;188:109768. https://doi.org/10.1016/j.envres.2020.109768.

27. Balazs CL, Ray I. The drinking water disparities framework: on the origins and
persistence of inequities in exposure. Am J Public Health. 2014;104:603–11.
https://doi.org/10.2105/AJPH.2013.301664.

28. Cory DC, Rahman T. Environmental justice and enforcement of the Safe Drinking
Water Act: The Arizona arsenic experience. Ecol Econ. 2009;68:1825–37. https://
doi.org/10.1016/j.ecolecon.2008.12.010.

29. Gibson JM, Fisher M, Clonch A, MacDonald JM, Cook PJ. Children drinking private
well water have higher blood lead than those with city water. Proc Natl Acad Sci
USA. 2020;117. https://doi.org/10.1073/pnas.2002729117.

30. Kaplan RA. Memorandum: Region 5’s experience in implementation of the Lead
and Copper Rule. United States Environmental Protection Agency. Updated
December 29, 2017. URL: https://www.eenews.net/assets/2020/02/20/
document_gw_09.pdf (Accessed 20 July 2020).

31. Hernández D. Sacrifice along the energy continuum: a call for energy justice.
Environ Justice. 2015;8:151–6. https://doi.org/10.1089/env.2015.0015.

32. Wilson SM. Environmental justice movement: a review of history, research, and
public health issues. J Public Manag Soc Policy. 2010;16:19–50.

33. Milton AH, Hussain S, Akter S, Rahman M, Mouly TA, Mitchell K. A review of the
effects of chronic arsenic exposure on adverse pregnancy outcomes. Int J Environ
Res Public Health. 2017;14:556. https://doi.org/10.3390/ijerph14060556.

34. Lin L, St Clair S, Gamble GD, Crowther CA, Dixon L, Bloomfield FH, et al. Nitrate
contamination in drinking water and adverse reproductive and birth outcomes: a
systematic review and meta-analysis. Sci Rep. 2023;13:563. https://doi.org/
10.1038/s41598-022-27345-x.

35. Cao W-C, Zeng Q, Luo Y, Chen H-X, Miao D-Y, Li L, et al. Blood biomarkers of late
pregnancy exposure to Trihalomethanes in drinking water and fetal growth
measures and gestational age in a Chinese cohort. Environ Health Perspect.
2016;124:536–41. https://doi.org/10.1289/ehp.1409234.

36. Choi AL, Sun G, Zhang Y, Grandjean P. Developmental fluoride neurotoxicity: a
systematic review and meta-analysis. Environ Health Perspect. 2012;120:1362–8.
https://doi.org/10.1289/ehp.1104912.

37. McDonald YJ, Anderson KM, Caballero MD, Ding KJ, Fisher DH, Morkel CP, et al. A
systematic review of geospatial representation of United States community water
systems. AWWA Water Sci. 2022;4:e1266. https://doi.org/10.1002/aws2.1266.

38. Bravo MA, Fuentes M, Zhang Y, Burr MJ, Bell ML. Comparison of exposure esti-
mation methods for air pollutants: Ambient monitoring data and regional air
quality simulation. Environ Res. 2012;116:1–10. https://doi.org/10.1016/
j.envres.2012.04.008.

39. Issah I, Duah MS, Arko-Mensah J, Bawua SA, Agyekum TP, Fobil JN. Exposure to
metal mixtures and adverse pregnancy and birth outcomes: A systematic review.
Sci Total Environ. 2024;908:168380. https://doi.org/10.1016/
j.scitotenv.2023.168380.

40. Bannon E, Spriggs R, Adkins-Jackson PB, Van Horne YO, Parks RM, Prins SJ, et al.
Disinfection Byproducts and Inorganic Contaminants in Us Correctional Facility
Public Water Systems. 2023. https://doi.org/10.2139/ssrn.4548551 (Accessed 30
November 2023).

41. Nigra AE, Cazacu-De Luca A, Navas-Acien A. Socioeconomic vulnerability and
public water arsenic concentrations across the US. Environ Pollut.
2022;313:120113. https://doi.org/10.1016/j.envpol.2022.120113.

42. U.S. Environmental Protection Agency. The Analysis of Regulated Contaminant
Occurrence Data from Public Water Systems in Support of the Third Six-Year
Review of National Primary Drinking Water Regulations: Chemical Phase Rules

T.R. Bloomquist et al.

