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Abstract
Metabolomic profiling can aid in understanding crucial biological processes in cancer development and progression and can
also yield diagnostic biomarkers. Desorption electrospray ionization coupled to mass spectrometry imaging (DESI-MSI) has
been proposed as a potential adjunct to diagnostic surgical pathology, particularly for prostate cancer. However, due to low
resolution sampling, small numbers of mass spectra, and little validation, published studies have yet to test whether this
method is sufficiently robust to merit clinical translation. We used over 900 spatially resolved DESI-MSI spectra to establish
an accurate, high-resolution metabolic profile of prostate cancer. We identified 25 differentially abundant metabolites, with
cancer tissue showing increased fatty acids (FAs) and phospholipids, along with utilization of the Krebs cycle, and benign
tissue showing increased levels of lyso-phosphatidylethanolamine (PE). Additionally, we identified, for the first time, two
lyso-PEs with abundance that decreased with cancer grade and two phosphatidylcholines (PChs) with increased abundance
with increasing cancer grade. Importantly, we developed and internally validated a multivariate metabolomic classifier for
prostate cancer using 534 spatial regions of interest (ROIs) in the training cohort and 430 ROIs in the test cohort. With
excellent statistical power, the training cohort achieved a balanced accuracy of 97% and validation on testing data set
demonstrated 85% balanced accuracy. Given the validated accuracy of this classifier and the correlation of differentially
abundant metabolites with established patterns of prostate cancer cell metabolism, we conclude that DESI-MSI is an
effective tool for characterizing prostate cancer metabolism with the potential for clinical translation.

Introduction

The recent emergence of the field of metabolomics and
advances in related assay technologies have opened new
avenues for cancer research and clinical applications in
pathology laboratories and in operating theaters. Metabolomic
profiling has the potential to supplement existing profiling
methods by more rapidly and inexpensively identifying and
characterizing disease states, including cancer [1].

Typically, metabolomic research is performed using
nuclear magnetic resonance (NMR) spectroscopy or mass
spectrometry (MS) techniques to investigate amino acids,
sugars, nucleic acids, FAs, lipids, steroids, and proteins
within a biological sample. NMR can identify the molecular
structure of a metabolite; however, it lacks sufficient sen-
sitivity to detect low abundance analytes. Untargeted mass
spectrometry (MS) methods typically first separate meta-
bolites through liquid chromatography (LC) or gas chro-
matography (GS) systems [2–4]. MS methods are more
sensitive meaning that they can detect low abundance
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metabolites and can detect many different molecular species
concurrently. Both methods require tissue homogenization
and extensive sample preparation, therefore spatial dis-
tribution of the ions is lost, making it difficult to study
variations in metabolite abundance arising from tissue het-
erogeneity [5].

Combining metabolomic techniques with imaging cap-
abilities is a useful way to study the metabolic profile of
different regions within a tissue. Desorption electrospray
ionization mass spectrometry imaging (DESI-MSI) is an
ambient ionization technique that can analyze sugars, FA
and lipids directly from the tissue surface [5]. With minimal
sample preparation, DESI can analyze a metabolic profile at
a resolution of 50μm. Spatial coordinates and ion intensities
are combined to re-create the image of the tissue [5]. Ion
heatmaps are then matched with pathologically validated
photomicrographs of hematoxylin and eosin stained (H&E)
histologic sections to identify regions of pathological
interest and the corresponding metabolic profile [6]. This
technology also has drawbacks. The lack of normalization
techniques and lack of standardized analytic protocols have
posed challenges that raise questions regarding its reliability
and potential clinical utility.

Prostate cancer has been a focus of study using this
technique. Early stage prostate cancer is difficult to detect
by palpation or imaging, posing a challenge to prescribing
appropriate therapeutic and surgical intervention [7]. Unlike
colon cancer [8], prostate cancer initiation and progression
cannot be subdivided into an orderly sequence punctuated
by specific genomic events [9]. Additionally, prostate can-
cer forms in small cell groupings, therefore requiring
techniques with adequate resolution to distinguish cancer
cells from surrounding stroma or benign tissue [10]. Thus,
few biomarkers reliably distinguish prostate cancers from
benign prostate epithelia or indolent prostate cancers from
their aggressive counterparts [11]. The distinctive metabolic
profiles of prostate epithelia and prostate cancer cells pro-
vide opportunities for additional insights into prostate can-
cer biology, along with new diagnostic and prognostic
biomarkers.

As described by Otto Warburg, most cancer cells shut
down the mitochondrial Krebs cycle, favoring aerobic gly-
colysis, a less efficient route to energy production [12].
Prostate cancer, in contrast, shows a more energy efficient
metabolic profile and enhanced utilization of the Krebs cycle
compared to benign prostate epithelia [13, 14]. In concert with
enhanced energy efficiency, prostate cancer cells upregulate
de novo FA and lipid synthesis [15, 16]. These products
support cancer cell proliferation in a variety of ways, serving
as building blocks for cell membranes, signaling molecules
for signal transduction pathways, post-translational mod-
ifications of proteins, and fuel [16]. Recent work has also
established metabolic signatures that correlate with genetic

drivers of the disease. Through use of cell lines, mouse
models and human tissue samples, Priolo et al. concluded that
prostate cancers driven by the activation of the serine/threo-
nine specific protein kinase B, known as AKT, displayed
higher levels of aerobic glycolysis compared to cancers driven
by activation of the MYC proto-oncogene, which displayed
dysregulated lipid metabolism [2].

