

ARTICLE

OPEN

Bifidobacterium longum subsp *infantis* (EVC001) is associated with reduced incidence of necrotizing enterocolitis stage ≥ 2 and bloody stools in premature babies

Kristin Sohn ^{1,2}✉, Victoria Palacios ³ and Reese Clark⁴

© The Author(s) 2024

OBJECTIVE: To utilize an evidence-based probiotic protocol to achieve a 50% reduction in necrotizing enterocolitis (NEC) \geq stage 2 and bloody stools.

STUDY DESIGN: From January 2022 through September 2023, daily enteral *Bifidobacterium longum* ssp. *infantis* EVC001 (*B. infantis* EVC001) was administered to babies \leq 33 6/7 weeks gestation until 36 weeks post menstrual age. Feeding tolerance and complications were compared to babies admitted during the prior two-year period. Fisher's Exact test was used to analyze proportional data and *t* test was used for continuous variables.

RESULTS: A total of 265 babies received EVC001, and a total of 277 babies formed the pre-probiotic cohort. Probiotic use was associated with decreased NEC \geq stage 2 ($p = 0.0058$), reduced bloody stools ($p < 0.0001$), decreased time to full enteral feeds ($p < 0.0001$), and decreased total parenteral nutrition (TPN) days ($p < 0.0001$).

CONCLUSION: Administration of *B. infantis* EVC001 was associated with a decrease in NEC, a decrease in bloody stools, and improvement in feeding tolerance in premature babies.

Journal of Perinatology (2025) 45:635–641; <https://doi.org/10.1038/s41372-024-02188-8>

INTRODUCTION

The premature gut microbiome exhibits delayed colonization and decreased biodiversity when compared to full term infants, and premature babies are at high risk for dysbiosis due to multiple factors, including cesarean section, prolonged hospitalization, poor nutrition, and perinatal antibiotics. The composition of the gut microbiota can play a role in gut mucosal inflammation. Dysbiosis is associated with chronic, life-long diseases, including diabetes, inflammatory bowel disease, and cancer [1]. More immediately, dysbiosis, particularly the loss of protective *B. infantis*, is associated with distal colon inflammation and hematochezia [2] and is known to precede the development of necrotizing enterocolitis (NEC), with a relative increased abundance of Proteobacteria and a decreased abundance of Firmicutes and Bacteroidetes prior to disease onset [3–5].

NEC is a devastating gastrointestinal disease with high mortality and life-long complications. The spectrum of severity of NEC is clinically staged using Modified Bell Staging Criteria, which ranges from mild intestinal disturbance (stage 1 A) to clinical illness with the presence of pneumatosis intestinalis on abdominal radiograph (stage 2) to fulminant intestinal necrosis with pneumoperitoneum (stage 3B) [6]. Mortality for NEC \geq stage 2 is 23.5%, while mortality of surgical NEC is 34.5% [7]. For survivors, complications include poor growth and gastrointestinal problems, such as strictures, adhesions, cholestasis, short bowel syndrome, intestinal failure, and feeding difficulties [8]. Furthermore, the inflammatory cascade

that begins in the gut also affects brain development through the gut-brain axis [9], leading to high risk for neurodevelopmental impairment [10–12]. Among survivors, neurodevelopmental disability is between 24.8 and 61.1% [6]. Most survivors report long-term complications that impact their physical and mental health, their social experiences, and their overall quality of life [13].

Probiotics are foods or supplements that contain live microorganisms intended to maintain or improve health. The dysbiosis in premature babies offers a unique time point to affect life-long health with the use of probiotics. Human milk oligosaccharides (HMOs), the third largest component of human milk, are only digestible with the help of glycosidases possessed by specific bacteria, and *Bifidobacterium longum* ssp. *infantis* EVC001 (*B. infantis* EVC001) specifically, has the unique ability to consume HMO as its sole carbon source [14]. As *B. infantis* consumes HMOs, it secretes indole-3-lactic acid (ILA) as a by-product of catabolism, and this molecule acts as an anti-inflammatory protective metabolite in the preterm gut [15, 16]. Probiotics containing *B. infantis* offer gastrointestinal protection from illness and disease due to the organism's anti-inflammatory properties and ability to decrease intestinal permeability [17]. It has been shown that probiotics containing *B. infantis* may be more beneficial for preterm infants than probiotics not containing *B. infantis* [18].

In January 2022, after completing a quality review and careful review of the literature, an evidence-based probiotic protocol was implemented to augment our existing standardized human

¹Department of Pediatrics, University of Nevada School of Medicine, Reno, NV, USA. ²Pediatrix Neonatology of Nevada, Reno, NV, USA. ³University of Nevada School of Medicine, Reno, NV, USA. ⁴Pediatrix Center for Research and Education, Sunrise, FL, USA. ✉email: kristin.sohn@pediatrix.com

Received: 4 July 2024 Revised: 12 November 2024 Accepted: 21 November 2024
Published online: 6 December 2024

milk-based feeding protocol. Our goal was to determine if our change in care would reduce feeding intolerance and achieve a 50% reduction in bloody stools and NEC \geq stage 2 within two years of protocol implementation. By including hematochezia as a primary outcome, this study sought to add to the scarcity of published literature regarding the effects of probiotic use on hematochezia.

