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Hemodynamic factors primarily impact on carotid IMT in young
adults of African Ancestry in Sub-Saharan Africa
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Cardiovascular events occur 20 years earlier in Sub-Saharan Africa compared to Europe. The risk factors for atherosclerosis differ
between population groups and according to age. We compared the main correlates of carotid intima-media thickness (IMT, an
index of atherosclerosis) in young and older adults of African ancestry. Hemodynamic (central and peripheral arterial pressures) and
metabolic factors (lipids, glucose, glycated haemoglobin), smoking status and carotid IMT were determined in 573 adult Africans. In
young (age<35years, n = 181) and middle-aged (35-59years, n = 231) adults, carotid IMT was associated with hemodynamic and
metabolic cardiovascular risk factors on bivariate analyses. In older (age=60years, n = 161) adults only hemodynamic factors were
associated with carotid IMT. After adjustments for confounders, lipids were not associated with carotid IMT at any adult age. Carotid
IMT was independently associated with backward wave pressure (Pb, p =0.001) and age (p = 0.006) in young adults; with
hemodynamics (central systolic blood pressure, p = 0.003; Pb, p = 0.02), age (p = 0.0002), body mass index (BMI, p = 0.005) and
heart rate (p =0.007) in middle-aged adults; and with Pb (p <0.0001), male sex (p =0.03), and HR (p = 0.04) in older adults.
Increased carotid IMT was related to Pb in young (odds ratio [OR] = 1.233, p = 0.0003) and older (OR = 1.086, p = 0.0059) adults,
and BMI (OR = 1.089, p = 0.0005) in middle-aged adults. Improvements in predictive performance for detecting increased carotid
IMT were shown with Pb in young (p = 0.0032) and older (p = 0.0031) adults, and with BMI (p = 0.0004) in middle-aged adults. In
conclusion, in African adults in Sub-Saharan Africa, carotid IMT is associated with hemodynamic factors, but not lipids. Moreover, in

young adults, carotid IMT is primarily associated with hemodynamic factors.
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INTRODUCTION
Cardiovascular disease (CVD) is the primary cause of death
worldwide [1]. However, there are differences in the burden of
CVD between countries, with concerns of an emerging pandemic of
CVD in Sub-Saharan Africa [2], in contrast to Europe and America,
where CVD appears to be on the decline [3]. Moreover, in people of
African descent, the onset of cardiovascular outcomes is premature,
occurring approximately 15-20 years earlier than in people of
European descent [4]. Hence, it is essential to screen for and prevent
CVD in Sub-Saharan Africa, especially among young adults.
Carotid artery intima-media thickness (IMT), a proxy for
subclinical atherosclerosis, is an important non-invasive screening
tool for CVD [5]. However, carotid IMT is lower in African
populations living in Africa compared to other populations [6].
Variations in risk factors for CVD in Sub-Saharan African compared
to European and American countries, may account for population
differences in IMT. A recent systematic review points toward
hypertension rather than dyslipidaemia, being the primary risk
factor for CVD in Sub-Saharan African countries [7]. Indeed, central
arterial stiffness, central arterial blood pressure (BP) [8] and central
arterial pressure augmentation [9] are elevated in African
compared with European individuals, particularly among young
adults [8]. Moreover, in African populations living in Africa

compared to in European populations, HDL cholesterol has a
greater protective effect and LDL cholesterol a weaker negative
impact on carotid IMT [6].

Despite the high prevalence of CVD, there are limited data
assessing the determinants of carotid IMT in Sub-Saharan African
populations, especially in young adults. Although a large study in
four Sub-Saharan African countries identified factors associated with
carotid IMT, these data were restricted to adults aged 40-60 years
[10]. In this regard, the determinants of carotid IMT have been
shown to differ according to age in Chinese [11], and European [12]
individuals. However, to our knowledge there are no data assessing
the determinants of carotid IMT in young adults of African ancestry.
We therefore aimed to identify the main hemodynamic and
metabolic cardiovascular risk factors associated with carotid IMT
in young (age<35 years) compared to middle-aged (age 35-59
years) and older (age=60 years) adults of African ancestry.

METHODS

Study group

The present study was approved by the Committee for Research on
Human Subjects of the University of the Witwatersrand (approval number:
MO02-04-72 and renewed as M07-04-69, M12-04-108, M17-04-01, and M22-
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03-93), and conducted according to the principles outlined in the Helsinki
declaration. Participants gave informed, written consent. The design of the
study has previously been described [13, 14]. Briefly, families of black
African descent (Nguni and Sotho chiefdoms) with siblings older than 16
years of age were randomly recruited from the South West Township
(SOWETO) of Johannesburg, South Africa. In the present study, 573
participants with both carotid IMT and high quality velocity measurements
in the aortic outflow tract were assessed. To identify the cardiovascular risk
factors associated with carotid IMT in young compared to older adults, the
study group was divided into three age categories: young: age<35 years
(n=181); middle-aged: age 35-59 years (n =231); elderly: age=60 years
(n=161).