To date, two groups have established metabolic profiles
associated with prostate cancer using DESI-MSI. No previous
study has analyzed more than 28 regions of interest (ROIs) in
cancer tissue. Kerian et al. utilized 100 biopsy samples (26 of
which were cancer) consisting of merged ROIs to develop a
principal component analysis (PCA)/linear discriminant ana-
lysis (LDA) classifier composed of PE, PCh, phosphati-
dylserine (PS) and phosphatidylinositol (PI) species that
achieved 98% cross validation accuracy with the training
cohort but was not validated with a separate cohort [17].
Using larger tissue sections from surgically removed pros-
tates, Banerjee et al. developed a LASSO model from 28
merged cancer ROIs [18]. This model was then validated on
18 merged ROIs from a separate cohort, demonstrating 94%
agreement. Both studies performed classification on a per
sample base, therefore all ROIs within a sample were aver-
aged to obtain a single classification. This low resolution
approach limits statistical power as well as limiting informa-
tion regarding heterogeneity within a sample. For example,
the classifiers from these studies do not demonstrate sufficient
validation and/or spatial resolution to be useful in intrao-
perative surgical guidance.

In this study, we have developed an analytical workflow to
address these problems through accurate assessment of DESI
metabolomic profiles to identify, at 150 µm spatial resolution,
differences between benign and cancer tissue. We analyzed
prostate needle biopsy tissue and obtained multiple 9-pixel
ROIs (~150 μm× 150 μm) per sample. We conducted statis-
tical analysis using 964 ROIs (675 cancer, and 289 benign),
comprising the largest cohort of prostate data points studied
with this method to date. In doing so, we built tissue het-
erogeneity into these models, further improving the con-
fidence of the resulting classifiers and fully utilizing the
capabilities of DESI-MSI. Future applications of this
approach might include use as ancillary diagnostic tools in the
pathology laboratory or real time tissue monitoring to provide
intraoperative guidance to surgeons assessing surgical
margins.

Material and methods

Sample selection and collection

With approval of the Queen’s University Research Ethics
Board, fresh prostate tissue was collected at Kingston General
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Hospital between August 2016 – July 2017. Following a
radical prostatectomy or cystoprostatectomy procedure, the
prostate gland was sampled using an 18-gauge needle biopsy
gun (CR Bard, Murray Hill, NJ, USA) at 10 pre-determined
locations (Supplementary Fig. 1), simulating the template
used clinically in transrectal diagnostic biopsies. Selected
cores were frozen in optimal cutting temperature compound
(OCT, Tissue-Tek, VWR, Radnor, PA, USA), cryosectioned
at 12 μm thickness, mounted on neutral microscope slides
(UltiDent Scientific. St. Laurent, QC, CA) and stored at
−80 °C for up to 3 months prior to DESI analysis. Hema-
toxylin and eosin (H&E) stained slides from biopsy frozen
sections and radical prostatectomies (routinely processed)
were reviewed by two genitourinary pathologists (TJ and
DMB). Grade groups (GGs) were assigned as described [10].

Tissue microarray construction

Tumor and benign tissue from each case was harvested
from the same location as the needle biopsy used for DESI-
MSI analysis. Cancer and benign tissue were each repre-
sented on the tissue microarray (TMA) by 0.6 mm
triplicate cores.

Immunohistochemistry

Immunohistochemistry (IHC) was performed on 5-μm-thick
TMA sections on the automated staining platform (BOND-
III, Leica Biosystems, Buffalo Grove, IL, USA) using Ki67
Bond™ Ready-To-Use Primary Antibody (catalog #:
PA0118, clone ID: MM1, Leica Biosystems, Buffalo
Grove, IL, USA) in combination with Bond Polymer Refine
Detection kit (Leica Biosystems, Buffalo Grove, IL, USA).

Digital quantification

Tissue microarrays were scanned at 20 ×magnification
(Aperio, Leica Microsystems, Buffalo Grove, IL, USA) and
uploaded at Aperio ImageScope (Leica Biosystems Imaging,
Buffalo Grove, IL, USA). Benign and cancer areas of interest
were circled (annotated) on the digital image by a pathologist
followed by automated image analysis (HALO, Indica Labs,
Corrales, NM, USA). Cores with <300 cells of interest
(benign epithelial or cancer) were excluded from the analysis.
Brown nuclear epithelial staining above background was
considered positive. Ki67 proliferation index was calculated
by dividing the number of Ki67 positive cells in all cores/per
case by the total number of counted cells in the case.