METHODS

This was a single-center prospective cohort study of probiotic use in preterm babies at Renown Children's Hospital NICU, a 49-bed level III. Pediatric cardiologists are readily available, but as there are no local pediatric cardiothoracic surgery services, most patients with significant congenital heart disease are referred prenatally or transferred shortly after birth. Renown has a formal affiliation with the University of Nevada, Reno School of Medicine, approved by the Nevada System of Higher Education Board of Regents, which facilitates the integration of clinical services, medical education and research.

Ethics approval and consent to participate

The study was approved by the University of Nevada, Reno Institutional Review Board (IRB), ID 1777112-3, and the Pediatric Clinical Research Department, ID 770695214. A waiver of informed consent was approved by the IRB, as probiotics were adopted as standard of care in our unit; however, written parental consent for probiotics was obtained from all participants to facilitate risk and benefit discussion with families. No parents declined probiotic treatment. The study was performed in accordance with the Declaration of Helsinki and in accordance with relevant guidelines and regulations.

Intervention

B. infantis was chosen due to its dominance in the microbiome of healthy breastfed babies [19]. EVC001 (Infant Health, Davis, California, USA) was chosen for both its possession of the complete gene cluster for H5 ABC-type transporter, which binds to core HMO structures and completely metabolizes them [20], and the company's high quality manufacturing process, cold chain distribution practices, safety testing, ensured CFUs, and availability of ready-to-use single-dose vials, which decreases risk of contamination. Previous studies have demonstrated that EVC001 is safe, well tolerated, and efficient at colonizing the preterm gut [21–24].

In January 2022, our NICU implemented a new treatment plan to promote intestinal health. Enteral EVC001 was administered at a dose of 0.5 mL [8 billion Colony Forming Units (CFUs) of *Bifidobacterium longum* subspecies *infantis* suspended in 0.47 mL medium chain triglyceride oil] per day with the first or second feed of day shift. EVC001 was ordered to start when enteral feeds were initiated and was continued until babies were 36 weeks post menstrual age (last dose at 35 6/7 weeks). EVC001 was held during any period of NPO (nil per os). A sample size of 228 was calculated for an 80% power to achieve a 50% reduction in bloody stools with a *p* value of 0.05.

The study was originally planned, approved, and funded for two years, ending December 2023; however, due to an abundance of caution, probiotic administration was discontinued on September 29, 2023, after the U.S. Food and Drug Administration (FDA) issued a warning regarding possible risks of probiotic use in premature babies. There were no adverse events related to probiotic use in our unit during the period of probiotic implementation.

Study populations

All patients admitted to the NICU were screened for the inclusion criteria of gestational age < 33 and 6/7 weeks. Exclusion criteria were the presence of a lethal medical condition or a congenital gastrointestinal anomaly. Data was collected from electronic medical record review and cross-referenced with Pediatric Clinical Data Warehouse, retrospectively for the pre-implementation control cohort and in real-time for the probiotic cohort.

The control cohort consisted of 253 babies born from January 2020 through December 2021. Both cohorts received a human milk-based diet, consisting of either maternal breast milk or donor human milk. A standardized feeding protocol was consistent between the two cohorts. Trophic human milk feedings were started at 20 mL/kg/d at the discretion of the attending neonatologist, and advanced by 20 mL/kg each day, except for

days on which feeds were fortified, to a goal of 150–160 mL/kg/d. Babies < 1250 g at birth received five days of trophic feeds before advancement and received fortification with Prolacta Human Milk Fortifier. Prolacta +6 was added when babies were not achieving optimal z-score growth on full enteral feeds of Prolacta +4. Babies ≥ 1250 g received fortification with Enfamil liquid Human Milk Fortifier. Donor Human Milk and Prolacta Human Milk Fortifier were weaned to bovine milk-based fortifier and/or formula over a three-day period, starting at either 34 weeks corrected gestation age (CGA) or 5 days of life, whichever occurred later. Full enteral feeds were achieved when supplemental intravenous nutrition was discontinued, between 130–140 mL/kg/d of feeding volumes.

Covariates

Variables analyzed as potential predictors, confounders, or modifiers included gestational age at birth, birth weight, sex, small for gestational age (SGA) status, mode of delivery, maternal antibiotics (defined as ≥ 1 dose prior to delivery), maternal betamethasone (defined as ≥ 1 dose prior to delivery), days of antibiotics in the immediate post-natal period, and hemodynamically significant congenital heart disease, defined as moderate to large cardiac shunts with increased pulmonary flow or ductal dependent lesions.

Outcomes

Primary outcomes were bloody stools at any time during NICU hospitalization and NEC \geq stage 2. Bloody stools were diagnosed visually with confirmatory hemoccult testing if diagnosis was uncertain. The diagnosis of NEC was determined using the modified Bell staging criteria [6, 25, 26]. Initial diagnosis was made by the on-service attending neonatologist, and the diagnosis was confirmed by a radiologist and one additional neonatologist. Cases of spontaneous intestinal perforation, defined as gastrointestinal perforation without signs of NEC, were excluded. Secondary outcomes included NPO days, total parenteral nutrition (TPN) days, days to achieve full enteral nutrition, late antibiotic days (after initial infectious screen period), late onset sepsis, urinary tract infections (UTI), tracheitis, meningitis, length of hospital stay, and CGA at discharge.

