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Abstract
We propose a novel photonic device, the polariton polarization rectifier, intended to transform polariton pulses with
arbitrary polarization into linearly polarized pulses with controllable orientation of the polarization plane. It is based on
the interplay between the orbital motion of the polariton wave packet and the dynamics of the polariton pseudospin
governed by the spatially dependent effective magnetic field. The latter is controlled by the TE-TM splitting in a
harmonic trap. We show that the unpolarized polariton pulse acquires linear polarization in the course of propagation
in a harmonic trap. This gives the considered structure an extra function as a linear polarizer of polariton pulses.

Introduction
The concept of polariton devices is based on manip-

ulation by macroscopic coherent states of quasiparticles
exciton-polaritons appearing under the strong coupling of
excitons in semiconductor crystals with quantized light in
optical microcavities1. Their properties combine the
mobility and flexibility of photons2 and the controllability
of excitons3, which allows polariton devices to be com-
petitive with traditional photonic and electronic devices
for light control and signal processing. Polaritons inherit a
spin degree of freedom from both their constituents4,
which gives access to the polarization properties of the
emitted light. Controlling the polariton spin relaxation
processes is an effective way to tailor light polarization.
The polariton pseudospin (Stokes vector) is in the heart of
various fundamental effects, including the optical spin
Hall effect5–7, polarization bistability8 and multi-
stability9,10, spin currents of exciton polaritons6,11, etc.
The most considerable mechanism of the polariton spin
relaxation is the precession of polariton pseudospins
induced by the splitting of the transverse electric and
transverse magnetic photonic microcavity modes (TE-TM
splitting)12 along with the long-range electron and hole
exchange interaction13. The effect of the longitudinal-

transverse splitting on the pseudospin behaviour can be
described in terms of the effective quasimomentum-
dependent in-plane magnetic field Ω(k)14. Methods for
controlling the spin degree of freedom are used in a set of
devices referred to as spinoptronic devices3 for manip-
ulation by light polarization, including polariton polar-
ization switches15, polarization filters of polariton flows16,
polarization-controlled optical gates17, and the Berry-
phase interferometer18.
Among established methods of controlling the polar-

iton spin degree of freedom is the creation of an external
confining potential. Flat one-dimensional polariton
waveguides have been widely studied from the per-
spective of the creation and propagation of spin-split
polariton condensates19 and solitonic polariton pulses20

as well as of accompanying effects, including backward
Cherenkov radiation21, and the formation of polariza-
tion domains22. Recently, ring-shaped geometry was
recognized in the study of polariton polarization beha-
viour18,23–25. In this geometry, the in-plane effective
magnetic field acting upon a polariton pseudospin
rotates as the polariton moves along the circle around
the symmetry axis of the ring-shaped confining potential
characterized by the frequency ωtr, which enriches the
polarization dynamics with the complementary oscilla-
tion degree in addition to the Larmor precession Ω(k).
Typically, the consideration of the polariton dynamics as
well as the polarization dynamics in spin-split systems is
performed within the adiabatic limit, assuming that the
spectral width of the polariton state Δω does not exceed
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the characteristic frequency scales of the system, Δω <
ωtr, Ω(k), as well as the separation of the energy levels,
which is significant in the narrow confining potential.
Furthermore, the limit where the Larmor frequency is
considered the largest frequency in the system,
ΩðkÞ � Δω; ωtr, is used to separate different oscillation
scales18. In this approach, the internal behaviour of the
polariton pulse as well as the interaction of polariton
modes is adiabatically eliminated from consideration,
and its dynamics is described by the effective 1D
Hamiltonian for a classical spinning particle. The
situation dramatically changes when the internal pulse
behaviour is not completely suppressed and polaritons
are being filtered by their wave vectors such that their
distribution changes in the radial direction. This sce-
nario may be realized in broad confining potentials,
including the harmonic potential.
In this paper, we consider the polarization dynamics of

polariton pulses in a harmonic potential beyond the
adiabatic limit. We demonstrate the splitting in real space
of an injected polariton pulse of any given polarization
into two pulses of unequal intensity with orthogonal lin-
ear polarizations. The intensities of the resulting pulses
can be manipulated, including complete suppression of
one of them. Based on the obtained peculiar polarization
behaviour, we propose a novel spinoptronic device, the
polariton polarization rectifier, which transforms the
arbitrary polarization of the optical pulse to a linear
polarization with controlled orientation of the polariza-
tion plane. We also show that the proposed device assigns
linear polarization to a polariton pulse excited by an
unpolarized resonant probe.