Clinical, demographic, anthropometric and laboratory
information

Demographic, lifestyle and clinical data were obtained by means of a
questionnaire [13]. Standard approaches were used to measure height and
weight. Participants were considered to be overweight if their body mass
index (BMI) was =25 kg/m? and obese if their BMI was =30 kg/m? Blood
glucose, lipid profiles, and percentage glycated hemoglobin (HbA1c) were
assessed after at least a 12 h fast. Diabetes mellitus (DM) was defined as an
HbA1c value greater than 6.5%, or the use of insulin or oral glucose
lowering agents. We also determined fasting plasma insulin concentrations
from an insulin immulite, solid phase, two-site chemiluminescent
immunometric assay (Diagnostic Products Corporation, Los Angeles, CA,
USA) and insulin resistance was estimated by the homeostasis model
assessment of insulin resistance (HOMA-IR) using the formula (insulin [puU/
ml] x glucose [mmol/1])/22.5. High quality office brachial BP measurements
were obtained according to guidelines, after 5min of rest in the seated
position, by a trained nurse-technician using a standard mercury
sphygmomanometer [13]. Office BP was the mean of 5 brachial BP
measurements obtained at least 30 s apart. Hypertension was defined as a
mean office systolic BP > 140 mm Hg or diastolic BP > 90 mm Hg or the use
of antihypertensive medication. Uncontrolled BP was defined as mean
office systolic BP = 140 mm Hg or diastolic BP = 90 mm Hg.

Carotid IMT

Carotid IMT was determined using high resolution B-mode ultrasound
(SonoCalc IMT, Sonosite Inc, Bothell, Washington) as previously described
[15] employing a linear array 7.5 MHz probe. Images of at least 1 cm length
of the far wall of the distal portion of both the right and left common
carotid arteries from an optimal angle of incidence (defined as the
longitudinal angle of approach where both branches of the internal and
external carotid artery are visualised simultaneously) at least 1 cm proximal
to the flow divider were obtained. Carotid IMT measurements were
determined using semi-automated border-detection and quality control
software [15]. At least 3 measurements were obtained from both the right
and left sides and the mean of data from both sides was used for analyses.
Increased IMT was defined as >75™ percentile for decade of age and sex as
previously defined in normotensive, nondiabetic participants [15]. Carotid
plaque was determined from both longitudinal and cross-sectional images
in and around the carotid bifurcation [15]. Carotid plaque was defined
according to the Mannheim consensus as a focal structure that encroaches
into the arterial lumen of at least 0.5 mm or 50% of the surrounding IMT
value or demonstrates a thickness >1.5 mm as measured from the media-
adventitia interface to the intima-lumen interface.

Hemodynamic assessments

Hemodynamic parameters were determined from non-invasive central
arterial pressure measurements derived from peripheral pulse wave
analysis (radial artery applanation tonometry and SphygmoCor software),
and the assessment of aortic velocity and diameter in the outflow tract
(Acuson SC2000 Diagnostic ultrasound system, Siemens Medical Solutions,
USA, Inc.) as previously described [14, 16].

After participants had rested for 15 min in the supine position, arterial
waveforms at the radial (dominant arm) pulse were recorded, during an 8 s
period, by applanation tonometry using a high-fidelity SPC-301 micro-
manometer (Millar Instrument, Inc., Houston, Texas). The micromanometer
was interfaced with a computer employing SphygmoCor, version 9.0 soft-
ware (AtCor by Cardiex, Sydney, New South Wales, Australia). The pulse
wave was calibrated by manual measurement (auscultation) of brachial
systolic and diastolic BP taken immediately before the recordings. A
validated generalised transfer function incorporated in SphygmoCor
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software was used to convert the peripheral pressure waveform into a
central aortic waveform. Recordings where the systolic or diastolic
variability of consecutive waveforms exceeded 5% or the amplitude of
the pulse wave signal was less than 80 mV, were discarded.

Immediately after obtaining the central arterial pressure waveforms,
aortic velocity and diameter measurements were acquired by an
experienced observer (AJW) using an Acuson SC2000 Diagnostic ultra-
sound system (Siemens Medical Solutions, USA, Inc.). High quality velocity
assessments, obtained in the 5-chamber view, were identified as those
with a smooth velocity waveform, a dense leading (outer) edge and a clear
maximum velocity. Aortic diameter measurements were obtained just
proximal to the aortic leaflets in the long axis parasternal view, and the
largest diameter recorded in early systole was used to construct the aortic
flow waveform. Taking care to avoid any overshoot of the image, the
leading (outer) edge or the most dense, or brightest portion of the spectral
image of the velocity waveform was outlined using graphics software. The
velocity waveform and aortic diameter measurements were employed to
construct an aortic flow waveform where flow = velocity x aortic root
cross-sectional area calculated from diameter assessments. Stroke volume
(SV) was calculated from the product of the velocity-time integral and
aortic root cross-sectional area. Stroke volume was also indexed to body
surface area. MAP was determined from the arterial pressure wave using
SphygmoCor software. Total arterial compliance (TAC) was calculated as
SV/PPc. As it has been recommended that either time or frequency
domains are appropriate for the assessment of aortic characteristic
impedance (Zc) [17], Zc was determined in the time domain using
approaches previously described [14, 16, 18] and validated against invasive
pressure measurements [19]. The volume flow waveform was paired with
the central arterial pressure waveform by aligning the foot (t;) of the
respective signal averaged waveforms. The point at which flow achieves
95% of its peak (tqes) was identified. The change in pressure between t,
and tqgs Was determined. Aortic characteristic impedance was calculated
as the ratio of change in pressure to change in flow in the window t; to tos.
Wave separation analysis was performed using Zc values and flow and
pressure waveforms, and backward wave pressures (Pb) determined from
(PPc - peak Pqyzc)/2. The contribution to forward wave pressures (Pf) of
pressures determined by an interaction between flow (Q) and Zc was
identified from the pressures generated by the product of peak aortic Q
and Zc (peak Pqyxzc) [20]. The use of peak Pqyz rather than Pf, excludes the
possibility of errors inherent in the use of Pf which includes pressures
generated by wave re-reflection [20].