DESI-MSI

All samples were analyzed using a commercial 2D DESI
source (Prosolia, Zionsville, IN, USA) in negative ion

mode. Full scan mass spectra were acquired in the mass
range m/z 50–1100 using a Xevo-G2 XS Q-Tof mass
spectrometer (Waters, Milford, MA, USA). Solvent (95%
methanol, 5% water and 50 pg/μL leucine enkephalin) was
infused at a rate of 1.5 μL/min. The DESI source was set to
the following parameters: capillary temperature 100 °C,
capillary voltage 4 kV, heated ion transfer tube 500 °C, cone
voltage 5 kV, collision energy 4 eV, capillary incident angle
75°, spray to surface distance ~0.5 cm, sample to inlet
distance ~1 cm, and nitrogen gas at 0.6 MPa. DESI reso-
lution was set to a pixel size of 50 × 50 μm2 with a scan rate
of 175 μm/sec. After DESI analysis, microscope slides were
H&E stained. Photomicrographs were obtained by scanning
the H&E image at 100X to allow for the electronic,
pathologically validated image to be compared to the DESI
images.

Imaging and mass spectral data were mass corrected and
normalized to total ion current using HDImaging 1.4 soft-
ware (Waters, Milford, MA, USA). Ion images were com-
pared with H&E images to select regions of interest (ROIs)
representing either cancer or benign glands, where each
ROI consisted of nine 50 × 50 µm pixels of data. The data
from each pixel within a ROI were summed, all ROIs from
an individual sample were total ion current (TIC) normal-
ized using the formula (Peak intensity of ROI/TIC sum
intensity)10,000, and were exported for further analysis
(Supplementary Table 1).

A random selection of five representative samples (~10%
of the total cohort) was used to identify a list of abundant
tissue ions. This list defined the ions that were used for
analysis in all subsequent samples. A m/z tolerance ±0.03
was assigned to account for slight variations in measured
m/z values. After removing ions with median intensities of
zero, a final list of 289 ions was generated. Individual ROIs
with a median zero intensity for all 289 ions were removed.
Therefore, statistical analysis and model building were per-
formed using these 289 ions on a total of 35 samples across
18 patients and 675 cancer ROIs and 289 benign ROIs
(Supplementary Table 1).

Ion identification

Chemical identities were assigned to accurate DESI-MS
m/z ratio by searching publicly available lipid databases
and publications or by comparing to LC-MS/MS-based
fragmentation patterns. The m/z of each ion identified by
DESI-MS was corrected using the internal mass standard
Leu-Enk (m/z= 554.2615). Accurate masses of the dif-
ferentially abundant ions were matched with metabolites
in the Metlin database [19], using a m/z tolerance of ±30
parts per million (ppm). Metabolites were further inves-
tigated using LC-MS/MS if they remained unmatched
after Metlin search or had multiple species with the same
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m/z ratio. Tissue lysates were prepared from three repre-
sentative cases of prostate cancer, GG 2,3, and 5, and
subjected to metabolite identification using high-
resolution LC-MS/MS. Two simple methanol extraction
methods [20] and the Bligh and Dyer method [21] were
employed to extract lipids. The protocol containing LC-
MS/MS settings and data processing is provided in Sup-
plemental Material. All precursor ions and associated ion
fragments were imported into LipidBlast [22] to match the
accurate m/z of the precursor and the fragmentation pat-
tern. Chemical identity was confirmed if it was within a
10-ppm tolerance and had a ≥50% probability based on
the fragmentation pattern.

Statistical Workflow

Identifying differentially abundant ions

Differentially abundant metabolites had dissimilar var-
iances across cohorts and were often found to be non-
normally distributed. Therefore, we relied on the non-
parametric Mann–Whitney U test to establish statistically
significant abundances between cancer and benign ROIs.
The p values were corrected for false discovery using a
Benjamini-Hochburg adjustment [23]. A log2 fold change
between cancer and benign was calculated for each ion
using the median intensity of each peak with q ≤ 0.05.
From the resulting list, ions that had an │log2 fold
change│ ≥ 1 were considered differentially abundant.
This procedure was repeated to identify metabolites that
were differentially abundant between GG2 and GG > 2.
GG1 ROIs were excluded due to limited sample size
(24 ROIs).

Model construction

Univariate models were generated using the entire dataset.
A receiver operating characteristic (ROC) curve with cor-
responding area under the curve (AUC) was calculated for
each of the 25 differentially abundant metabolites.