Results
The concept of the device
The geometry of the device setup is shown schemati-

cally in Fig. 1a. It consists of an optical microcavity with
an embedded set of quantum wells operating in a strong-
coupling regime. Arising exciton-polaritons are confined
in an in-plane harmonic potential, which can be created
either for excitons via application of a local stress to the
sample26,27 or for photons by creating mesas28,29 with
thicknesses varying along their radius. The latter option is
illustrated in Fig. 1a. In Fig. 1b, the potential landscape
across the structure is schematically shown in the reci-
procal space. Polaritonic systems also allow the use of
optical traps30 created by the non-resonant optical pump
beam of a given shape. Polaritons are injected by a reso-
nant pulsed probe of energy �hωp at a distance rp from the
centre of the trap tangential to its surface with the qua-
simomentum kp. To increase the polariton pulse lifetime,
we introduce the subthreshold spatially homogeneous
non-resonant cw optical pumping of excitons.
In the conservative limit, the system is described by the

effective Hamiltonian

Ĥ0 ¼ �h2k̂
2

2m� þ V rð Þ þ �hΩ̂ � Ŝ ð1Þ

where m� ¼ 2mlmt= ml þmtð Þ, with ml and mt being the
effective masses of longitudinal (or transverse-magnetic,
TM) and transverse (or transverse-electric, TE) polariton

modes, respectively; r ¼ x; yð Þ and k̂ ¼ k̂x; k̂y
� �

are the

polariton position and quasimometum operators,
respectively. V rð Þ ¼ m�ω2

trðx2 þ y2Þ=2 is the harmonic
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Fig. 1 Schematic of the possible experimental configuration of the polariton polarization rectifier. a Sketch of the possible experimental
configuration. The polariton condensate is excited by a resonant probe pulse (red split cone) at a distance rp from the centre of the harmonic trap
with the wave vector kp and energy �hωp , allowing the polariton pulse to propagate along a circular trajectory (dashed circle). The subthreshold non-
resonant cw pump (pale green) is used to increase the pulse lifetime. b Potential landscape across the structure in the reciprocal space. The yellow
arrows in both panels indicate the orientation of the linear polarization plane of the propagating polariton pulse at different positions along the
propagation trajectory. The polarization of the probe pulse can be chosen arbitrarily. In panels (a) and (b), the circular polarization (blue arrow) is
shown as an example. The blue concentric circles in both panels are given as a guide for the eye to indicate the harmonic trap
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potential characterized by the frequency ωtr. The polar-
iton quantum state is described by the spinor

jΨðrÞi ¼ ½ΨþðrÞ;Ψ�ðrÞ�T. We introduce the three-

component spin operator Ŝ ¼ 1
2 σ̂ , where σ̂ ¼ ðσ̂x; σ̂y; σ̂zÞ

is the vector of the Pauli operators. The TE-TM splitting
gives rise to the directionally dependent effective mag-

netic field Ω̂ ¼ ΔLT k̂2x � k̂2y
� �

; 2ΔLTk̂xk̂y; 0
h i

in the

microcavity plane, which causes precession of the polar-
iton pseudospin with the effective Larmor frequency
ΩðkÞ. ΔLT ¼ ð�h=2Þ m�1

l �m�1
t

� �
is the TE-TM splitting

constant.
In the spin-degenerate case (ΔLT= 0), the Hamiltonian

(1) represents the 2D quantum harmonic oscillator and is
integrable. According to the correspondence principle31, at
high energies, the quantum treatment of a wave function
behaviour merges with the classical one of a single particle.
The dynamics of a polariton pulse is well described by the
classical equations for the trajectory of its centre of mass:
dt rh i tð Þ ¼ kh i tð Þ=m�, dt kh i tð Þ ¼ �m�ω2

tr rh i tð Þ. The pulse
propagates along the closed elliptical orbit, which degen-
erates to a circular orbit when the initial conditions
rh i 0ð Þ ¼ r0, and kh i 0ð Þ ¼ k0, obey the condition of
equality of the kinetic and potential energies,
�h2k20=2m