Data analysis

Database management and statistical analyses were performed with SAS
software, version 9.4 (The SAS Institute, Cary, NC). Continuous variables are
expressed as mean (+SD) for parametric data or median (interquartile
range) for non-parametric data. Dichotomous variables are expressed as
percentages. As glycated haemoglobin, blood glucose, HOMA-IR, total,
LDL, HDL and total/HDL cholesterol were not normally distributed they
were logarithmically transformed (natural logarithm, In) prior to perform-
ing linear regression analyses. To identify independent relationships
between carotid IMT and hemodynamic and metabolic factors, multi-
variate adjusted linear regression analyses were performed. Adjustments
were for age, sex, BMI, DM (except for glucose due to collinearity), regular
alcohol intake, regular tobacco intake, heart rate, treatment for hyperten-
sion and MAP (except for hemodynamic factors due to collinearity).
Logistic regression analysis was performed to determine the odds of
increased carotid IMT in association with one unit increments in
hemodynamic or metabolic factors independent of confounders. The
performance of hemodynamic or metabolic factors in identifying
individuals with increased carotid IMT was assessed using receiver
operator characteristic (ROC) curve analysis, and the determination of
integrated discrimination improvement, and net reclassification improve-
ment [21, 22].

RESULTS

Participant characteristics

Table S1 (on-line supplement) shows the general characteristics of
all participants in the current study. A large proportion were either
overweight or obese, almost a half had hypertension, which was
largely uncontrolled, over a third had increased carotid IMT, but
the prevalence of plaque was low (< 5%). Almost a half of the
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Table 1. Characteristics of study participants according to age group.

Sample size

% women (n)

% postmenopausal women (n)

Age (years)

Body mass index (kg/mz)

% Overweight (n)

% Obese (n)

% Hypertensive (n)

% Treated for hypertension (n)

% Hypertensives treated for hypertension (n)
% Uncontrolled BP (n)

% Hypertensives with uncontrolled BP (n)

% Regular smoking (n)

% Regular alcohol (n)

% Diabetes mellitus (n)

Carotid intima media thickness (IMT) (mm)
% Increased IMT (n)

% Plaque (n)

Metabolic Factors (Fasting plasma concentrations)

Glucose (mmol/l)

Glycated haemoglobin (%)

Insulin (pU/ml)

HOMA-IR

Total cholesterol (mmol/I)

LDL cholesterol (mmol/I)

HDL cholesterol (mmol/l)

Triglycerides (mmol/l)

Total/HDL cholesterol ratio
Hemodynamic factors

Brachial systolic BP (SBP) (mm Hg)

Brachial diastolic BP (mm Hg)

Brachial pulse pressure (mm Hg)

Mean arterial pressure (MAP) (mm Hg)

Central arterial systolic BP (SBPc) (mm Hg)
Central arterial pulse pressure (PPc) (mm Hg)
Heart rate (beats/min)

Peak aortic flow (Q) (mls/sec)

Stroke volume (SV) (mls/beat)

Stroke volume (mls/beat.BSA)

Aortic characteristic impedance (Zc)(dynes.cm's)
Total arterial compliance (TAC) (mm Hg/mls.bt)
Backward wave pressure (Pb) (mmHg)

Peak Pqoxzc (mm Hg)

Young ( < 35years)
181

61.9 (112)
0 (0)
259+£5.1
256 +6.0
27.6 (50)
204 (37)
16.6 (30)
22 (4)

13.3 (4/30)
14.9 (27)
90.0 (27/30)
22.1 (40)
24.9 (45)
0.6 (1)

0.54 + 0.06
32.0 (58)
0.55 (1)

4.40 (4.00 to 4.70)
5.60 (5.50 to 5.80)
6.53 (4.54 to 12.00)
1.27 (0.82 to 2.35)
4.09 (4.00 to 4.49)
2.24 (2.15 to 2.57)
1.41 (1.30 to 1.50)
0.80 (0.70 to 1.00)
2.88 (2.73 to 3.25)

11615
77+13
38.2+09.1
90+13
105+15
269+74
66.4+11.9
297 +£126
67.5+30.7
396+174
85.5+40.9
2.64+1.29
9.8+33
222+54