A train/test internal validation approach was utilized
for the remainder of the model building, with half of the
prostate cancer cases studied assorted into each of the
train and test cohorts. Cases were divided to contain
similar breakdowns of GS and percentage of benign and
cancer ROIs (Supplementary Table 1). Each cohort con-
tained 9 cases, with the training cohort comprising 534
ROIs (373 cancer and 161 benign) and the test cohort
comprising 430 ROIs (302 cancer and 128 benign). The
training data was used to construct a logistic regression
model. Best selection over 5 metabolites was performed in
R using the leaps package. Forward selection was per-
formed to add single metabolites, one at a time, to the

logistic regression model. Varying numbers of metabo-
lites were used to build the model, and training and
validation accuracies were evaluated. To explore a more
complex PCA/LDA model, PCA was initially performed
on the train data using the prcomp function within the
stats R package, which also centered and scaled the data.
Within a PC, each ion was assigned a weighting value
which was used to calculate a single numerical score for
each ROI, calculated as the sum of each metabolite’s
intensity value, subtracted from the mean intensity value
across all ROIs, divided by the standard deviation, and
multiplied by the weighting value. We selected the PCs
and the respective scores for each ROI that explained a
cumulative 85% of the total variance. PCs were then
employed as variables used for LDA. LDA was computed
using the MASS package in R. LDA was used to build a
model composed of PCs optimized to classify benign vs.
cancer.

For both logistic regression and PCA/LDA models, a
ROC curve was calculated to display the model’s AUC and
to select a cut-off threshold. The point on the ROC curve
farthest away from the diagonal was selected as the initial
cut-off value. Using these cut-off values and either the
logistic regression or the LDA function, the chosen model’s
accuracy was assessed using a confusion matrix on the test
cohort and the remaining 302 cancer ROIs and 128
benign ROIs.

Results

Metabolites that distinguish cancer from benign

We performed univariate differential abundance analysis
employing a Mann–Whitney U test for all 289 metabolites
(see Methods) and found p and Benjamini-Hochberg-
corrected q values for these metabolites. Metabolites that
passed a significance cutoff of q ≤ 0.05 and showed an
absolute log-2 fold change of >1 were examined. Twelve
metabolites were removed because their median values
fell within 50% of the intensity values in the other class.
Of the remaining significant metabolites, 14 were more
abundant in benign tissue, and 11 more abundant in
cancer. Select identification patterns of the metabolites
that had a confirmed identity using MS/MS can be seen in
Supplementary Figs. 2–5. Many of the significant species
are members of the Krebs cycle or intermediates in
FA and lipid metabolism. The 14 metabolites that were
most abundant in benign tissue consisted mainly of lyso-
PE species, two PI species and citrate, whereas FAs, PE,
PCh, PI species and glutamate were amongst the more
abundant species in cancer tissue (Table 1). Since many of
these differentially abundant metabolites are known
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constituents of cell membranes associated with prolifera-
tion, we evaluated the Ki67 immunohistochemistry score
of adjacent tissue from the same case. This analysis
confirmed significantly elevated proliferation rates in
cancer cells compared to benign epithelium (p = 1.6e-07)
and a trend towards increased proliferation with increased
cancer grade (Fig. 1). We validated differential abundance
of selected metabolites by overlaying heatmaps of ion
abundance over photomicrographs of prostate needle

cores and comparing them to photomicrographs annotated
for cancer and benign regions (Fig. 2).

Univariate cancer/benign classifiers generated individu-
ally for each of the 25 differentially abundant metabolites
yielded ROC curves with AUCs as large as 0.865, as
observed with lyso-PE(16:0). However, no single metabo-
lite accurately distinguished cancer from benign, as evi-
dence by high rates of false positive and/or false negatives
therefore multivariate classifiers were investigated next for
their ability to more accurately distinguish cancer from
benign (data not shown).

Metabolites that distinguish Grade Groups

A secondary goal of this work was to assess the ability of
DESI-MS imaging of needle core biopsies to identify
metabolic features that distinguish more aggressive higher-
grade prostate cancers from their more indolent grade
counterparts. Most prostate cancers form discrete ovoid
gland-like structures that are recognized as low grade and
assigned Gleason pattern 3. Many of these cancers also
contain higher-grade structures in which gland-like struc-
tures are fused together or poorly formed, and designated as
Gleason pattern 4. The relative contribution of Gleason
patterns 3 and 4 drive prognosis, and are reported in a
Gleason sum (GS), such that the more prevalent pattern
comes first, and the next most prevalent second. For

Table 1 Metabolites with differential abundance between prostate
cancer and benign prostate

DESI m/z Theoretical m/z Identitya Log2 (cancer/
benign)

452.2755 452.2783 LysoPE (16:0) −2.4

191.018 191.0197 Citrate/isocitrate −2.1

478.2908 478.2939 LysoPE (18:1) −2.1

479.2899 479.2939 LysoPE (18:1)b −1.9

480.3053 480.3096 LysoPE (18:0) −1.9

481.3072 481.3096 LysoPE (18:0)b −1.6

367.1028 Unknown Unknown −1.4

453.2819 453.2783 LysoPE (16:0)b −1.4

462.2956 462.2984 LysoPE (18:0) −1.4

482.3108 482.3096 LysoPE (18:0)c −1.4

867.5124 867.5029 PI (37:6) −1.4

454.2851 454.2783 LysoPE (16:0)c −1

466.3048 466.3044 Cholesterol sulfateb −1

821.5258 821.5186 PI (33:1) −1

146.0443 146.0459 Glutamate 1.1

903.5444 Unknown Unknown 7.9

875.56 875.5655 PI (37:2) 8.3

175.023 175.0248 Ascorbic acid 9.8

307.2607 307.2643 FA20:2 9.9

799.6622 799.6382 PCh (0–38:2), PCh
(P-38:1)b

10

844.6049 844.5862 PE (44:7) 10

826.6789 826.6695 PCh (O-40:2), PC
(P-40:1)