� ¼ V ðr0Þ.
In the presence of TE-TM splitting, the Hamiltonian (1)

is not integrable, and the vast majority of semiclassical
trajectories are not closed. There remain, however, two
important types of exact solutions, that is, those
describing the polariton motion along circular orbits with
always either transverse (TE) or longitudinal (TM) spin.
The energies of these circular modes are defined by
�h2k2l;t=2ml;t ¼ V ðr0Þ, resulting in different momenta for
the same radius of the orbit r0. In Fig. 2a, we show the
energies of two polariton modes �hωTM;TE k; r0ð Þ ¼
V ðr0Þ þ �h2k2=2ml;t in the sample at position r0= 70 μm.
(Values of other parameters are given in the Methods
section.) A circular trajectory of radius r0 is inherent to
polaritons belonging to the TM (upper red curve) and the
TE (lower blue curve) branches excited with the energy
�hω0 ¼ �hωTM kl; r0ð Þ ¼ �hωTE kt; r0ð Þ and the momentum kl
and kt, respectively.
A Gaussian resonant pulse excites different eigenmodes

in the parabolic trap. For sufficiently strong TE-TM
splitting, most of them propagate irregularly in the trap
and destructively interfere with each other. In contrast,
the longitudinal and transverse wave packets are able to
propagate long azimuthal distances without substantial
changes in their shapes. Their pseudospins follow the
direction of the effective magnetic field and are co- and
counterdirected to it for TM and TE modes, respectively.
This implies that the electric field oscillates in the azi-
muthal direction for the longitudinal (TM) mode and
oscillates in the radial direction for the transverse (TE)

mode. The orientation of the corresponding polariton
pseudospins during evolution is schematically shown in
the inset of Fig. 2a. A resonantly excited polariton pulse of
finite width and duration possesses the energy and qua-
simomentum spectrum, overlapping with the eigenstates
of the system. This implies that in the course of evolution,
regardless of the initial polarization, the polariton pulse
tends to occupy the longitudinal and transverse eigen-
states and assigns linear polarization characteristics
to them.

Polarization dynamics of polariton pulses
To reveal the polarization dynamics of polariton pulses

in the proposed structure, we perform a set of numerical
simulations based on the generalized Pauli equation for
the spinor jΨi ¼ Ψþðt; rÞ;Ψ�ðt; rÞ½ �T, where Ψ± ðt; rÞ are
the wave functions of the right- and left-circularly
polarized polariton components; see details of the model
in the Methods section. In our first numerical experiment,
we consider the behaviour of the polariton pulse excited
by the Gaussian probe pulse of duration wT= 5 ps reso-
nant to the TE polariton branch, i.e., characterized by the
central frequency ωp= ω0 and the central wave vector kp
= (0, kt). The excitation spectrum in comparison with the
polariton dispersion is schematically shown in Fig. 2a. The
pulse is excited at position r0= (r0, 0). We take the pump
distance as r0= 70 μm. For the kinetic energy of polar-
itons to match the potential energy and the polariton
pulse to follow a closed circular trajectory, the corre-
sponding quasimomentum kt should be as large as
kt ’ 1:245 μm�1. A sufficiently large quasimomentum is
essential to reduce the effect of the zitterbewegung, i.e., the
trembling of the trajectory of polaritons in real space due
to the influence of the spin degree of freedom. As we have
shown in ref. 32, the zitterbewegung is less pronounced at
k > 1 µm since its amplitude is inversely proportional to
the quasimomentum.
Figure 2c shows the evolution in time of the spatial

intensity distribution I t; rð Þ ¼ Ψyðt; rÞΨðt; rÞ of the
polariton pulse excited by the right-circularly polarized
probe pulse, jf i ¼ 1; 0½ �T. In Fig. 2g, the ring-shaped dis-
tribution of intensity of the polariton pulse, integrated
over the time of observation, IðrÞ ¼ R

Iðt; rÞdt, is pre-
sented. The ring thickens near the polariton injection spot
around r0. The evolution of the spatial distribution of the
polarization components Sj t; rð Þ ¼ Ψy t; rð ÞŜjΨ t; rð Þ=
I t; rð Þ ðj ¼ x; y; zÞ of the polariton pulse is shown in Fig.
2d–f, accompanied by the integrated in time distribution
of the polarization, Sj rð Þ ¼ R