Statistical analysis

Data was initially analyzed by descriptive statistics. Subsequent comparison of outcome measures was analyzed with Microsoft Excel (Version 16.82, 2024) using the Fisher's Exact test for proportional data and two-sided student *t* test for continuous variables. Two-sided *p* values < 0.05 were considered statistically significant. Cohorts were divided into subgroups based on gestational age.

RESULTS

Figure 1 shows the patient flowchart. Of 937 babies admitted to the NICU and screened for eligibility during the probiotic implementation period, 265 babies met the inclusion criteria of being < 34 weeks gestational age at birth. Data collection and analysis was completed in 250 babies. Of the seven babies transferred out of our facility, all received EVC001, but they were not included in data analysis due to incomplete data availability for primary and secondary outcomes. Reasons for transfer included post-hemorrhagic hydrocephalus (3), PDA coil treatment (3), and insurance coverage (1); none of the babies transferred had documented bloody stools, NEC, *Bifidobacterium* positive blood cultures, or other infections prior to transfer. Of the 7 deaths in the probiotic cohort, 3 received at least one dose of EVC001. Deaths were due to neurological or respiratory complications of prematurity (pulmonary hemorrhage, $n = 1$; respiratory failure, $n = 3$; severe intraventricular hemorrhage, $n = 3$). None of the deaths in the probiotic cohort were due to NEC or sepsis.

EVC001 was started at a mean day of life 1.9 (range 0–19; delays were due to prolonged NPO status). The mean duration of EVC001 was 30 days (range 3–73), with 7586 total EVC001 days completed during the study.

There were no significant differences in baseline characteristics between the two cohorts (Table 1). The mean gestational age at

Fig. 1 Flow diagram of babies included in analysis. The number of patients admitted during each cohort period with a gestational age less than 34 weeks and the reasons for exclusion in final analysis. GA gestational age. GI gastrointestinal.

birth was 31 weeks in the control cohort and 31.1 weeks in the probiotic cohort. The mean birthweight was 1579 g in the control cohort and 1568 g in the probiotic cohort. Most babies in both cohorts were male, born via cesarean section, and received antenatal steroids. Hemodynamically significant congenital heart disease consisted of moderate to large patent ductus arteriosus with signs of myocardial dysfunction on echocardiogram and 1 baby with pink Tetralogy of Fallot in each cohort.

Babies who required gastrostomy tubes (GTs) for discharge due to poor PO feeds were excluded from two outcomes, length of hospital stay and CGA at discharge, but they were included in the analysis of all other outcomes for both cohorts. There were 11/253 (4%) babies in the pre-implementation cohort and 16/250 (6%) babies in the post-implementation cohort who required GTs.

Regarding primary outcomes (Table 2), there was a significant reduction in incidence of visually bloody stools in the probiotic group, a decrease from 19 to 4.8% ($p < 0.0001$). Incidence of NEC stage ≥ 2 was also significantly decreased in the probiotic cohort,

from 4.7 to 0.4% ($p = 0.0058$; relative risk (RR) 0.084, 95% CI = 0.011 to 0.064). The relative risk reduction (RRR) was 94.6% and the number needed to treat (NNT) based on this outcome was 23 (95% CI = 14.1 to 66.0). The incidence of NEC in very low birth weight (<1500 g) babies was also significantly decreased in the probiotic cohort, from 7.7 to 0.9% ($p = 0.012$, RR 0.12, RRR 88, NNT 15, 95% CI = 8.3 to 66.0). Of the 12 NEC cases in the control cohort, one resulted in death due to NEC. The singular case of stage 2 NEC in the probiotic cohort was a 657 g 25-week male who received prolonged antibiotics due to thrombus in the setting of methicillin-susceptible *Staphylococcus aureus* sepsis and did not receive EVC001 until day of life 19 due to clinical instability, hypotension, and prolonged NPO. He was treated with bowel rest and antibiotics and survived to discharge.

Regarding secondary outcomes (Table 2), there was a statistically significant decrease in day of life to achieve full enteral feeds, with a mean of 16.2 days in the control cohort and 12.7 days in probiotic cohort ($p < 0.0001$). In direct correlation,

Table 1. Characteristics of babies in both cohorts.

Characteristics	Control cohort (n = 253)	Probiotic cohort (n = 250)	p value
Gestational age at birth, weeks, mean (IQR ^a)	30.95 (29.0–33.0)	31.14 (29.6–33.1)	0.39
Birth weight, grams, mean (IQR ^a)	1579 (1199–2002)	1,568 (1233–1862)	0.80
Male sex, %	58.5	58.0	0.91
SGA, %	7.5	9.6	0.26
<1250g BW, %	26.5	27.2	0.86
Antenatal steroids, %	87.4	82.4	0.12
Antenatal antibiotics, %	45.8	40.0	0.19
Cesarean delivery, %	66.8	68.0	0.77
Admission antibiotic days ^b , mean	1.53	1.32	0.08
Hemodynamically significant congenital heart disease ^c , %	8.7	10.4	0.52

^aIQR = interquartile range, Q1–Q3.^bDays of antibiotics in immediate post-natal period.^cModerate to large cardiac shunts with increased pulmonary flow or ductal dependent lesions.**Table 2.** Primary and secondary outcomes of babies in the two cohorts.