10.1

331.2618 331.2643 FA22:4 10.3

714.5208 714.5079 PE (34:2) 10.5

798.6513 798.6382 PCh (0–38:2), PCh
(P-38:1)

10.5

Metabolites were defined as: FA, PE, PI, PCh with some showing loss
of O or P

FA Fatty acid, PE Phosphatidylethanolamine, PI Phosphatidylinositol,
PCh Phosphatidylcholine, O Oxygen, P Phosphorus
aChemical identity of ions deduced from accurate mass obtained by
DESI and LC-MS orbitrap or fragmentation patterns observed during
LC-MS/MS analysis
bRepresents the C13 isotope of the parent metabolite
cRepresents the isotope with two C13 molecules compared with the
parent metabolite

Fig. 1 Proliferation rates in prostate cancer cases profiled by
DESI-MSI. Proliferation rate of cells increases from benign to cancer
(p = 1.6e-07, Mann–Whitney U test) and from low/intermediate grade
cancer to high grade cancer (trend). Graph shows mean proliferation
rate (positive cells/total cells) per case calculated by Ki67 immuno-
histochemistry and automated digital scoring shows increased pro-
liferation rate in cancer compared to benign cells. Ki67 labeling
analysis and DESI-MSI were performed on the same cases. For this
and subsequent figures, the colored box depicts 50% of the intensity
value data. Heavy line=median, whiskers show the lesser of the
furthest value or 1.5 times the inter-quartile range in each direction,
and the open circles are outlier data
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example, pure pattern 3 cancers are reported as GS 3+ 3=
6 and have almost no capacity to metastasize [24]. GS3+
4= 7 has more pattern 3 and 4 and is less likely to
metastasize than GS 4+ 3= 7, in which pattern four pre-
dominates [25]. The newer GG designation for prostate
cancer uses a simpler numbering system from 1 to 5 that
better reflects risk of disease progression [25]. Our patient
cohort was best suited to compare GG2 (Gleason 3+ 4= 7)
with GG3 and higher (Gleason >4+ 3= 7) cases. Despite
having the same Gleason sum, GG3 reflects a significantly
higher propensity to metastasize as illustrated by a 52%
chance of treatment failure at 5 years [25] GG2 vs. GG3
comparisons are shown for four metabolites. In each case,
there is a clear separation between the medians (and means)
of metabolites for each grouping of ROIs. Two of these
metabolites, lyso-PE (16:0) and lyso-PE (18:0), were more
abundant in benign tissue and showed decreasing abun-
dance with increasing cancer grade (Fig. 3). The other two
metabolites, PCh(0–38:2)/PCh(P-38:1) and PCh(O-40:2)/
PCh(P-40:1), showed low abundance in benign tissue and
gradually increased with cancer grade (Fig. 3). These results
indicated that DESI-MSI can identify metabolites that are
associated with aggressive prostate cancer growth and
spread.

Multivariate classifier: train/test validation

We set out to find, using a train/test validation, a classifier
that could be validated as highly sensitive and specific for
cancer. While no individual metabolite met these standards,
we investigated the use of multivariate classifiers. Our
analysis explored several multivariate classifiers, including

logistic regression and PCA/LDA modeling. We employed
the train/test validation approach utilizing 373/161 cancer/
benign ROIs in the training set, and 302/128 ROIs in the
test (validation) set. Logistic regression, the simplest mul-
tivariate model yielded a 6-metabolite logistic regression
model with an AUC of 0.994. Choosing the model’s
threshold leads to impressive values of sensitivity, specifi-
city and balanced accuracy all being 96%. However, while
the test set’s sensitivity was reduced to only 89%, its spe-
cificity was dramatically reduced to 52%, leading to a
balanced accuracy of 78%. To further refine the classifier,
we employed unsupervised PCA/LDA. PCA/LDA is an
approach used by prior DESI-MSI studies, which, com-
pared to logistic regression, considers a greater proportion
of the training data [6]. Several previous studies have
demonstrated that models of this type perform well in
metabolomic studies [17, 26–29]. We chose to utilize the
first 40 PCs, which explained ≥85% of the total variance.
These PCs and their associated scores were selected and
used in LDA for classifier construction. The supervised
LDA model was computed using cancer and benign as the
reference classes, and was found to have an AUC of 0.998
on the training set (Fig. 4a). The ROC curve was used to
select the final threshold of 0.84, also shown in Fig. 4a.
With this threshold, the LDA model demonstrated a 97%
balanced accuracy, 97% sensitivity and 97% specificity for
the training cohort, as seen in (Table 2). For the test cohort,
the LDA model and the cutoff of 0.84 displayed a balanced
accuracy of 85%, sensitivity of 91%, and specificity of 70%
(Table 2). The scoring function for both cohorts, including
the model threshold, is shown in Fig. 4b. These results
demonstrate that the more complex PCA/LDA model