11

Journal of Exposure Science & Environmental Epidemiology (2026) 36:1 – 13

https://doi.org/10.1289/EHP7313
https://doi.org/10.1038/s41370-023-00570-w
https://doi.org/10.1681/ASN.2020091281
https://doi.org/10.1038/s41370-023-00586-2
https://cfpub.epa.gov/roe/indicator.cfm?i=45
https://doi.org/10.1016/S2542-5196(22)00043-2
https://doi.org/10.1038/s41370-023-00597-z
https://doi.org/10.1038/s41370-023-00597-z
https://doi.org/10.1038/s41467-022-35185-6
https://doi.org/10.1038/s41467-022-35185-6
https://doi.org/10.1016/S0140-6736(17)30569-X
https://doi.org/10.1056/NEJMms2025396
https://doi.org/10.1088/1748-9326/ace2d9
https://doi.org/10.1093/aje/kwab239
https://doi.org/10.1371/journal.pone.0138511
https://doi.org/10.1371/journal.pone.0237241
https://doi.org/10.1371/journal.pone.0237241
https://doi.org/10.2105/AJPH.2014.302243
https://doi.org/10.2105/ajph.86.10.1370
https://doi.org/10.2105/ajph.86.10.1370
https://doi.org/10.1016/j.socscimed.2017.04.019
https://doi.org/10.1097/00001648-200005000-00019
https://doi.org/10.1097/00001648-200005000-00019
https://doi.org/10.1007/s10995-020-02911-9
https://doi.org/10.1007/s10995-020-02911-9
https://doi.org/10.1001/jamanetworkopen.2020.6757
https://doi.org/10.1001/jamanetworkopen.2020.6757
https://doi.org/10.1111/1471-0528.12756
https://doi.org/10.1097/EE9.0000000000000015
https://doi.org/10.2105/AJPH.2021.306561
https://doi.org/10.1186/s12940-018-0442-6
https://doi.org/10.1186/s12940-018-0442-6
https://doi.org/10.1016/j.envres.2020.109768
https://doi.org/10.2105/AJPH.2013.301664
https://doi.org/10.1016/j.ecolecon.2008.12.010
https://doi.org/10.1016/j.ecolecon.2008.12.010
https://doi.org/10.1073/pnas.2002729117
https://www.eenews.net/assets/2020/02/20/document_gw_09.pdf
https://www.eenews.net/assets/2020/02/20/document_gw_09.pdf
https://doi.org/10.1089/env.2015.0015
https://doi.org/10.3390/ijerph14060556
https://doi.org/10.1038/s41598-022-27345-x
https://doi.org/10.1038/s41598-022-27345-x
https://doi.org/10.1289/ehp.1409234
https://doi.org/10.1289/ehp.1104912
https://doi.org/10.1002/aws2.1266
https://doi.org/10.1016/j.envres.2012.04.008
https://doi.org/10.1016/j.envres.2012.04.008
https://doi.org/10.1016/j.scitotenv.2023.168380
https://doi.org/10.1016/j.scitotenv.2023.168380
https://doi.org/10.2139/ssrn.4548551
https://doi.org/10.1016/j.envpol.2022.120113


and Radionuclides Rules. 2016. URL: https://www.epa.gov/sites/production/files/
2016-12/documents/810r16014.pdf (Accessed 20 July 2023).

43. U.S. Environmental Protection Agency. Six-Year Review 3 Compliance Monitoring
Data (2006-2011). 2016. URL: https://www.epa.gov/dwsixyearreview/six-year-
review-3-compliance-monitoring-data-2006-2011 (Accessed 13 November 2023).

44. Krasner SW, McGuire MJ, Jacangelo JG, Patania NL, Reagan KM, Aieta EM. The
occurrence of disinfection by-products in US drinking water. J AWWA.
1989;81:41–53. https://doi.org/10.1002/j.1551-8833.1989.tb03258.x.

45. United States Census Bureau. 2010 ZCTA to Place Relationship File. URL: https://
www2.census.gov/geo/docs/maps-data/data/rel/zcta_place_rel_10.txt (Accessed
30 November 2023).

46. United States Postal Service. USPS ZIP Codes by Area and District codes. URL:
https://postalpro.usps.com/ZIP_Locale_Detail (Accessed 30 November 2023).