	Control cohort (n = 253)	Probiotic cohort (n = 250)	p value
Primary outcomes			
Bloody stools	45 (17.8%)	12 (4.8%)	<0.0001
NEC ≥ stage 2	12 (4.7%)	1 (0.4%)	0.003
Secondary outcomes			
DOL to full enteral feeds	16.2	12.7	<0.0001
Customized TPN days	14.1	9.8	<0.0001
NPO days ^a	1.2	0.8	0.27
Late antibiotic days	2.2	1.3	0.09
Late onset sepsis	8 (3.2%)	9 (3.6%)	0.37
UTIs	7 (2.8)	7 (2.8)	0.42
Tracheitis	11 (4.3%)	5 (2%)	0.14
Meningitis	3 (1.2%)	0	0.25
Duration of hospital stay, mean days	48.3	47.1	0.59
CGA at discharge, mean weeks	38.13	38.16	0.9

^aNPO days after initiation of enteral feeds.

there was also a statistically significant decrease in mean TPN days in the probiotic cohort, from 14.1 days to 12.7 days ($p < 0.0001$). Unexpectedly, there was a statistical significance in the day of life enteral feeds were started, with a mean of 1.3 days in the control cohort and 0.9 days in the probiotic cohort ($p = 0.0008$). There was no statistically significant difference in mortality, NPO days, late antibiotic days, late onset sepsis, UTI, tracheitis, or meningitis.

Subgroup analyses showed consistent results (Table 3), with decreases in bloody stools, day of life to full enteral feeds, and TPN days amongst all subgroups. These decreases reached statistical significance in all but the smallest gestational subgroup (24–26 weeks). Babies born at 31 weeks completed gestation (control $n = 31$; probiotic $n = 38$) had a statistically significant decrease in mean duration of hospital stay, from 49 days to

41 days ($p = 0.03$) and CGA at discharge from 38.5 weeks to 37.4 weeks ($p = 0.03$).

There were no cases of confirmed probiotic sepsis; however, one patient had a positive peripheral blood culture for *Bifidobacterium longum*, which may have represented probiotic bacteremia. The patient was a 28-week baby who had a negative blood culture on admission and received 2 doses of EVC001 before being made NPO on day of life 3 due to decreased perfusion and metabolic acidosis. The baby then received 36 h of empiric broad-spectrum antibiotic coverage, and the blood culture grew *B. longum* on culture day 5. Antibiotics were not restarted, and a repeat blood culture remained negative for *B. longum*. While the symptoms were clinically attributed to a large PDA, symptoms resolved with indomethacin, and the positive blood culture was thought to be a contaminant, it is important to note this positive blood culture could have represented true probiotic bacteremia.

DISCUSSION

The implementation of a probiotic protocol in our NICU was associated with a 90% reduction in rates of NEC ≥ Stage 2 in babies born ≤ 33 6/7 weeks. These results support the findings of many randomized control trials and metaanalysis that have shown probiotics are associated with reduced NEC [27–30]. Although some studies suggest the superiority of multi-strain probiotics, others have suggested that *Bifidobacterium* alone offers a unique benefit to the premature gut [31] and probiotics containing *B. infantis* are more beneficial than probiotics without *B. infantis* to premature babies [15]. *B. infantis* EVC001 has been associated with significant reductions in the incidence of NEC in very low birth weight infants [20]. Our study adds to that existing research to support *B. infantis* EVC001 as a means to decrease NEC in premature infants.

Our probiotic protocol was also associated with improved feeding tolerance, as a cohort and across all gestational ages, evidenced by decreased bloody stools, fewer mean TPN days and fewer mean days to full enteral feeds. Some studies have found that probiotics are associated with decreased time to reach full enteral feeds [32, 33], while others have found no effect on TPN days [34].

Dysbiosis has been cited as a risk factor for bloody stools [35], but published data is limited regarding the association between probiotics and bloody stools in preterm babies.

Two studies have shown a trend toward decreased bloody stools with the use of probiotics, one using *Lactobacillus rhamnosus* in babies born at 24 to 31 weeks gestation [36] and

Table 3. Primary and secondary outcomes by gestational age subgroup analyses.