Fig. 2 Spatial distribution of selected ions in prostate cancer cases
profiled by DESI-MSI. DESI heatmap images show differential
abundance of selected ions that correspond to malignant vs. benign
histology on corresponding H&E stained photomicrographs. Prostate
needle cores shown are representative across three different patients.
a Annotated H&E stained slides used for comparison to DESI-MSI.
Cancer regions are outlined in red and indicated by red arrows. Blue
outline and arrows depict regions of benign prostate tissue.

b, c Heatmap image for m/z= 452.3 [Lyso-PE(16:0)] and m/z= 480.3
[Lyso-PE(18:0)] respectively. Yellow/red colored-regions match
benign regions on the corresponding H&E photomicrographs in
a. d, e Heatmap image for m/z= 714.5 [PE(34:2)] and m/z= 798.6
respectively. Yellow/red colored-regions match benign regions on the
corresponding H&E photomicrographs in a. Hematoxylin and Eosin
(H&E), Oxygen (o), Phosphorus (p), Phosphatidylcholine (PCh), and
Phosphatidylethanolamine (PE)
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offered a significant improvement in the validation cohort
over the simpler univariate and logistic regression models.
Therefore, we show here a validated cancer/benign classifier

with high statistical power that demonstrates very high
sensitivity and balanced accuracies built on data obtained
using needle biopsy cores.

Fig. 3 Metabolites that
differentiate benign prostate
from GG2 and GG3 cancer.
Four metabolites demonstrated
TIC normalized intensities
that were significantly different
(p < 0.05 and │log2 fold
change│ ≥ 1) between benign
(blue), GG2 (yellow) and GG3
(red). a m/z= 452.3 [Lyso-PE
(16:0)], b m/z= 480.3 [Lyso-PE
(18:0)], c m/z= 798.64 PCh
(O-38:2)/PCh (P-38:1), and d
m/z= 826.67 PCh (O-40:2)/PCh
(P-40:1)

Fig. 4 Training and validation of an accurate metabolomic prostate
cancer classifier. a The PCA/LDA model had excellent accuracy when
used on the training cohort (n= 534) as displayed in the ROC curve.
This model demonstrated an AUC of 0.994 on the training cohort. The
green circle shows the selection of model threshold described in the
text. Area under the curve (AUC), linear discriminant analysis (LDA),
principal component analysis (PCA), receiver operating characteristic

(ROC). b The PCA/LDA model had excellent accuracy when used
on the training cohort (n= 534) as displayed in the ROC curve.
This model demonstrated an AUC of 0.994 on the training cohort. The
green circle shows the selection of model threshold described in
the text. Area under the curve (AUC), linear discriminant analysis
(LDA), principal component analysis (PCA), receiver operating
characteristic (ROC)
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Discussion

Identifying validated metabolomic biomarkers of prostate
cancer can help characterize the biological processes that
underlie cancer development and provide a biological basis
for aggressive behavior. Using DESI-MSI we have identi-
fied metabolites with differential abundances between
regions of benign and prostate cancer tissue including;
citrate, lyso-PEs, glutamate, FAs, and phospholipids. Fur-
thermore, despite challenges associated with standardizing
this technology, we report DESI-MSI produces a metabolic
classifier for prostate cancer that can be appropriately
validated.

Previous studies using GC-MS and LC-MS techniques
have identified metabolomic differences in patients with
prostate cancer. One study identified increased levels of
sarcosine in the urine of patients with PCa compared to
healthy controls with further increases in patients whose
cancer had metastasized [3]. In another study using
plasma samples from 105 PCa patients and 36 healthy
controls, Zhou et al. [30] constructed a 15 metabolite
model consisting of PE and PC species which demon-
strated 94% sensitivity and 90% specificity, with meta-
bolites that closely resembled those identified in this
study. Finally, Zang et al. identified a panel of 40 meta-
bolites from serum samples of 64 patients with PCa. This
panel achieved 92% sensitivity and a 94% specificity in
distinguishing cancer patients from healthy controls.
These metabolites consisted of FAs, amino acids, lyso-
phospholipids, and bile acids and were linked to steroid
hormone biosynthesis [31]. An important feature of these
studies is that only the sarcosine study [3] validated its
findings on a separate cohort of patients. Without such
validation, biomarkers may represent coincidental asso-
ciations between metabolites and cancer, and not be
generally applicable to other patients. Even with valida-
tion, subsequent studies in other laboratories failed to
confirm that sarcosine levels are reliably and significantly
elevated in urine from prostate cancer patients (reviewed
in ref. [32]). Perhaps chief among the challenges for

sarcosine is that even when elevated, its levels are
only slightly higher in cancer patients than in controls
[3, 33–37]. In contrast, the current work demonstrates
differential expression of individual metabolites that pre-
ferentially localize to prostate cancer cells (Fig. 2) and
show clear separation between benign and cancer ROIs
(Fig. 3) with log2 fold change between 1 and 10 (Table 1).
While the results of the current study will require addi-
tional validation by other investigators, we view these
factors as reasons for optimism.

