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The Bruton’s tyrosine kinase inhibitor (BTKi) ibrutinib effectively
blocks downstream B-cell receptor activation and has demon-
strated clinical efficacy both as monotherapy and in combination
with immunochemotherapy in patients with central nervous
system lymphoma (CNSL) [1, 2]. Beyond its direct effect on
lymphoma cells, ibrutinib regulates the tumor microenvironment
(TME) and enhances T-cell immunity and function in systemic
B-cell Non-Hodgkin lymphomas (NHL) such as chronic lymphocy-
tic leukemia (CLL) [3, 4]. However, its impact on the tumor immune
landscape of B-cell lymphomas within immune-privileged sites like
the CNS remains largely unexplored, primarily due to challenges
associated with the availability of appropriate CNS lymphoma
tissue following ibrutinib treatment.
In this study, we used human slice cultures from a CNSL patient

undergoing complete brain tumor resection due to a suspected
glioblastoma to investigate the influence of ibrutinib treatment on
the lymphoma immune microenvironment, particularly focusing on
the myeloid cell compartment. We performed comprehensive
genetic and transcriptional profiling as well as single nucleus RNA
sequencing (snRNA-Seq) of the bulk FFPE tumor and CNSL slice
cultures, which were processed according to a previously established
approach and subjected to treatment over five consecutive days
either with ibrutinib solved in DMSO (‘ibrutinib-treated’), DMSO alone
(‘DMSO control’), or remained untreated (‘untreated’) (Supplementary
Fig. 1, Supplementary Methods) [5]. Genetic analyses of the bulk
tumor by targeted deep sequencing and shallow whole genome
sequencing revealed the presence of CNSL-specific single nucleotide
variants (SNVs) and copy number aberrations (CNAs), including
mutations in MYD88, CD79B, PIM1, OSBPL10, and TBL1XR1 genes
(mean allele frequency [AF] = 38%) as well as gains of 9p24 (PD-L1)
and losses of 6p21 (HLA-D) or 1p13 (CD58), which have been
associated with immune evasion in CNSL [6] (Fig. 1A, Supplementary
Tables 1, 2). The tumor was classified as an activated B-cell like (ABC)

diffuse large B-cell lymphoma (DLBCL) and assigned to the MCD
subtype and LE1 ecotype, which both are typically associated with an
ABC cell-of-origin [7–9] (Supplementary Table 3). Clonal rearrange-
ments of immunoglobulin genes were predicted to be IGHV4-59 for
the heavy chain and IGKV3-29 for the light chain [10]. Importantly, the
majority of tumor-intrinsic genetic aberrations were also present in
DNA isolated from the slice cultures, confirming the presence of the
same malignant B-cell clone in the individual culture conditions, with
mean AFs ranging from 1.05% in the ibrutinib-treated to 4.96% in the
untreated slices (Fig. 1A, Supplementary Tables 1, 2). We generated
pseudo-H&E images from tumor sections using Stimulated Raman
Histology, demonstrating that a small proportion of the slide was
infiltrated with lymphoma cells, which mirrors the low mutant AFs
detected by slice culture DNA sequencing in comparison to the bulk
tumor (Fig. 1B).
Next, we performed snRNA-Seq from slices of all three conditions

(Supplementary Fig. 1, Supplementary Methods). In total, 12,173
nuclei passed quality control and were further analyzed by data
integration to identify the presence of distinct cell types (Fig. 1B,
Supplementary Table 4, Supplementary Fig. 2A–C, Supplementary
Methods). Nine major cell types could be distinguished, with
oligodendrocytes (34%), neurons (19.8%), and myeloid cells (16.3%)
representing the most abundant cell populations, while B-cells were
present in 1.2% of the total cell pool, mirroring the fractional
abundance of malignant genetic aberrations in the slice cultures
(Fig. 1B, Supplementary Fig. 2C). Importantly, this cell composition
was largely maintained in all individual culture conditions (Fig. 1C,
Supplementary Fig. 2C); yet, the ibrutinib-treated slices revealed no
B-cells by snRNA-Seq despite the detection of lymphoma-specific
mutations by targeted DNA sequencing (Fig. 1A, C, Supplementary
Fig. 2C). B-cells from the integrated dataset showed high expression
of genes associated with the ABC DLBCL subtype, consistent with
the results of the Hans algorithm (Fig. 1C).
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The myeloid cell compartment has emerged as a crucial
population for modulating tumor immune responses in other brain
cancer types and constitutes a significant component in our snRNA-
Seq analyses [11]. Therefore, we next focused on the characteriza-
tion of the myeloid cells to explore the specific effect of ibrutinib
treatment on this population in CNSL. Five distinct clusters (C1-C5)
within themyeloid compartment were defined based on expression
profiles (Fig. 2A, Supplementary Fig. 3A–C, Supplementary Table 5).
Importantly, the representation of these clusters was significantly
different in ibrutinib-treated slices compared to the two control
conditions, with markedly increased antigen-presenting (cluster C2)
and decreased SPP-1-expressing cell populations (cluster C1, Fig. 2A,
Supplementary Fig. 3D). Pseudotime analysis of the integrated