	24-26 weeks Control Probiotic n = 24 n = 19	27-29 weeks Control Probiotic n = 52 n = 52	30-31 weeks Control Probiotic n = 50 n = 64	32-33 weeks Control Probiotic n = 126 n = 115
Bloody stools	3 (12.5%) 3 (15.8%) NS	12 (23%) 2 (3.8%) p = 0.003	10 (20%) 2 (3.1%) p = 0.003	20 (15.8%) 4 (3.5%) p = 0.001
NEC \geq stage 2	1 (4.2%) 1 (5.3%) NS	6 (11.5%) 0 p = 0.01	1 (2.0%) 0 NS	3 (2.4%) 0 NS
DOL to full enteral feeds	28.1 23.0 NS	20.3 16.4 p = 0.004	17.1 12.6 p = 0.0004	12.0 9.4 p = 0.0007
Customized TPN days	24.0 23.0 NS	19.7 13.4 p < 0.0001	13.7 8.9 p < 0.0001	10.0 6.5 p < 0.0001
Duration of hospital stay, mean days	98.3 100.9 NS	70.9 70.0 NS	50.3 44.7 p = 0.05	31.8 31.9 NS
CGA at discharge, mean weeks	40.1 41.1 NS	38.9 38.7 NS	38.3 37.5 p = 0.027	37.5 37.7 NS

another using a multi-strain probiotic of *Bifidobacterium* and *Lactobacillus* in babies less than 29 weeks gestation [32]. This is the first study to evaluate bloody stools as a primary outcome after introduction of *B. infantis*. Prior to probiotic implementation, our NICU had a high baseline rate of bloody stools in babies < 34 weeks, which often prompted NEC evaluations, including bowel rest and broad-spectrum antibiotics. Due to this, our protocol inclusion criteria was broadened to include babies born at 32 and 33 weeks completed gestation.

Dysbiosis has been implicated as a cause of distal colon inflammation and resultant hematochezia, and a significant reduction of *Bifidobacterium* specifically has been linked to hematochezia in babies [2]. Although the exact mechanisms are not completely understood, *B. infantis* colonization has been shown to decrease enteric inflammation [37, 38], reduce colonic mucin degradation [39], and accelerate microbiome maturation, leading to improved metabolic and immune function and increased epithelial integrity [16, 40]. Overall, *Bifidobacterium* has been shown to assist in accelerating and maintaining the protective barrier function of the gastrointestinal tract.

Regarding our case of potential probiotic bacteremia, premature babies are inherently at risk for bacterial translocation due to decreased epithelial integrity, altered microbiome, and compromised intestinal immunity [41]. It follows that probiotic bacteremia is an expected side effect and risk of probiotic therapy. Although probiotic sepsis is rare, there have been multiple case reports, the majority of which recovered with or without antibiotic treatment [42-44]. The low risk of probiotic sepsis must be compared to the relatively large reduction in NEC burden achieved by efficacious probiotic strains [45]. In contrast to the high pathogenicity and virulence of Proteobacteria, *Bifidobacterium* are slow growing, commensal, and beneficial organisms with low pathogenicity. They are early colonizers of the neonatal gut and act to strengthen the neonatal gut barrier, assist in maturation of the intestinal immune system, and promote anti-inflammatory immune responses [5, 16, 46, 47].

Although metaanalyses have shown that probiotics decrease late onset sepsis [28, 48], this study did not find a decrease in late onset sepsis. A reduction in both meningitis (from 3 cases to 0) and tracheitis (from 11 cases to 5) was observed, but neither was of statistical significance. Metaanalyses have also shown that probiotic use leads to a decreased duration of hospital stay for premature babies [10]. Although there was a significant decrease in hospital stay for babies born at 31 weeks completed gestation, there was not a significant decrease in duration of hospital stay for other gestational ages or in the probiotic cohort as a whole.

As a single-center prospective cohort study, there are inherent limitations to this study. Rates of NEC vary year to year; our rate

has been consistently 4-6% over the last decade. Another potential confounding variable is changes in clinical practice over time. Our feeding protocol and use of human milk remained consistent over both cohort periods. The decision to initiate enteral feeds is up to the discretion of the neonatologist on service, and there was a reduction in the mean day of life that feedings were initiated from the control cohort to the probiotic cohort (from 1.3 to 0.9 days, p = 0.0009). Early human milk enteral feedings are thought to be protective against NEC by stimulating hormone secretion, mucosal cell signaling, and peristalsis [49], and although statistically different, both cohort means fall within the first 48 h after birth and can therefore be considered early feeding [50, 51].

We were fortunate to have strong nursing support for probiotic use in our NICU, and many bedside nurses reported that babies were less fussy and had improved stooling patterns and consistency during the probiotic implementation period. This also represents a potential source of information bias, as bedside nurses may have been less likely to categorize stools as bloody.

Our probiotic protocol was initially planned and funded for 24 months, but probiotic use was ceased on September 29, 2023, when the FDA issued a warning regarding the risk of invasive, potentially fatal disease caused by use of probiotics in preterm infants. *Bifidobacterium* species are traditionally considered ubiquitous nonpathogenic commensal organisms and have low MICs (<0.5 mg/L) to beta-lactam antibiotics [52], which makes them less pathogenic than the bloom of Proteobacteria that precedes NEC. As previously discussed, probiotic sepsis is a rare occurrence, and most cases result in recovery [41]. On the other hand, NEC is a leading cause of death in premature babies and is a devastating disease with high mortality, morbidity, and neurodevelopmental disability [53]. Additionally, surgical NEC has been shown to have the highest total cost of all complications of prematurity [54].