Middle-aged (35-59years)
231

73.6 (170)*

45.3 (77)%**
483 + 6.8%**
32.0 £ 7.6%**
225 (52)

58.9 (136)***
48.1 (1171)***
26.8 (62)***
55.9 (62/111)***
35.9 (83)***
74.8 (83/111)
11.7 (27)**

20.8 (48)

11.7 (27)***
0.65 £ 0.12***
35.1 (81)

3.46 (8)*

4.60 (4.30 to 5.10)***
5.88 (5.50 to 6.10)**
6.89 (4.59 to 12.74)
1.57 (0.91 to 2.86)*
4.63 (4.49 to 5.16)***
2.70 (2.50 to 3.07)***
1.40 (1.20 to 1.46)
1.10 (0.95 to 1.47)***
3.50 (3.12 to 3.73)***

127 £ 19%**
84 + 12%**
42.1 £12.1**
100 + 14***
120 + 19%**
33.9+£10.7%**
67.6+11.4
340 = 169*
80.9 + 39.5%*
43.6 +21.2*
81.8+45.1
255+1.37
12.9 £ 5.1%**
239+7.2%

Older ( = 60years)
161

71.4 (115)*

100.0 (115)*** T1T
68.9 + 7.0%**TTT
32.2 4+ 7.2%%¢

25.5 (41)

57.8 (93)***

77.0 (124)%*= T1T
57.1 (92)** 11T
74.2 (92/124)%x* 11T
53.4 (86)*** Tt
69.4 (86/124)*
11.8 (19)**

14.9 (24)

26.1 (42)*** ttt
0.76 +0.13%**T1T
47.2 (76)

10.56 (17)***1T

5.00 (4.60 to 5.80)*** T1T
6.09 (5.79 to 6.54)*** T
7.42 (3.88 to 12.40)
1.73 (0.84 to 3.11)*
5.23 (4.70 to 5.40)%** T1T
3.19 (2.80 to 3.26)*** 1T
1.36 (1.24 to 1.40)*
1.52 (1.30 to 1.62)%** TTT
3.85 (3.75 to 4.08)** TTT

139 + 22***H1‘
85+ 11%*¢

53.8 + 16.4%*x1Tt
104 + 14%*TT
130 £ 27*** 11T
44.6 + 14.9%*T1T
68.3+13.8

405 + 256*** 1T
91.2 + 39 4x#+1T
50.6 + 22.6%**TT
929+52.1F
226+ 1.22*
16.5 + 6.4**+1TT
29.9 & 9,3%x* 11T

Data are shown as mean + SD, proportions, or median and interquartile range. BP, blood pressure; BSA, body surface area; HDL, high-density lipoprotein;
HOMA-IR, homeostatic model assessment for insulin resistance; LDL, low-density lipoprotein; Peak Pqxz., component of forward wave pressure generated by

the product of peak Q and Zc.
*p < 0.05.
**p < 0.005.

***p < 0,0001 versus young; Tp < 0.05, Tp < 0.005; 7p < 0.0001 versus middle-aged.

women were postmenopausal, however, none of the women were

receiving hormone replacement therapy.

Table 1 shows the general characteristics of the participants
according to age group. As per definition, the 3 groups differed by
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age. The young adults had less obesity, hypertension and DM,

lower blood glucose, glycated hemoglobin, total and LDL

cholesterol, triglycerides, BP, SV, Pb, Q, peak Pqyz. carotid IMT
and plaque than the middle-aged and older groups. In addition,

SPRINGER NATURE



N. Malan et al.

the middle-age group had less hypertension and DM, lower blood
glucose, glycated hemoglobin, total and LDL cholesterol, triglycer-
ides, BP, SV, Pb, Q, peak Pqyz, carotid IMT, and plaque than the
older age group.

Unadjusted associations between cardiovascular risk factors
and carotid IMT in all participants

On-line supplemental Table S2 shows the bivariate associations
between carotid IMT and cardiovascular risk factors, including
hemodynamic and metabolic factors, in all participants. Sex,
regular smoking, and regular drinking were the only factors not
associated with carotid IMT. Although, on bivariate analysis in
women only, postmenopausal status was associated with carotid
IMT (Pearson’s r =0.592, p < 0.0001), after adjustment for age this
relationship was no longer significant (Partial r = 0.066, p = 0.19).
Furthermore, after inclusion of multiple cardiovascular risk factors
(age, BMI, smoking, alcohol, diabetes mellitus, treatment for
hypertension, mean arterial pressure, and heart rate), postmeno-
pausal status was not associated with carotid IMT (p =0.17).

Unadjusted associations between cardiovascular risk factors
and carotid IMT in different age groups

Table 2 shows the bivariate associations between carotid IMT and
cardiovascular risk factors, including hemodynamic and metabolic
factors, in the three age groups. Regular smoking, regular drinking
and treatment for hypertension were not associated with carotid
IMT at any age. Of the metabolic risk factors, HOMA-IR, total
cholesterol and LDL cholesterol were not related to carotid IMT in
any of the age groups. Of the hemodynamic factors, blood flow
(SV and Q) was not related carotid IMT in any age group.