47. Pebesma E. Simple features for R: Standardized support for spatial vector data. R
J. 2018;10:439–46.

48. Walker K, Herman M, Eberwein K. tidycensus: Load US Census Boundary and
Attribute Data as ‘tidyverse’ and ’sf’-Ready Data Frames (2023).

49. U.S. Economic Research Service. Rural-Urban Commuting Area Codes. 2020. URL:
https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/
(Accessed 13 November 2023).

50. Walker K. tigris: An R package to access and work with geographic data from the
US Census Bureau. R J. 2016;8:231. https://doi.org/10.32614/RJ-2016-043.

51. U.S. Environmental Protection Agency. National Primary Drinking Water Regula-
tions. 2015. URL: https://www.epa.gov/ground-water-and-drinking-water/national-
primary-drinking-water-regulations (Accessed 22 February 2024).

52. Ahmad A, van der Wens P, Baken K, de Waal L, Bhattacharya P, Stuyfzand P.
Arsenic reduction to <1µg/L in Dutch drinking water. Environ Int.
2020;134:105253. https://doi.org/10.1016/j.envint.2019.105253.

53. U.S. Environmental Protection Agency. The Final Arsenic Rule. URL: https://
www.govinfo.gov/content/pkg/CFR-2010-title40-vol22/pdf/CFR-2010-title40-
vol22-sec141-23.pdf (Accessed 24 July 2023).

54. World Health Organization. Guidelines for drinking-water quality: Fourth edition
incorporating the first and second addenda. (2022).

55. U.S. Department of Health and Human Services Federal Panel on Community
Water Fluoridation. U.S. Public Health Service recommendation for fluoride
concentration in drinking water for the prevention of dental caries. Public Health
Rep. 2015;130:318–31.

56. Frisbie SH, Mitchell EJ, Sarkar B. World Health Organization increases its drinking-
water guideline for uranium. Environ Sci Process Impacts. 2013;15:1817–23.
https://doi.org/10.1039/c3em00381g.

57. Villanueva CM, Evlampidou I, Ibrahim F, Donat-Vargas C, Valentin A, Tugulea A-M,
et al. Global assessment of chemical quality of drinking water: The case of tri-
halomethanes. Water Res. 2023;230:119568. https://doi.org/10.1016/
j.watres.2023.119568.

58. Allen M, Poggiali D, Whitaker K, Marshall TR, van Langen J, Kievit RA. Raincloud
plots: A multi-platform tool for robust data visualization. Wellcome Open Res.
2019;4:63. https://doi.org/10.12688/wellcomeopenres.15191.2.

59. Munthali E, Marcé R, Farré MJ. Drivers of variability in disinfection by-product
formation potential in a chain of thermally stratified drinking water reservoirs.
Environ Sci: Water Res Technol. 2022;8:968–80. https://doi.org/10.1039/
D1EW00788B.

60. U.S. Environmental Protection Agency. Occurrence Assessment for the Final Stage
2 Disinfectants and Disinfection Byproducts Rule. 2005. URL: https://nepis.epa.gov/
Exe/ZyPDF.cgi?Dockey=P1005ED2.txt (Accessed 30 November 2023).

61. Florax RJGM, Nijkamp P. Misspecification in Linear Spatial Regression Models
(2003) https://doi.org/10.2139/ssrn.459500.

62. Savitz DA, Wise LA, Bond JC, Hatch EE, Ncube CN, Wesselink AK, et al. Responding
to reviewers and editors about statistical significance testing. Ann Intern Med
(2024):M23-2430. https://doi.org/10.7326/M23-2430.

63. Farland LV, Correia KF, Wise LA, Williams PL, Ginsburg ES, Missmer SA. P -values
and reproductive health: what can clinical researchers learn from the American
Statistical Association? Hum Reprod. 2016;31:2406–10. https://doi.org/10.1093/
humrep/dew192.

64. Jin R, Zhu X, Shrubsole MJ, Yu C, Xia Z, Dai Q. Associations of renal function with
urinary excretion of metals: Evidence from NHANES 2003–2012. Environ Int.
2018;121:1355–62. https://doi.org/10.1016/j.envint.2018.11.002.