Two proven and widely accepted interventions to decrease the risk of NEC are utilizing human milk [55, 56] and a standardized feeding protocol [57]. Data from meta-analyses support probiotic utilization as an intervention to decrease the risk of NEC. In 2023, just prior to the FDA warning, approximately 39% of NICUs in the U.S were using probiotics [58]. At that time, the percentage was steadily increasing; however, since the FDA warning, many NICUs have reported cessation of probiotic use.

This study demonstrates the benefits that probiotics can confer to premature babies. Use of a *B. infantis* probiotic significantly decreased NEC \geq stage 2, bloody stools, days to full enteral feeds, and TPN days. Our data supports continued research to determine optimal formulations and dosing of probiotics. The overwhelming amount of current evidence and our data demonstrate a positive

risk benefit ratio for the use of probiotics in preterm babies. The data supports finding a path to gain FDA approval for probiotics to be used in preterm babies to prevent intestinal dysbiosis, and thereby decrease the incidence of NEC, its profound short and long-term complications, and improve the quality of life for patients beyond their NICU stay.

DATA AVAILABILITY

Data is summarized in Tables 1, 2, 3, with full details omitted to protect patient privacy and identification. Detailed information is available upon request.

REFERENCES

- Underwood MA, Mukhopadhyay S, Lakshminrusimha S, Bevins CL. Neonatal intestinal dysbiosis. *J Perinatol*. 2020;40:1597–608.
- Wurm P, Stampfer L, Greimel T, Leitner E, Zechner EL, Bauchinger S, et al. Gut microbiota dysbiosis in suspected food protein induced proctocolitis-a prospective comparative cohort trial. *J Pediatr Gastroenterol Nutr*. 2023;77:31–38.
- Mai V, Young CM, Ukhanova M, Wang X, Sun Y, Casella G, et al. J. Fecal microbiota in premature infants prior to necrotizing enterocolitis. *PLoS One*. 2011;6:e20647.
- Torrazza RM, Ukhanova M, Wang X, Sharma R, Hudak ML, Neu J, et al. Intestinal microbial ecology and environmental factors affecting necrotizing enterocolitis. *PLoS One*. 2013;8:e83304.
- Pammi M, Cope J, Tarr PI, Warner BB, Morrow AL, Mai V, et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis. *Microbiome* 2017;5:31.
- Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging criteria. *Pediatr Clin North Am*. 1986;33:179–201.
- Jones IH, Hall NJ. Contemporary outcomes for infants with necrotizing enterocolitis-a systematic review. *J Pediatr*. 2020;220:86–92.e3.
- Bazacliu C, Neu J. Necrotizing enterocolitis: long term complications. *Curr Pediatr Rev*. 2019;15:115–24.
- Wang Y, Hang C, Hu J, Li C, Zhan C, Pan J, et al. Role of gut-brain axis in neurodevelopmental impairment of necrotizing enterocolitis. *Front Neurosci*. 2023;17:1059552.
- Matei A, Montalva L, Goodbaum A, Lauriti G, Zani A. Neurodevelopmental impairment in necrotising enterocolitis survivors: systematic review and meta-analysis. *Arch Dis Child Fetal Neonatal Ed*. 2020;105:432–9.
- Zozaya C, Shah J, Pierro A, Zani A, Synnes A, Lee S, et al. Canadian Neonatal Network (CNN) and the Canadian Neonatal Follow-Up Network (CNFUN) Investigators. Neurodevelopmental and growth outcomes of extremely preterm infants with necrotizing enterocolitis or spontaneous intestinal perforation. *J Pediatr Surg*. 2021;56:309–16.
- Mondal A, Misra D, Al-Jabir A, Hubail D, Ward T, Patel B. Necrotizing enterocolitis in neonates: has the brain taken a hit 10 years later? *J Pediatr Neurosci*. 2021;16:30–34.
- Canvasser J, Patel RM, Pryor E, Green L, Hintz SR, Fagan M, et al. Long-term outcomes and life-impacts of necrotizing enterocolitis: A survey of survivors and parents. *Semin Perinatol*. 2023;47:151696.
- Kim JH, An HJ, Garrido D, German JB, Lebrilla CB, Mills DA. Proteomic analysis of *Bifidobacterium longum* subsp. *infantis* reveals the metabolic insight on consumption of prebiotics and host glycans. *PLoS One*. 2013;8:e57535.
- Meng D, Sommella E, Salvati E, Campiglia P, Ganguli K, Djebali K, et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by *Bifidobacterium longum* subspecies *infantis* is anti-inflammatory in the immature intestine. *Pediatr Res*. 2020;88:209–17.
- Ehrlich AM, Pacheco AR, Henrick BM, Taft D, Xu G, Huda MN, et al. Indole-3-lactic acid associated with *Bifidobacterium*-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. *BMC Microbiol*. 2020;20:357.
- Samara J, Moossavi S, Alshaikh B, Ortega VA, Pettersen VK, Ferdous T, et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. *Cell Host Microbe*. 2022;30:696–711.
- Batta VK, Rao SC, Patole SK. *Bifidobacterium infantis* as a probiotic in preterm infants: a systematic review and meta-analysis. *Pediatr Res* 2023;94:1887–905. <https://doi.org/10.1038/s41390-023-02716-w>.
- Taft DH, Lewis ZT, Nguyen N, Ho S, Masarweh C, Dunne-Castagna V, et al. *Bifidobacterium* species colonization in infancy: a global cross-sectional comparison by population history of breastfeeding. *Nutrients*. 2022;14:1423.