To date, two studies have attempted to develop metabolic
profiles for specific cancer grades with limited success. The
first identified PChs, amino acids, arachidonic acid, and
other FAs which yielded an AUC of 0.685 when comparing
serum samples from 121 patients with low-grade cancers
from the 85 patients with high-grade cancers [38]. While
this result suggests that blood-based metabolomics may
have clinical promise, most clinical decision making
requires the ability to distinguish low grade from inter-
mediate grade cancers [39]. Another study of 200 cases of
prostate cancer and 200 controls found a positive correlation
between energy and lipid metabolite levels and cancer
aggressiveness [40]. Multiple FAs and glycerophospholipid
species were increased in higher-grade cancers, along with
α-ketoglutarate and citrate [40]. Due to the difference in
techniques used, results from previous studies cannot be
directly compared since DESI-MSI cannot identify certain
metabolites such as amino and bile acids; however, we
observed the similar trend that FAs and lipids are more
abundant in prostate cancer samples.

Differentially abundant metabolites identified in this
study would be expected to provide the materials for
prostate cancer growth and spread. We identified increased
citrate levels in benign prostate tissue and increased gluta-
mate in cancer tissue. Both metabolites reflect well-known
energy alterations in prostate cancer [13]. Citrate is pro-
duced and stored in benign prostate epithelia for secretion
into prostatic fluid. Prostate cancer cells eschew citrate
storage, diverting it instead into the Krebs cycle to generate
ATP and to be used as starting material for FA synthesis
[13, 14]. Increased abundance of glutamate in prostate
cancer tissue provides further evidence that the Krebs cycle
is operational. Glutamate is an intermediate within the
glutamine pathway which normally functions to produce
amino acids. Prostate cancer cells convert glutamate back
into α-ketoglutarate and subsequently to citrate, which is
further utilized for FA biosynthesis. Prostate cancer cells
incorporate these FAs into lipids that are incorporated into
cell membranes and signaling molecules or catabolized for
energy. Indeed, increased levels of glutamate have been
correlated with more aggressive PCa [41].

Consistent with previous studies identifying increased
FA biosynthesis in prostate cancer [16, 42–44], we

Table 2 Confusion matrix for the PCA/LDA model in training and
validation cohorts

Classified Actual

Training cohort Validation cohort

Benign Cancer Benign Cancer

Benign 157 10 90 28

Cancer 4 363 38 274

Specificity (%) 97 70

Sensitivity (%) 97 91

Balanced accuracy (%) 97 85
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identified elevated levels of two FAs, FA(20:2), FA(22:4),
in prostate cancer tissue. In cancer, FAs regulate protein
activation, act as a fuel source in the β-oxidation pathway
and provide the building blocks for lipid production
[16, 45]. To coincide with increased FAs, there was also
an increase in phospholipids in cancer tissue. Most of
these species corresponded to PIs, PEs, and PChs which
are components of cell membranes utilized for rapid cel-
lular proliferation, and their differential abundance in
cancer aligns with significantly higher rates of prolifera-
tion in cancer cells (Fig. 2). Increased biosynthesis of cell
membrane lipids is facilitated by the upregulation of
lipogenic enzymes such as SREBP1 and FASN which is
commonly observed in prostate cancer [42, 44, 46]. Of the
four metabolites that differentiated GG2 and GG3 can-
cers, two were PChs species. These two PChs were found
at low levels in benign tissue, increased in prostate cancer,
and further elevated with increased grade (Fig. 3). Pros-
tate cancer cells are known to increase PCh production, to
promote cell cycle progression [30, 47]. In contrast,
insufficient levels of PCh species in G1 phase will induce
apoptosis [48, 49]. Thus, increased FA and lipid bio-
synthesis appears to be critical features of prostate cancer
growth.

Lipids in the m/z range between 400 and 500 were highly
enriched in benign prostate tissue. Aside from cholesterol
sulfate, ions in this mass range have not been not reported in
previous DESI-MSI studies. Using fragmentation analysis,
we identified these ions as belonging to a family of lyso-PEs
containing 16 and 18 carbon side chains (Table 1). In
comparison to other anatomical zones of the prostate,
lysophospholipids are selectively increased in benign tissue
in the peripheral zone, which is the preferred site of PCa
development [50]. While the mechanisms by which lyso-
phospholipids might support prostate carcinogenesis have
not been elucidated, various other cancer cells scavenge
lysophospholipids, using them as fuel sources to support
growth [51]. In the current study, lyso-PE(16:0) and lyso-
PE(18:0) levels gradually decreased from benign to GG2
and were the lowest in GG3. This observation suggests that
prostate cancer deplete lysophospholipids in proportion to
their growth rates. Overall, the metabolites we found to be
differentially abundant between benign and cancer tissue
and those that vary with cancer grade reflect established
altered metabolic pathways in PCa and highlight potential
for the development and utilization of functional metabo-
lomic biomarkers.