Ψyðt; rÞŜjΨðt; rÞdt=Iðt; rÞ, in
Fig. 2h–j. Summarizing the main peculiarities of the fig-
ures, we can claim that regardless of the initial circular
polarization, the latter is barely presented in the resulting
polarization map. The polariton pulse possesses linear
polarization, and the polarization plane twice rotates

Sedov et al. Light: Science & Applications            (2019) 8:79 Page 3 of 10



around the centre of the harmonic trap, adjusting the
rotation of the effective magnetic field Ω̂ðkÞ. At the
beginning of the evolution, the polarization components
experience fast oscillations with a frequency ΔLTk20 , which
result in the appearance of the periodic ripples most
visible at the periphery of the polarization patterns in the
upper-right quadrant in the colour maps (Fig. 2h−j). The
oscillations, however, possess a transient character and

disappear at approximately a quarter of the first pass
around the trap.
The more important result is that under the considered

excitation conditions, the polariton pulse acquires linear
polarization regardless of the initial polarization of the
probe. In Fig. 2b, we show trajectories of the normalized
Stokes vector S tð Þ ¼ ΨjŜjΨ� �

= ΨjΨh i on the Poincaré
sphere for various initial conditions. In all numerical
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Fig. 2 Polarization behaviour of a polariton pulse excited resonantly to the TE dispersion branch. a Dispersion of two spin-split polariton
modes �hωTE;TMðk; r0Þ at position r0= 70 μm. The origin zero energy corresponds to �hωð0; 0Þ. The red blurry spot indicates the position and
schematic spectral distribution of the probe pulse. The probe pulse of 5-ps duration is resonant to the TE polariton mode, i.e., kp= kt and ωp=ω0 at
r0. The inset schematically shows the orientation in real space of the effective magnetic field Ω(k) (grey arrows) and the pseudospin of polaritons
belonging to the TE (blue arrows) and TM (red arrows) branches. b Trajectories on the Poincaré sphere of the Stokes vector characterizing
polarization of the polariton pulse for different polarizations of the probe pulse (indicated in the panel). The black arrows indicate the direction with
respect to the evolution in time. c Evolution of the intensity and d–f polarization components of the polariton pulse. g Time-integrated spatial
distribution of the normalized intensity and h–j polarization components of the polariton pulse. The polarization of the probe pulse is taken as right
circular for (c)–(j)
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experiments presented, the degree of the circular polar-
ization in the polariton pulse after one period of rotation
around the harmonic trap does not exceed half a percent.
In the considered excitation circumstances, the width of

the spatial spectrum of the probe pulse 2π=w �
0:77 μm�1 considerably exceeds the splitting of the TE
and TM branches, kt � kl � 0:31 μm�1. Although the
pulse spectrum is centred with respect to the TE mode, it
nevertheless partially overlaps with the TM mode.

However, despite this overlap, the TM mode is not pre-
sented in the pulse dynamics in Fig. 2.
In the next numerical experiment, we keep the probe

energy as �hω0 but take the probe wave number as kp= kl
such that the probe is now resonant to the TM branch;
see the comparison of the excitation spectrum with the
polariton dispersion in Fig. 3a. The initial polarization is
again taken as right circular. The polariton pulse
dynamics and the dynamics of the polarization
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Fig. 3 Polarization behaviour of a polariton pulse excited resonantly to the TM dispersion branch. a Dispersion of two spin-split polariton
modes �hωTE;TMðk; r0Þ at position r0= 70 μm in comparison with the spectrum of the probe pulse. The probe pulse of 5-ps duration is resonant to
the TM polariton mode, i.e., kp= kl and ωp= ω0 at r0. The inset shows group velocities vTE;TMg ðkÞ of polaritons belonging to the TE and TM branches

as functions of k. b Trajectories on the Poincaré sphere of the Stokes vector characterizing polarization of the two spatio-temporal components of the
split polariton pulse. The black arrows indicate the direction with respect to the evolution in time. c Evolution of the intensity and d–f polarization of
the two components of the polariton pulse. g Time-integrated spatial distribution of the normalized intensity and h–j polarization components of
the polariton pulse. The polarization of the probe pulse is taken as right circular for (c)–(j). The dashed and solid closed black curves in panel (g)
indicate the trajectories of the TE and TM components of the polariton pulse, respectively
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components are presented in Fig. 3c–f, accompanied by
the time-integrated intensity and polarization degree in
Fig. 3g–j. In contrast to the above-considered case, the
initial single wave packet, over the course of evolution,
splits into two components of orthogonal polarizations;
see the two spiral trajectories in Fig. 3c–f. The more
intensive wave packet component belongs to the reso-
nantly excited TM branch, while the less intensive com-
ponent belongs to the TE branch.
The two components of the polariton pulse demon-