- Duar RM, Casaburi G, Mitchell RD, Scofield LNC, Ortega Ramirez CA, Barile D, et al. Comparative genome analysis of *Bifidobacterium longum* subsp. *infantis* strains reveals variation in human milk oligosaccharide utilization genes among commercial probiotics. *Nutrients*. 2020;12:3247.
- Smilowitz JT, Moya J, Breck MA, Cook C, Fineberg A, Angkustsiri K, et al. Safety and tolerability of *Bifidobacterium longum* subspecies *infantis* EVC001 supplementation in healthy term breastfed infants: a phase I clinical trial. *BMC Pediatr*. 2017;17:133.
- Bajorek S, Duar RM, Corrigan M, Matrone C, Winn KA, Norman S, et al. *B. infantis* EVC001 is well-tolerated and improves human milk oligosaccharide utilization in preterm infants in the neonatal intensive care unit. *Front Pediatr*. 2022;9:795970.
- Tobias J, Olyaei A, Laraway B, Jordan BK, Dickinson SL, Golzarri-Arroyo L, et al. *Bifidobacterium longum* subsp. *infantis* EVC001 administration is associated with a significant reduction in the incidence of necrotizing enterocolitis in very low birth weight infants. *J Pediatr*. 2022;244:64–71.
- Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC, Casaburi G, et al. Persistence of supplemented *Bifidobacterium longum* subsp. *infantis* EVC001 in breastfed infants. *mSphere* 2017;2:e00501–17.
- Kliegman RM, Walsh MC. Neonatal necrotizing enterocolitis: pathogenesis, classification, and spectrum of illness. *Curr Probl Pediatr*. 1987;17:213–88.
- Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. *Ann Surg*. 1978;187:1–7.
- Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. *Cochrane Database Syst Rev*. 2020;10:CD005496.
- Wang Y, Florez ID, Morgan RL, Foroutan F, Chang Y, Crandon HN, et al. Probiotics, prebiotics, lactoferrin, and combination products for prevention of mortality and morbidity in preterm infants: a systematic review and network meta-analysis [published correction appears in *JAMA Pediatr*. 2024 Jan 1;178(1):99]. *JAMA Pediatr*. 2023;177:1158–67.
- Wang H, Meng X, Xing S, Guo B, Chen Y, Pan YQ. Probiotics to prevent necrotizing enterocolitis and reduce mortality in neonates: a meta-analysis. *Med (Baltimore)*. 2023;102:e32932.
- Sun J, Marwah G, Westgarth M, Buys N, Ellwood D, Gray PH. Effects of probiotics on necrotizing enterocolitis, sepsis, intraventricular hemorrhage, mortality, length of hospital stay, and weight gain in very preterm infants: a meta-analysis. *Adv Nutr*. 2017;8:749–63.
- Bi LW, Yan BL, Yang QY, Li MM, Cui HL. Which is the best probiotic treatment strategy to prevent the necrotizing enterocolitis in premature infants: A network meta-analysis revealing the efficacy and safety. *Med (Baltimore)*. 2019;98:e17521.
- Lau CS, Chamberlain RS. Probiotic administration can prevent necrotizing enterocolitis in preterm infants: a meta-analysis. *J Pediatr Surg*. 2015;50:1405–12.
- Alshaikh B, Samara J, Moossavi S, Ferdous T, Soraisham A, Dersch-Mills D, et al. Multi-strain probiotics for extremely preterm infants: a randomized controlled trial. *Pediatr Res*. 2022;92:1663–70.
- Alfaleh K, Bassler D. Probiotics for prevention of necrotizing enterocolitis in preterm infants. *Cochrane Database Syst Rev*. 2008;1:CD005496.
- Said MB, Hays S, Maucort-Boulch D, Oulmaati A, Hantova S, Loys CM, et al. Gut microbiota in preterm infants with gross blood in stools: a prospective, controlled study. *Early Hum Dev*. 2014;90:579–85.
- Bonsante F, Iacobelli S, Gouyon JB. Routine probiotic use in very preterm infants: retrospective comparison of two cohorts. *Am J Perinatol*. 2013;30:41–46.
- Henrik BM, Chew S, Casaburi G, Brown HK, Frese SA, Zhou Y, et al. Colonization by *B. infantis* EVC001 modulates enteric inflammation in exclusively breastfed infants. *Pediatr Res*. 2019;86:749–57.
- Nguyen M, Holdbrooks H, Mishra P, Abrantes MA, Eskew S, Garma M, et al. Impact of Probiotic *B. infantis* EVC001 Feeding in Premature Infants on the Gut Microbiome, Nosocomially Acquired Antibiotic Resistance, and Enteric Inflammation. *Front Pediatr*. 2021;9:618009.
- Karav S, Casaburi G, Frese SA. Reduced colonic mucin degradation in breastfed infants colonized by *Bifidobacterium longum* subsp. *infantis* EVC001. *FEBS Open Bio*. 2018;8:1649–57.
- O'Neill I, Schofield Z, Hall LJ. Exploring the role of the microbiota member *Bifidobacterium* in modulating immune-linked diseases. *Emerg Top Life Sci*. 2017;1:333–49.
- Mara MA, Good M, Weitkamp JH. Innate and adaptive immunity in necrotizing enterocolitis. *Semin Fetal Neonatal Med*. 2018;23:394–9.
- Kulkarni T, Majarikar S, Deshmukh M, Ananthan A, Balasubramanian H, Keil A, et al. Probiotic sepsis in preterm neonates-a systematic review. *Eur J Pediatr*. 2022;181:2249–62.
- Acuna-Gonzalez A, Kujawska M, Youssif M, Atkinson T, Grundy S, Hutchison A, et al. *Bifidobacterium* bacteraemia is rare with routine probiotics use in preterm infants: A further case report with literature review. *Anaerobe* 2023;80:102713.
- Bertelli C, Pillonel T, Torregrossa A, Prod'hom G, Fischer CJ, Greub G, et al. *Bifidobacterium longum* bacteraemia in preterm infants receiving probiotics. *Clin Infect Dis*. 2015;60:924–7.
- van den Akker CHP, Embleton ND, Lapillonne A, Mihatsch WA, Salvatore S, Canani RB, et al. Reevaluating the FDA's warning against the use of probiotics in preterm