Interestingly, the metabolic profiles we observed in
prostate cancer appear to reflect the grade of the case rather
than local variation in cancer grade manifested at the level
of the core. Of further interest, proliferation rates associated
with GG of the case (Fig. 1), but not with GG of individual
cores (Data not shown). These observations suggest that

metabolic profiles are more sensitive to underlying clonal
genetic and epigenetic influences in the tumor than they are
to local influences. Additional studies will be needed to
address this issue. Importantly, the work described here has
identified metabolites that distinguished between GG2 and
GG3. Although these two GGs were previously stratified
into the same risk group regarding recommended treatment
[52], they have very different survival outcomes and newer
studies indicate that they should be treated differently. For
example, a recent study showed that the risk of treatment
failure rises from 20% of patients with GG2 cancer to 52%
of patients with GG3 [25]. Because GG1 cases are con-
sidered non-life threatening, surgical treatment of low grade
(GG1) cancers is no longer recommended, and therefore
insufficient numbers of GG1 cases were available for ana-
lysis in this study. Future studies extend metabolomic
analysis to GG1 biopsy tissue, which should yield addi-
tional insights into the metabolic landscape of indolent
prostate cancer. Altogether, DESI-MSI has the potential to
identify metabolites that distinguish prostate cancer GGs
and in doing so, elucidate important biologic differences
between indolent and aggressive prostate cancers.

In constructing a classifier, we investigated models with
increasing levels of complexity. The univariate model
demonstrated adequate AUCs which were increased when
using the logistic regression model. Notably the logistic
regression model had a good balanced accuracy on the
training cohort but suffered a reduction on the test cohort. In
contrast, the more complex PCA/LDA displayed superior
balanced accuracies on both the training and test cohorts.
LDA is an effective classifier that minimizes variability
within classes while maximizing differences between clas-
ses. For these reasons, PCA/LDA was chosen as it has
shown to be effective for classification models using
metabolomics data [6]. The statistical workflow employed
here to examine different modeling techniques ensured the
logical selection of an accurate model while avoiding
overfitting of the data.

Using the method described here, we were able to
appreciate the tissue heterogeneity of the prostate needle
biopsy core. The current study represents the smallest
reported DESI-MSI pixel size employed on prostate tissue.
In contrast to the two previous DESI-MSI prostate cancer
reports that analyzed merged metabolite data representing
10 mm2 or more, the ROIs selected for analysis in the
current study measured <0.025 mm2 and typically contained
four prostate glands (data not shown). Smaller ROIs
allowed us to fully utilize the high-resolution DESI ion
images to ensure that our cancer or benign ROIs were not
confounded by other tissue types including; stroma,
inflammation, or preneoplastic lesions. Additionally,
numerous ROIs per sample increased the sample size of
data points used for analysis, therefore significantly
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increasing statistical power and confidence in the resulting
differential metabolites and model accuracies. Classification
at sub-millimeter resolution is more representative to the
true clinical need of identifying small regions of cancer
intraoperatively and/or diagnostically. Ultimately, the
model accuracies presented here are an improved indication
on how DESI-MSI might perform in clinical applications.

DESI-MSI and related technologies have the potential to
add new and important dimensions to routine and intrao-
perative diagnosis. DESI is non-destructive and therefore
has the potential to be combined with advanced genomic
profiling techniques and/or traditional H&E and IHC
staining. DESI requires no specialized analytic reagents (ex.
antibodies or DNA primers), and involves no hybridization
or amplification steps, therefore DESI-MSI can be per-
formed much faster and cheaper than current profiling
technologies. For example, a cancer and benign classifica-
tion model might have limited impact in the pathology
laboratory, where routine light microscopy sensitively and
specifically identifies prostate cancer in tissue samples.
However, this or a similar classifier has the potential to aid
in the surgical setting. For example, metabolite profiles
gathered using DESI-MSI can be used to train mass spec-
trometry devices that analyze electrocautery smoke intrao-
peratively to identify tissues in real time during surgery
[53]. If successfully applied to prostate surgeries, metabolic
profiles of prostate cancer such as the one reported here
have the capacity to reduce the occurrence of positive sur-
gical margins, which currently complicates 11–48% of
prostate surgeries [54].

In summary, the results of this study further support the
emergent field of cancer metabolomics for both biological and
clinical purposes. Differentially abundant metabolites found in
this study validate pre-established metabolic pathways high-
lighting an importance in altered FA and lipid biosynthesis in
prostate cancer. Furthermore, this is the first DESI-MSI study
on prostate cancer to fully utilize the spatial resolution of the
images to increase statistical power and to appropriately build
tissue heterogeneity into statistical models. Finally, this is the
first study to create and validate a high-resolution metabolomic
classifier. While the classifier is not yet sufficiently validated
for clinical use, the ability to construct and validate a metabolic
cancer classifier is an important step towards implementing this
technology and metabolic profiling in prostate cancer diagnosis
and surgical guidance.
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