65. Verner M-A, Loccisano AE, Morken N-H, Yoon M, Wu H, McDougall R, et al.
Associations of Perfluoroalkyl Substances (PFAS) with Lower Birth Weight: An
Evaluation of Potential Confounding by Glomerular Filtration Rate Using a Phy-
siologically Based Pharmacokinetic Model (PBPK). Environ Health Perspect.
2015;123:1317–24. https://doi.org/10.1289/ehp.1408837.

66. Knapp EA, Kress AM, Parker CB, Page GP, McArthur K, Gachigi KK, et al. The
Environmental influences on Child Health Outcomes (ECHO)-wide Cohort. Am J
Epidemiol. 2023:kwad071. https://doi.org/10.1093/aje/kwad071.

67. Castaño-Vinyals G, Cantor KP, Villanueva CM, Tardon A, Garcia-Closas R, Serra C,
et al. Socioeconomic status and exposure to disinfection by-products in drinking
water in Spain. Environ Health. 2011;10:18. https://doi.org/10.1186/1476-069X-10-
18.

68. Casey JA, Daouda M, Babadi RS, Do V, Flores NM, Berzansky I, et al. Methods in
public health environmental justice research: a scoping review from 2018 to
2021. Curr Environ Health Rep. 2023;10:312–36. https://doi.org/10.1007/s40572-
023-00406-7.

69. Martinez-Morata I, Sobel M, Tellez-Plaza M, Navas-Acien A, Howe CG, Sanchez TR.
A state-of-the-science review on metal biomarkers. Curr Environ Health Rep.
2023;10:215–49. https://doi.org/10.1007/s40572-023-00402-x.

70. Bryan NS, van Grinsven H. Chapter Three - The Role of Nitrate in Human Health.
In: Sparks DL, editor. Advances in Agronomy, vol. 119. Academic Press; (2013).
153–82.

71. U.S. Environmental Protection Agency. Lead and Copper Rule Revisions Service Line
Inventory Guidance. 2022. URL: https://www.epa.gov/ground-water-and-drinking-
water/revised-lead-and-copper-rule (Accessed 12 December 2023).

72. Del Toral MA, Porter A, Schock MR. Detection and evaluation of elevated lead
release from service lines: a field study. Environ Sci Technol. 2013;47:9300–7.
https://doi.org/10.1021/es4003636.

73. Doederer K, Gernjak W, Weinberg HS, Farré MJ. Factors affecting the formation of
disinfection by-products during chlorination and chloramination of secondary
effluent for the production of high quality recycled water. Water Res.
2014;48:218–28. https://doi.org/10.1016/j.watres.2013.09.034.

74. U.S. Environmental Protection Agency, Sacks J Supplement to the 2019 Integrated
Science Assessment for Particulate Matter. 2022. URL: https://cfpub.epa.gov/ncea/
isa/recordisplay.cfm?deid=354490 (Accessed 14 November 2023).

75. U.S. Environmental Protection Agency. EPA Proposes to Strengthen Air Quality
Standards to Protect the Public from Harmful Effects of Soot. 2023. URL: https://
www.epa.gov/newsreleases/epa-proposes-strengthen-air-quality-standards-
protect-public-harmful-effects-soot (Accessed 14 November 2023).

ACKNOWLEDGEMENTS
The authors would like to acknowledge the government agencies and all who
worked to collect these data and make them available to the public.

AUTHOR CONTRIBUTIONS
TRB: methodology, formal analysis, investigation, writing (draft, review, and editing),
validation, and visualization. MS: underlying methodology and data, contribution of
code, and writing (review and editing). ICT: content knowledge and writing (review
and editing). AMK & MB: subject matter expertise on the ECHO Cohort, analytical
decisions, and writing (review and editing). AK: content knowledge, and writing
(review and editing). JAC: methodology, content knowledge, and writing (review and
editing). JBH: subject matter expertise on the ECHO Cohort as a cohort PI,
methodology, and writing (review and editing). AEN: conceptualization, methodol-
ogy, formal analysis, investigation, writing (draft, review, and editing), validation,
visualization, obtained funding.

FUNDING
This study was supported by the NIH OD and NIDCR grant DP5OD031849, NICHD
grant P2CHD058486, NIEHS grants P30ES009089 and P42ES033719, NIH grant
U24OD023382, and NIH HHS grant UG3OD023290. TRB is also supported by NIEHS
T32ES007322. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health.