strate different behaviours. The inset in Fig. 3a shows the
group velocity of polaritons belonging to the TE and TM

branches, v TE;TMð Þ
g k; r0ð Þ ¼ ∂kωTE;TMðk; r0Þ. It is clearly

seen that for the same probe energy �hωp ¼ �hω0, the group
velocity of the TM component of the pulse,

v lð Þ
g ¼ v TMð Þ

g kl; r0ð Þ, is larger than that of the TE compo-

nent, v tð Þ
g ¼ v TEð Þ

g kt; r0ð Þ: v lð Þ
g > v tð Þ

g .

The considered case is also remarkable because the
orthogonal linear polarizations of the polariton wave
packet are separated in the radial direction: the Sx > 0
component is concentrated in the outer region, while the
Sx < 0 component is concentrated in the inner region of
the highlighted area of the colour map in Fig. 3h. The
dashed and solid closed black curves in Fig. 3g show the
trajectories of the TE and TM components, respectively,
of the polariton pulse described by the parametric
dependence Yj(Xj) for Xj tð Þ ¼

R
Aj
Iðt; rÞxdr=R Aj

Iðt; rÞdr
and Yj tð Þ ¼

R
Aj
Iðt; rÞydr=R Aj

Iðt; rÞdr, where j=TE, TM;
ATE and ATM indicate the areas on the cavity plane
occupied by the corresponding components of the
polariton pulse. The trajectory of the TM pulse compo-
nent is nearly circular, as the excitation is symmetric
relative to the probe quasimomentum kp= kl, and the
kinetic energy matches the potential energy of the wave
packet. In contrast, the TE pulse component propagates
along the elliptical trajectory, with the major axis oriented
along the x axis. This is connected with the fact that the

TE component of the pulse that is distant from the
excitation quasimomentum by kt− kp is excited with the
quasimomenta k on the periphery of the excitation pulse
far from the central quasimomentum, kp < k. Hence, the
central wave vector of the TE component of the pulse is
shifted to lower k relative to kt for which the kinetic and
potential energy matching condition is not satisfied. This
results in the elliptical shape of the trajectory. In the
considered excitation scheme, the orientation of the
minor axis of the elliptical trajectory of the TE component
of the polariton pulse coincides with the y axis. Hence, the
polarization of the TE pulse component near x= 0 (one
can briefly characterize it as Sx < 0) is concentrated inside
the coloured region of the colour maps in Fig. 3h–j.
Figure 3b shows the trajectories of the normalized Stokes

vector S(t) on the Poincaré sphere of the two components
of the pulse. In both components, the circular polarization
is presented by a small quantity of less than 5%. The resi-
dual circular polarization is right circular for the TE-branch
pulse and left circular for the TM-branch pulse.
To further investigate the resonant character of the

polarized polariton pulse excitation, in Fig. 4a, we plot the
dependence of the total intensity of two pulse compo-
nents integrated in time on the probe wave number kp for
two probe energies, �hωp ¼ �hω0 (black curve) and
�hωTMðkt; r0Þ (blue curve). The latter energy corresponds
to the resonant energy on the TM branch at kt. The ratio
of the time-integrated intensities of two spatial compo-
nents of the polariton wave packet as a function of the
probe wave number at the probe energy �hωp ¼ �hω0 is
presented in Fig. 4b. Figure 4a shows that the total
intensity of the polariton wave packet is nearly identical at
two resonant quasimomenta, kl and kt, corresponding to
the cases considered in Figs. 2 and 3. However, the key
difference between the cases, that is, the very significant
domination of one component of the polariton wave
packet over the other at kp= kt, is highlighted in Fig. 4b.
The intensity of the dominant component at kt exceeds
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that of the other component by more than one and half
orders, while at kl, the superiority is less than three times.
Figure 4c shows the total time-integrated intensity of the
polariton wave packet as a function of the probe energy
�hωp at two resonant quasimonenta, kl (orange curve) and
kt (purple curve). In both dependencies, the intensity
reaches its maximum value near the resonance with the
TE-polarized branch: close to ωt at kp= kl and close to ω0