In the young adults, prior to any adjustments, carotid IMT was
associated with age and the presence of hypertension. Central
systolic BP and Pb were the only hemodynamic factors, and total/
HDL cholesterol was the only metabolic factor associated with
carotid IMT in young adults (Table 2).

In middle-aged adults, prior to any adjustments, carotid IMT was
associated with age, BMI, the presence of hypertension, and the
presence of DM. The hemodynamic factors associated with carotid
IMT were brachial systolic, diastolic and mean BP, brachial pulse
pressure, central systolic BP, central pulse pressure, heart rate,
TAC, Pb and peak Pq,z.. The metabolic factors associated with
carotid IMT in the middle-aged adults were blood glucose,
glycated haemoglobin, total/HDL cholesterol, HDL cholesterol
and triglycerides (Table 2).

In older aged adults, prior to any adjustments, carotid IMT was
associated with age and male sex. Brachial systolic and mean BP,
brachial pulse pressure, central systolic BP, central pulse pressure,
Zc, Pb and peak Pqyzc were the hemodynamic factors associated
with carotid IMT in older adults (Table 2). None of the metabolic
factors were associated with carotid IMT in older adults (Table 2).

Associations between carotid IMT and hemodynamic and
metabolic factors independent of confounders in all study
participants

On-line supplemental Table S3 shows the multivariate associations
between carotid IMT and hemodynamic and metabolic cardio-
vascular risk factors independent of confounders, in all study
participants. Prior to the inclusion of hemodynamic or metabolic
factors in the model, age was the primary determinant of carotid
IMT, with mean arterial pressure, male sex, heart rate and BMI also
showing significant associations (Table S3). In addition, age
remained associated with carotid IMT independent of both
hemodynamic and metabolic factors (Table S3). In separate
models, none of the metabolic factors were associated with
carotid IMT independent of confounders including age (Table S3).
However, a number of hemodynamic factors (brachial systolic BP,
brachial pulse pressure, central arterial systolic BP, central arterial
pulse pressure, Zc, Pb, peak Pquz, and TAC) were significantly
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associated with carotid IMT independent of confounders including
age (Table S3). Furthermore, when included in the same model
central arterial PP or Pb, showed strong associations with carotid
IMT independent of confounders including age, whereas total/
HDL cholesterol, was only weakly associated with carotid IMT
(Table S3).

Associations between carotid IMT and hemodynamic and
metabolic factors independent of confounders in different
age groups

Table 3 (young), 4 (middle-aged) and 5 (older aged) show the
multivariate associations between carotid IMT and hemodynamic
and metabolic cardiovascular risk factors independent of con-
founders, in the three age groups. In young adults, prior to the
inclusion of hemodynamic or metabolic factors in the model, age
was the only determinant of carotid IMT (Table 3). In addition, age
remained associated with carotid IMT independent of both
hemodynamic and metabolic factors (Table 3). In separate models,
total/HDL cholesterol and central arterial systolic BP were not
associated with carotid IMT independent of confounders, whereas
Pb remained associated with carotid IMT independent of
confounders (Table 3). Furthermore, when included in the same
model Pb, but not total/HDL cholesterol, was associated with
carotid IMT (Table 3).

In middle-aged adults, prior to the inclusion of hemodynamic or
metabolic factors in the model, age, BMI, MAP and HR were
associated with carotid IMT independent of confounders (Table 4).
Age, BMI and HR remained associated with carotid IMT
independent of both hemodynamic and metabolic factors
(Table 4). In separate models, brachial systolic BP, brachial pulse
pressure, central arterial systolic BP, central arterial pulse pressure,
Pb and peak Pqyzc but not blood glucose, triglycerides, and total/
HDL cholesterol were associated with carotid IMT independent of
confounders (Table 4). Central arterial systolic BP was the
hemodynamic factor with the numerically greatest standardised
beta value and lowest p-value. Hence, central arterial systolic BP
was included in the final model. Although, not significantly
associated with carotid IMT independent of confounders, total/
HDL cholesterol had a numerically greater standardised beta value
than triglycerides, and hence was included in the final model.
When included in the same model, central arterial systolic BP, but
not total/HDL cholesterol, was independently associated with
carotid IMT (Table 4).

In older adults, prior to the inclusion of hemodynamic or
metabolic factors in the model, age and MAP were associated with
carotid IMT independent of confounders (Table 5). However, age
was not associated with carotid IMT independent of both
hemodynamic and metabolic factors (Table 5). Male sex and HR
were associated with carotid IMT independent of both hemody-
namic and metabolic factors and confounders (Table 5). In
separate models, brachial systolic BP, brachial pulse pressure,
central arterial systolic BP, central arterial pulse pressure, Zc, Pb,
and peak Pqyz., but not total/HDL cholesterol were associated
with carotid IMT independent of confounders (Table 5). Pb was
the hemodynamic factor with the numerically highest standar-
dised beta value and lowest p-value. Hence, Pb was the
hemodynamic factor included in the final model. When included
in the same model Pb, but not total/HDL cholesterol, was
associated with carotid IMT in older adults (Table 5).