COMPETING INTERESTS
The authors declare no competing interests.

ETHICAL APPROVAL
This study did not use human participants, their data, or biological material and was
therefore determined to be exempt from research by Columbia University’s
Institutional Review Board.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41370-024-00699-2.

T.R. Bloomquist et al.

12

Journal of Exposure Science & Environmental Epidemiology (2026) 36:1 – 13

https://www.epa.gov/sites/production/files/2016-12/documents/810r16014.pdf
https://www.epa.gov/sites/production/files/2016-12/documents/810r16014.pdf
https://www.epa.gov/dwsixyearreview/six-year-review-3-compliance-monitoring-data-2006-2011
https://www.epa.gov/dwsixyearreview/six-year-review-3-compliance-monitoring-data-2006-2011
https://doi.org/10.1002/j.1551-8833.1989.tb03258.x
https://www2.census.gov/geo/docs/maps-data/data/rel/zcta_place_rel_10.txt
https://www2.census.gov/geo/docs/maps-data/data/rel/zcta_place_rel_10.txt
https://postalpro.usps.com/ZIP_Locale_Detail
https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/
https://doi.org/10.32614/RJ-2016-043
https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations
https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations
https://doi.org/10.1016/j.envint.2019.105253
https://www.govinfo.gov/content/pkg/CFR-2010-title40-vol22/pdf/CFR-2010-title40-vol22-sec141-23.pdf
https://www.govinfo.gov/content/pkg/CFR-2010-title40-vol22/pdf/CFR-2010-title40-vol22-sec141-23.pdf
https://www.govinfo.gov/content/pkg/CFR-2010-title40-vol22/pdf/CFR-2010-title40-vol22-sec141-23.pdf
https://doi.org/10.1039/c3em00381g
https://doi.org/10.1016/j.watres.2023.119568
https://doi.org/10.1016/j.watres.2023.119568
https://doi.org/10.12688/wellcomeopenres.15191.2
https://doi.org/10.1039/D1EW00788B
https://doi.org/10.1039/D1EW00788B
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1005ED2.txt
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1005ED2.txt
https://doi.org/10.2139/ssrn.459500
https://doi.org/10.7326/M23-2430
https://doi.org/10.1093/humrep/dew192
https://doi.org/10.1093/humrep/dew192
https://doi.org/10.1016/j.envint.2018.11.002
https://doi.org/10.1289/ehp.1408837
https://doi.org/10.1093/aje/kwad071
https://doi.org/10.1186/1476-069X-10-18
https://doi.org/10.1186/1476-069X-10-18
https://doi.org/10.1007/s40572-023-00406-7
https://doi.org/10.1007/s40572-023-00406-7
https://doi.org/10.1007/s40572-023-00402-x
https://www.epa.gov/ground-water-and-drinking-water/revised-lead-and-copper-rule
https://www.epa.gov/ground-water-and-drinking-water/revised-lead-and-copper-rule
https://doi.org/10.1021/es4003636
https://doi.org/10.1016/j.watres.2013.09.034
https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=354490
https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=354490
https://www.epa.gov/newsreleases/epa-proposes-strengthen-air-quality-standards-protect-public-harmful-effects-soot
https://www.epa.gov/newsreleases/epa-proposes-strengthen-air-quality-standards-protect-public-harmful-effects-soot
https://www.epa.gov/newsreleases/epa-proposes-strengthen-air-quality-standards-protect-public-harmful-effects-soot
https://doi.org/10.1038/s41370-024-00699-2


Correspondence and requests for materials should be addressed to
Tessa R. Bloomquist.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to
this article under a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article is solely
governed by the terms of such publishing agreement and applicable law.

T.R. Bloomquist et al.

13

Journal of Exposure Science & Environmental Epidemiology (2026) 36:1 – 13

http://www.nature.com/reprints
http://www.nature.com/reprints

	Public drinking water contaminant estimates for birth cohorts in the Environmental Influences on Child Health Outcomes (ECHO) Cohort
	Introduction
	Materials and methods
	Study population and exclusion criteria
	Developing CWS contaminant concentration estimates
	ZCTA-level sociodemographic variables
	Statistical analysis
	Spatial lag linear regression
	Sensitivity analyses

	Results
	Discussion
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Ethical approval
	ADDITIONAL INFORMATION