at kp= kt; cf. with the dispersion in Fig. 3a.
The above calculations have been performed under the

adiabatic limit, implying that the energy level separation,
which is the TE-TM splitting ΔLTk2p , is large in compar-
ison with the characteristic energy scales of the system,
including the spectral width of the polariton pulse. Let us
now consider the polarization dynamics of the sub-
picosecond polariton pulse possessing an energy spec-
trum with a margin overlapping both the TE and TM
dispersion branches. For definiteness, we take the pulse
duration as wT= 200 fs. The other characteristics of the
probe pulse are the same as those in Fig. 2, i.e., xp= x0, ωp

= ω0 and kp= kt. The initial polarization is taken to be
right circular as well. The excitation spectrum is sche-
matically shown in Fig. 5a. In the considered excitation
regime, the polariton wave packet predictably separates
into two spatial components with orthogonal polariza-
tions; see Fig. 5c–f. The time-integrated intensity and
polarization components in Fig. 5g–j show clear separa-
tion of the trajectories of the wave packet components.
The TE-branch component resonant to the probe exci-
tation follows the circular inner trajectory of radius r0 (the
black dashed ring in Fig. 5g), while the TM-branch
component propagates along the elliptic outer trajectory
with the small ellipse axis close to 2r0 (the black solid
ellipse in Fig. 5g). The trajectories of the Stokes vectors
characterizing polarization of the components of the
polariton wave packet on the Poincaré sphere are shown
in Fig. 5b. The conclusion made earlier is also valid
beyond the adiabatic limit: the fraction of the circular
polarization becomes negligibly small in both components
of the polariton wave packet over the course of evolution.
However, this fraction is noticeably smaller for the TE-
branch component.
The discussion above is related to the operation with

polariton pulses excited by a polarized input. The
remarkable peculiarity of the considered system is that a
polariton pulse excited by an initially unpolarized probe
acquires linear polarization in the course of propagation.
The results of modelling confirming this statement are
shown in Fig. 6. The trajectory of the Stokes vector on the
Poincaré sphere degenerates to the closed one, analogous
to the characteristic of pulses excited by a polarized probe
(see Fig. 2b). Therefore, in addition to the allocated
function of the polarization rectifier, the considered sys-
tem is also able to act as a polarizer for polariton pulses. It

is advantageous over the traditional polarizer due to the
fact that full intensity of the probe is used to excite the
polariton pulse, which implies reduced losses connected
with reflection or absorption of the objectionable com-
ponent of polarization.

Discussion
In this paper, we report the concept of a spinoptronic

device able to transform polariton pulses with a given
polarization to linearly polarized pulses. The basis of the
operating principle of the device is a separation of
eigenmodes of the system with orthogonal linear polar-
izations both in real and reciprocal space due to the
mutual impact of the confining potential and the TE-TM
splitting. We have shown that the spatial separation in
linear polarization is also valid for ultrashort (sub-pico-
second) pulses beyond the adiabatic limit.
One should note here that the effect of the separation of

the linear polarizations of light can be observed even in a
pure photonic structure representing an empty optical
microcavity modified by a confining potential for photons
in the cavity plane. However, the proposed system based on
the strong-coupling regime has two undeniable advantages
in terms of applications over the pure photonic system.
In the pure photonic scheme with an empty micro-

cavity, the lifetime of the optical pulse is fully determined
by the quality factor of the cavity. In recent papers33,34, it
was reported on ultra-high-Q-factor microcavities pro-
viding photon lifetimes of several hundreds of picose-
conds. The scheme proposed in our manuscript allows an
extremely long lifetime of propagating polariton pulses,
which in theory can be infinitely large even in micro-
cavities of relatively low quality. For this goal, we suggest
using the effect of the stimulated scattering from the
reservoir of incoherent excitons to the coherent polariton
state. The reservoir excitons are created optically by the
subthreshold spatially homogeneous non-resonant cw
pump, which itself does not create the polariton con-
densate. When polaritons with the given quasimomentum
k are injected with the resonant probe pulse, the density of
polaritons with this k increases locally, which triggers the
process of stimulated scattering to the k-state at the
position of the pulse. The closer the non-resonant pump
power is to the condensation threshold and the weaker
the polariton pulse, the more effective is the feeding of the
polariton pulse from the exciton reservoir. Remarkably, in
the proposed scheme, the pulse lifetime is determined not
by the polariton or photon lifetime but by the inflow from
the exciton reservoir. In this regard, the pulse lifetime can
exceed that of polaritons and photons by many orders,
and achieving several nanoseconds for the lifetime of the
polariton pulses seems to be a routine procedure.
Another advantage of the polariton-based device over