myeloid cell compartment revealed two differentiation branches,
one leading to SPP1-expressing cells (C1) and the other to the
antigen-presenting cell state (C2, Fig. 2B). Expression level
comparisons of SPP1 and genes that represent the antigen-
presenting subpopulation (CIITA, HLA-DMB) showed significant
differences between the ibrutinib-treated slices and slices of the
control conditions (Fig. 2C, Supplementary Table 5). Collectively,
these data indicate a modulatory effect of ibrutinib on the myeloid
cell compartment in CNSL, shifting cells from an SPP1-expressing
immunosuppressive phenotype to an immune-stimulating state.
To validate our findings, we collected cerebrospinal fluid (CSF)

from a CNSL patient with leptomeningeal infiltration experiencing
disease progression after ibrutinib monotherapy (Supplementary
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Fig. 4A, Supplementary Table 6). We applied snRNA-Seq to 1,995 cells
isolated from CSF and identified three distinct clusters, with myeloid
cells representing0.7%of the total cell pool (Supplementary Fig. 4B, C).
These myeloid cells expressed high levels of CIITA and HLA-DMB,
while SPP1 expression remained low, reflecting the phenomena
observed in the CNSL slice cultures treated with ibrutinib (Supple-
mentary Fig. 4D). As a separate validation experiment, we further
cultured non-malignant cortical slices from a patient undergoing
epilepsy surgery under the same three treatment conditions and
applied snRNA-Seq to a total of 4,134 cells (Supplementary Fig. 5A–C).
Quantification of myeloid cell subclusters revealed a reduction of
SPP1-expressing cells in cluster C1 and increase of cells with an
antigen-presenting phenotype (C2) in ibrutinib-treated slices, aligning
with the results from the CNSL slice culture experiments (Supple-
mentary Fig. 5D). However, the effect appeared rather moderate,
suggesting an underlying lymphoma-independent ibrutinib effect on
the myeloid compartment that might be enhanced by lymphoma
infiltration (Supplementary Fig. 5D, E).
In conclusion, we here present a single slice culture model analysis

demonstrating a modulatory effect of ibrutinib on the myeloid cell
compartment of the brain, redirecting SPP1-expressing myeloid cells,
known for their largely immunosuppressive properties, to an antigen-
presenting phenotype that is commonly associated with immune-
stimulatory characteristics [12, 13]. To the best of our knowledge, this
is the first report of an analysis investigating human CNSL tissue and
its TME following BTKi therapy. In CLL, various research studies have
explored the role of ibrutinib on the immune environment,
describing an enhanced T-cell immunity and improved cytotoxic

T-cell response as a consequence of irreversible inducible T-cell kinase
(ITK) inhibition, contributing to its therapeutic effect in this B-cell
lymphoma subtype [3, 4]. The immune landscape of CNSL differs
remarkably from extracerebral B-cell lymphoma entities due to its
localization within an immune-privileged organ [14]. Yet, obtaining
tissue samples suitable for comprehensive TME profiling in CNSL
represents a considerable challenge, as repeated biopsies are
typically not performed in relapse situations in clinical practice, and
moreover, stereotactic biopsies generally yield only minute tumor
fragments, which are usually insufficient for extensive TME analyses.
Therefore, patient-derived tumor slice cultures presented a unique
opportunity to explore the CNSL TME longitudinally in response to
ibrutinib treatment in this study. Warranting further validation, our
observations might have therapeutic implications for CNSL patients.
The findings suggest a biological mechanism that supports the
concomitant use of ibrutinib in the context of CAR T-cell therapies
through the engagement of an immunostimulatory myeloid TME in
CNSL [13, 15]. In fact, clinical trials assessing the efficacy of CAR T-cells
in PCNSL encourage continuation of ibrutinib treatment up until
3 months after CAR T-cell infusion [15]. Although the results
presented here are promising, our study is inherently limited by this
single-case analysis and culture conditions that might not fully
capture the complexity of human brain processes. Therefore, it
should be interpreted with caution, and further validation experi-
ments in xenograft mouse models or human tissue obtained after
BTKi treatment are needed to substantiate our findings and
overcome the limitations associated with this solitary observation.
Moreover, the scarcity of T-cell subpopulations within the individual
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slice culture conditions precluded comprehensive exploration of the
T-cell compartment and its interactions with myeloid cells, omitting
an important component of the CNSL TME from our analysis.
In summary, based on a unique human slice culture model from

primary CNSL tissue, our data suggest a modulating effect of
ibrutinib on the myeloid compartment in human CNSL by shifting
myeloid cells from an immunosuppressive phenotype expressing
SPP1 to an antigen-presenting cell state, indicating an unknown
immune-activating effect of ibrutinib on the brain TME with
potential further implications on combinatory treatment strategies
involving ibrutinib together with CAR T-cell therapies.
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