neonates: A societal statement by ESPGHAN and EFCNI. *J Pediatr Gastroenterol Nutr.* 2024;78:1403–8.

46. Henrick BM, Rodriguez L, Lakshmikanth T, Pou C, Henckel E, Arzoomand A, et al. Bifidobacteria-mediated immune system imprinting early in life. *Cell* 2021;184:3884–98.
47. Hidalgo-Cantabrina C, Delgado S, Ruiz L, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and their health-promoting effects. *Microbiol Spectr.* 2017;5:10.11282017.
48. Rao SC, Athalye-Jape GK, Deshpande GC, Simmer KN, Patole SK. Probiotic supplementation and late-onset sepsis in preterm infants: a meta-analysis. *Pediatrics* 2016;137:e20153684.
49. Embleton ND, Berrington JE, Dorling J, Ewer AK, Juszczak E, Kirby JA, et al. Mechanisms affecting the gut of preterm infants in enteral feeding trials. *Front Nutr.* 2017;4:14.
50. Kwok TC, Dorling J, Gale C. Early enteral feeding in preterm infants. *Semin Perinatol.* 2019;43:151–9.
51. Morgan J, Bombell S, McGuire W. Early trophic feeding versus enteral fasting for very preterm or very low birth weight infants. *Cochrane Database Syst Rev.* 2013;3:CD000504.
52. Esaiassen E, Hjerde E, Cavanagh JP, Simonsen GS, Klingenberg C. Bifidobacterium bacteremia: clinical characteristics and a genomic approach to assess pathogenicity. *J Clin Microbiol.* 2017;55:2234–48.
53. Meister AL, Doheny KK, Travagli RA. Necrotizing enterocolitis: it's not all in the gut. *Exp Biol Med (Maywood)*. 2020;245:85–95.
54. Lai KC, Lorch SA. Healthcare costs of major morbidities associated with prematurity in US children's hospitals. *J Pediatr.* 2023;256:53–62.
55. Lucas A, Cole TJ. Breast milk and neonatal necrotising enterocolitis. *Lancet.* 1990;336:1519–23.
56. Quigley M, Embleton ND, Meader N, McGuire W. Donor human milk for preventing necrotising enterocolitis in very preterm or very low-birthweight infants. *Cochrane Database Syst Rev.* 2024;9:CD002971.
57. Jasani B, Patole S. Standardized feeding regimen for reducing necrotizing enterocolitis in preterm infants: an updated systematic review. *J Perinatol.* 2017;37:827–33.
58. Hanna M, Ahmad I, Yanowitz T, Kim J, Hunter C, DiGeronimo R, et al. Current patterns of probiotic use in U.S. neonatal intensive care units: a multi-institution survey. *Am J Perinatol.* Published online August 24, 2023. <https://doi.org/10.1055/a-2140-8727>.

AUTHOR CONTRIBUTIONS

KS designed study, acquired funding, curated, analyzed and interpreted data, wrote manuscript, and approved final version. VP drafted initial manuscript and approved

final version. RC supervised study, analyzed data, edited manuscript, and approved final version.

FUNDING

Funding for probiotics was made possible by a grant from The Nell J Redfield Foundation, Reno, NV. The Foundation did not have a role in the conceptualization, design, collection, analysis, or interpretation of data, preparation of this manuscript, or decision to submit for publication.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Kristin Sohn.

Reprints and permission information is available at <http://www.nature.com/reprints>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2024