Hemodynamic and metabolic factors and odds of increased
carotid IMT independent of confounders in different

age groups

Figure 1 shows the impact of hemodynamic and metabolic
cardiovascular risk factors on the odds of increased carotid IMT
independent of confounders in the three age groups. In young
adults, one unit increase in Pb, but neither age nor total/HDL
cholesterol was associated with an increased carotid IMT (Fig. TA).
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Age <35 years (n=181)
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Pb —e—i 1.233 (1.106 to 1.391) 12.8802 =0.0003
1 1 1 1
0.5 1.0 1.5 2.0 25
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B
Age 35 to 59 years (n=231)
IMT versus OR  (95%Cl) Wald X2 p value
Age Heo— 1.028 (0.979 to 1.079) 1.1992 =0.273
BMI -o— 1.089 (1.039 to 1.144) 12.1929 =0.0005
HR [ 2l 1.017 (0.989 to 1.045) 1.3539 =0.245
Total/HDLchol k L 1 1.046 (0.733 to 1.474) 0.0661 =0.797
Pb | 1.058 (0.993 to 1.130) 2.9746 =0.0846
cSBP r 1.016 (0.999 to 1.034) 3.433 =0.0675
I | | | | | 1
0.6 0.8 1.0 1.2 1.4 1.6 1.8
Odds Ratio
c
> =
IMT versus OR  (95%Cl) Wald X? p value
Age O 0.938 (0.885 to 0.991) 4.9478 =0.0261
Sex k L 1 1.926 (0.748 to 5.089) 1.8220 =0.177
HR | ] 1.022 (0.995 to 1.053) 2.4144 =0.120
Total/HDLchol —t—— 1.190 (0.807 to 1.791) 0.7464 =0.388
Pb @ 1.086 (1.026 to 1.154) 7.5852 =0.0059
1 1 1k 1 1 1
0.5 1.0 1.5 203 4 5 6
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Fig. 1 The impact of hemodynamic and metabolic cardiovascular risk factors on the odds of increased carotid intima media thickness in
the three age groups. The panels show the odds ratios of an increased carotid intima media thickness associated with one unit increase in
hemodynamic and metabolic cardiovascular risk factors in young (age 35 years, A), middle-aged (age 35 to 59 years, B), and older adults (age >
60 years, C). The models included both metabolic and hemodynamic factors (cSBP and Pb separately), where the most significant for each
were chosen, and age and total/HDL cholesterol were included as comparators (final model as in Tables 3, 4 and 5). Also included in the
models were sex, BMI, regular smoking, regular drinking, diabetes mellitus, treatment for hypertension, and heart rate. BMI body mass index,
Cl confidence interval, cSBP central arterial systolic blood pressure, HR heart rate, IMT carotid intima-media thickness, OR odds ratio, Pb

backward wave pressure, Total/HDLchol Total to HDL cholesterol ratio.
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Fig.2 Performance of hemodynamic and metabolic factors in identifying individuals with increased carotid IMT in different age groups.
The figure shows the area under the receiver operator characteristic (ROC) curves showing the performance of individual hemodynamic or
metabolic factors in identifying individuals with increased carotid IMT in young (age <35 years, A), middle-aged (age 35 to 59 years, B), and
older adults (age > 60 years, C). BMI body mass index, cSBP central arterial systolic blood pressure, HR heart rate, Pb backward wave pressure,

Tot/HDLchol Total to HDL cholesterol ratio.

In middle-aged adults, one unit increase in BMI was the only
cardiovascular risk factor significantly associated with an increased
carotid IMT (Fig. 1B). In older adults, one unit increase in Pb and
age, but not total/HDL cholesterol, sex or HR were associated with
an increased carotid IMT (Fig. 1Q).

Performance of hemodynamic and metabolic factors in
identifying individuals with increased carotid IMT in different
age groups

Figure 2 shows the receiver operator characteristic (ROC) curve
analysis of individual hemodynamic and metabolic cardiovascular
factors in identifying individuals with increased carotid IMT in the
three different age groups. In young adults (Fig. 2A), only Pb
significantly identified individuals with increased carotid IMT. In
middle-aged adults (Fig. 2B), BMI, central arterial systolic BP, Pb,
and age significantly identified individuals with increased carotid
IMT. In older adults (Fig. 2C), age and Pb showed a trend to
identify individuals with increased carotid IMT.

The impact of adding hemodynamic or metabolic factors to the
base model, consisting of conventional risk factors, on predictive
performance for an increased carotid IMT is shown in Table 6 for
all participants as well as in young, middle-aged and older adults.
The impact of adding age to the base model (excluding age) is
included for comparison. In all participants and in young adults,
Pb was the only factor to show a significant improvement in
predictive performance for detecting an increased carotid IMT. In
middle-aged adults, significant improvements in predictive
performance for detecting an increased carotid IMT were shown
with BMI, and Pb showed only weak significant improvements. In
older adults, age and Pb showed significant improvements in
predictive performance.