the pure photonic device is the controllability of the

Sedov et al. Light: Science & Applications            (2019) 8:79 Page 7 of 10



former. Due to the sensitivity of the exciton component to
an external impact (see, e.g. refs. 35–38), one can tune the
system to choose the required operating frequency range,
the TE-TM splitting energy, and the shape of the dis-
persion surface. Remarkably, the tuning can be performed
at any stage of working with the system, both in the stage
of structure growth and after the growth of the structure
is complete.

The proposed scheme has application potential far
beyond its use as a polarization rectifier. In particular, we
have demonstrated that linear polarization is acquired by
a pulse excited by an unpolarized pulsed input during its
propagation. This allows the considered system to func-
tion as a polarizer for polariton pulses. The scheme can
act as a laboratory tool for the study of polariton phe-
nomena, including circular polarization supercurrents,
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interference effects and spin-orbit interaction effects of
long-living macroscopic polariton states.

Methods
We model the dynamics of the polariton pulses based

on the generalized Pauli equation for the spinor
jΨi ¼ Ψþðt; rÞ;Ψ�ðt; rÞ½ �T, where Ψ± ðt; rÞ are the wave
functions of the right- and left-circularly polarized
polariton components:

i�h∂t jΨi ¼ Ĥ0 þ i�hðRnR � γCÞ=2
� 	jΨiþ ijFðt; rÞi

ð2Þ

where, in addition to the conservative Hamiltonian Ĥ0

given in (1), we introduce non-conservative processes of
pumping and loss, with γC being the polariton decay rate.
The polaritons are excited by the resonant probe
jFðt; rÞi ¼ FTðtÞFrðrÞjf i. To preserve the shape of the
polariton pulse, we take the spatial component of

the probe in the Gaussian form Fr / exp½�ðr�
rpÞ2=2w2� expðikprÞ of width w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�h=m�ωtr

p
. The pulse is

shifted both in real and reciprocal space to rp and kp,
respectively; see Fig. 1 for clarity. The temporal compo-
nent is FT / exp½�t2=2w2

T� expð�iωptÞ, where wT is the
duration of the pulse and ωp is the probe frequency. The

vector jf i ¼ fþ; f�½ �T defines polarization of the probe.
For better perception, in the model, we restrict ourselves
by choosing the characteristics of the probe pulse, rp, kp
and ωp, such that the trajectory of the pulse is close to a
circular one taking rp= r0, ωp= ω0 and kp= kl,t.

To increase the pulse lifetime, we allow the reservoir of
excitons to partially feed the polariton condensate; nR is
the density of the non-resonantly pumped reservoir of
excitons, and R is the stimulated scattering rate describing
the particle exchange between the reservoir and the pulse.

We consider the reservoir to be pumped by a non-
resonant homogeneous pump P slightly below the con-
densation threshold, P <Pth ¼ γCγR=R, where γR is the
exciton decay rate. For the low-intensity pump and probe,
we assume that the reservoir density is homogeneous as
well, nR ’ P=γR. For this reason, we do not include
interaction effects characteristic of dense systems.
The values of the parameters used for modelling are as

follows. The effective polariton mass is m� ¼ 7 ´ 10�5me,
where me is the free electron mass. The TE-TM splitting
constant is �hΔLT ¼ 300 μeV μm2. The polariton and
exciton decay rates are γC ¼ 0:02 ps�1 and
γR ¼ 0:025 ps�1, respectively. The condensate-reservoir
coupling rate is �hR ¼ 0:05meV μm2. The non-resonant
subthreshold homogeneous pump is taken as P ¼ 0:95Pth.
The harmonic trap frequency is taken as ωtr ¼ 25GHz.
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