DISCUSSION

In a community sample of adults of African ancestry living in Sub-
Saharan Africa, we show that hemodynamic, and not metabolic
cardiovascular risk factors are associated with carotid IMT. In
addition, we showed that the primary hemodynamic and
metabolic cardiovascular risk factors associated with carotid IMT
differ across adult age groups. In young adults, hemodynamic
factors (Pb) primarily impacted on carotid IMT. In older adults, Pb
and age were associated carotid IMT; whereas in middle-aged
adults, BMI, central arterial systolic BP and Pb were the primary
factors associated with carotid IMT. Blood flow (SV and Q) and

SPRINGER NATURE

smoking status were not related to carotid IMT at any adult age.
Moreover, plasma lipid concentrations were not associated with
carotid IMT at any adult age. Only Pb was associated with
increased carotid IMT in young adults; whereas in older adults age
and Pb were determinants of increased carotid IMT, and in
middle-aged adults, BMI was the primary determinant of
increased IMT. Furthermore, significant improvements in predic-
tive performance for detecting an increased carotid IMT were
shown with Pb (young and older adults), and BMI (middle-aged
adults). Hence, hemodynamic factors and not plasma lipid
concentrations are the predominant cardiovascular risk factors
associated with carotid IMT throughout the adult lifespan in
individuals of African ancestry, and BMI only has an impact during
middle-age.

To our knowledge, our study is the first to report on the
hemodynamic and metabolic cardiovascular risk factors associated
with carotid IMT in young adults of African ancestry living in Sub-
Saharan Africa. Furthermore, our study is the first to report that
the primary hemodynamic and metabolic cardiovascular risk
factors associated with carotid IMT differ with age in a group of
African ancestry. Although a large study in four Sub-Saharan
African countries (Burkina Faso, Kenya, South Africa, Ghana)
identified factors associated with carotid IMT, these data were
limited to adults aged 40-60 years [10]. In this study, brachial
systolic BP, but not LDL cholesterol, was associated with carotid
IMT independent of confounders. Nevertheless, previous data
assessing the cardiovascular risk factors associated with carotid
IMT in young adults of African ancestry are lacking. In other
populations (Chinese [11] and European [12]) the determinants of
carotid IMT have been shown to differ according to age. In
Chinese, the major determinants of carotid IMT beyond age and
gender, were BMI at age 35-44 years, LDL cholesterol and brachial
systolic BP at age 45-54 years, and brachial systolic BP at 55-64,
65-74 and aged 75 years or older [11]. In Europeans, aged 24 to 39
years, systolic BP, but neither LDL nor HDL cholesterol were
independently related to carotid IMT [12]. However, in the same
Europeans studied 6 years later, carotid IMT was associated with
both brachial systolic BP and HDL cholesterol (inversely) [12].
Although data in adults aged<35 years are limited, it appears from
the present study and a study in Europeans [12], that hemody-
namic factors (Pb and brachial systolic BP respectively) are more
important than metabolic factors (blood lipids) in young adults. As
adults mature into middle-age, BMI (present study) and metabolic
factors (HDL cholesterol in Europeans [12], LDL cholesterol in

Journal of Human Hypertension
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Chinese [11] seem to play a role in addition to hemodynamic
factors. However, beyond middle-age, hemodynamic factors
appear to predominate over metabolic factors [11] and present
study.

Reasons for the differential impact of cardiovascular risk factors
on carotid IMT with age are unclear. Nevertheless, hemodynamic
factors consistently affect carotid IMT throughout the adult age
range [11, 12, 23] and present study. On assessing the impact of
hemodynamic factors, brachial pulse pressure in comparison to
systolic, diastolic, and mean BP, may be the best predictor of
carotid IMT in middle-aged (=45 years) [24] and older (=65 years)
[24, 25] adults. Indeed, elevated brachial pulse pressure is
associated with the progression of carotid IMT in older adults
[26]. Moreover, increases in central arterial systolic BP, but not
peripheral systolic BP, are associated with increases in carotid IMT
in middle-aged and older adults [27]. Similarly, we show that
central arterial pressures are associated with carotid IMT in
middle-aged adults of African ancestry, and that in older adults
central arterial pressures were numerically stronger than periph-
eral BP in association with carotid IMT. Moreover, we extend these
findings to show that in young adults of African ancestry carotid
IMT is associated with central arterial pressures (Pb) but not
peripheral BP. The predominant effect of central arterial pressures
on carotid IMT in young adults of African ancestry may be
attributed to the high central arterial pressures and stiffness
reported in young African adults [8]. Indeed, central arterial
stiffness, central arterial pressure [8] and central arterial pressure
augmentation [9] are elevated in African compared with European
individuals, particularly among young adults [8].

Although, the role of wave reflection in cardiovascular disease is
increasingly documented [28-30], our findings of a consistent
association of central arterial pressures with carotid IMT in all adult
age groups may be a consequence of vascular changes rather
than a cause of increases in carotid IMT. In this regard, although
intima-media thickening represents vascular remodelling and
consequent decreases in lumen diameter in response to increases
in BP [31], arterial narrowing in turn increases wave reflection and
subsequently central arterial SBP and PP [28].

The predominant effect of hemodynamic rather than metabolic
risk factors on carotid IMT in people of African ancestry is not
surprising. In contrast to European populations, in Sub-Saharan
African countries, hypertension, rather than dyslipidaemia, is the
primary risk factor for CVD [7]. In this regard, in Sub-Saharan Africa,
the prevalence of hypertension amongst adults is higher [5],
whereas the prevalence of dyslipidaemia is lower [32], than in
other regions of the world. Moreover, the proportion of individuals
achieving BP control in Sub-Saharan Africa is lower than in other
regions of the world [5]. Similarly, in Chinese populations, who
also have lower cholesterol concentrations than European
populations [33], hypertension has a higher impact on carotid
IMT compared to dyslipidemia and diabetes [34].

Our data showing no relationships between lipid concentra-
tions and carotid IMT independent of confounders in adults of
African ancestry concur with findings reported in prior studies. In
Nigerian Africans, BP was reported to be the strongest modifiable
risk factor associated with carotid IMT [35]. In African populations,
LDL cholesterol has a weaker negative impact on carotid IMT
compared to in European populations [6]. Moreover, in four
separate sub-Saharan African countries (Burkina Faso, Kenya,
South Africa, Ghana), brachial systolic BP, but not LDL cholesterol,
was associated with carotid IMT independent of confounders [10].
These data are supported by a recent systematic review which
identified hypertension rather than dyslipidaemia, as the primary
risk factor for CVD in Sub-Saharan African countries [7].

The lack of impact of blood lipids on carotid IMT in persons of
African ancestry may be explained by the lower frequency of
unfavourable lipid profiles (increased LDL cholesterol and
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triglycerides, and decreased HDL cholesterol) in Sub-Saharan
Africa compared to Western Europe and North America [32].
Indeed, unfavourable lipid profiles are a major cause of athero-
sclerosis in communities of European ancestry [36]. Moreover,
reductions in age-standardised death rates for ischemic stroke and
ischemic heart disease in Europe between 1990 and 2019 have
been attributed to decreases in total and LDL cholesterol
concentrations [32].

The identification of a consistent association of hemodynamic
factors with carotid IMT throughout the adult lifespan is of clinical
relevance. In this regard, the high prevalence of hypertension, lack
of awareness of hypertension and poor BP control in South
Africans adults [37] is of concern. In particular, poor BP control and
lack of awareness of hypertension seems to be particularly
prevalent among young adults in South Africa [37]. As increased
carotid IMT is associated with cardiovascular events (stroke, CLTI
and CAD) in people of African ancestry living in Sub-Saharan
African [15, 38-40], identification of factors that can be targeted to
prevent increases in carotid IMT is paramount. In this regard,
significant improvements in predictive performance for detecting
an increased carotid IMT were shown with Pb in young and older
adults. The present study therefore, highlights that in the
prevention of cardiovascular disease it is imperative to screen
for and manage high BP and hence Pb, throughout the adult
lifespan. Moreover, screening for hypertension, managing hyper-
tension and maintaining BP control are highly relevant to reduce
cardiovascular risk in young adults of African ancestry.

There are several limitations to the present study. As the present
study was cross-sectional in design, the relationships noted may not
be cause and effect and may be attributed to residual confounding.
Further studies evaluating the long-term impact of elevated BP on
carotid IMT throughout the adult lifespan in individuals of African
ancestry are therefore required. However, the present study
provides the critical evidence in support of such future studies.
Second, as more women than men participated in this study, the
results may pertain more to women than to men. Notably, the high
proportion of women compared to men was consistent across all
three age groups. The strengths of our study include the thorough
assessment of lipid profiles (total, LDL, and HDL cholesterol, total/
HDL cholesterol ratio, and triglycerides) and hemodynamic factors
(peripheral BP, central arterial pressures and components, and
blood flow). Importantly, our data pertain to individuals of African
ancestry living in Sub-Saharan Africa, and hence should not be
extended to European or US cohorts.

CONCLUSIONS

In a population of African ancestry living in Sub-Saharan Africa,
hemodynamic factors but not blood lipids, are associated with
carotid IMT throughout the adult age range. Furthermore, the
cardiovascular risk factors associated with carotid IMT differ across
age groups. Hemodynamic factors, primarily central arterial
pressures predominate in young and older adults; whereas BMI
is the main contributor in middle-age.

SUMMARY

What is known about the topic

® Cardiovascular events occur 20 years earlier in individuals of
African descent living in Sub-Saharan Africa compared to in
individuals of European descent.

® Carotid artery intima-media thickness (IMT), an important
screening tool for cardiovascular disease, is lower in African
populations living in Sub-Saharan Africa compared to other
population groups.
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The risk factors for cardiovascular disease differ between
population groups and according to age.

What this study adds

In individuals of African descent living in South Africa:

Lipids are not associated with carotid IMT at any age.
Hemodynamic factors (primarily central arterial backward
wave pressure) are associated with carotid IMT independent
of confounders, particularly in young adults (< 35years
of age).

BMI is independently associated with carotid IMT only in
middle-aged adults (35-59 years of age).
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