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Tailoring the lineshapes of coupled plasmonic
systems based on a theory derived from first
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Abstract
Coupled photonic systems exhibit intriguing optical responses attracting intensive attention, but available theoretical
tools either cannot reveal the underlying physics or are empirical in nature. Here, we derive a rigorous theoretical
framework from first principles (i.e., Maxwell’s equations), with all parameters directly computable via wave function
integrations, to study coupled photonic systems containing multiple resonators. Benchmark calculations against Mie
theory reveal the physical meanings of the parameters defined in our theory and their mutual relations. After testing
our theory numerically and experimentally on a realistic plasmonic system, we show how to utilize it to freely tailor the
lineshape of a coupled system, involving two plasmonic resonators exhibiting arbitrary radiative losses, particularly
how to create a completely “dark” mode with vanishing radiative loss (e.g., a bound state in continuum). All theoretical
predictions are quantitatively verified by our experiments at near-infrared frequencies. Our results not only help
understand the profound physics in such coupled photonic systems, but also offer a powerful tool for fast designing
functional devices to meet diversified application requests.

Introduction
Recently, photonic systems consisting of multiple plas-

monic/dielectric resonators coupled in different ways
have attracted much attention1–4. Compared to simple
systems containing only one type of resonators, coupled
systems exhibit more fascinating near-field (NF) proper-
ties (e.g., local field enhancement) and far-field (FF)
responses manifested by unusual lineshapes, such as Fano
resonance5–7 and Rabi oscillations8,9, dictated ultimately
by how the involved resonators are coupled together.
Couplings have offered more opportunities for controlling

the NF and FF light environments of such complex
photonic systems as desired, making them particularly
useful in applications, such as nanolasing10,11, fluores-
cence enhancement12–14, and information transport15–17.
Despite great advances on the experimental side, the

theoretical understandings of such systems are far from
satisfactory, which also hinders the rapid design of
appropriate systems with desired NF and FF responses.
For example, full-wave simulations require huge com-
puting costs and reveal very little physics. Meanwhile,
although many models (e.g., coupled-mode theory
(CMT)18–21, Fano’s formula22,23, or effective circuit
models24,25) were proposed to analyze the underlying
physics, they typically require model parameters fitted
from simulation results, and thus cannot predict
unknown phenomena before having studied the systems
numerically. As an early attempt, a photonic tight-binding
method (TBM)26, with all involved parameters compu-
table without fitting procedures, was proposed to suc-
cessfully predict the resonance peak positions of a coupled
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system. Unfortunately, the TBM provides no information
on the entire optical responses (e.g., the lineshapes),
which are usually more desired for practical applications.
The intrinsic difficulties are that these systems are open in
nature, in which different resonators can couple not only
with each other via NFs but also, more importantly, with
external free space via FF interactions (Fig. 1a). To
establish a complete theory to predict the entire optical
properties of arbitrarily coupled photonic systems, one
needs to rigorously consider both NF and FF interactions
on the same foot. While several semi-analytical approa-
ches have recently appeared, they have their own limita-
tions and are not generic enough to study arbitrarily
coupled systems in a formal way27–29.
In this paper, we derive a formal theoretical frame-

work from first principles (i.e., Maxwell’s equations),
with all involved parameters directly computable with-
out fitting procedures, to predict the optical lineshapes
of arbitrarily coupled photonic systems. The obtained
equations resemble the empirical CMT but are derived
from first principles, and thus have unambiguous phy-
sical meanings, as clearly revealed by benchmark cal-
culations against rigorous Mie theory on a model
system. After validating our theory through comparison
with experimental/numerical results on a realistic
plasmonic metasurface, we present how to employ it to
tailor the lineshape of a coupled plasmonic system as
desired by varying the interresonator coupling. In par-
ticular, we show that it is possible to generate a com-
pletely “dark” optical mode with vanishing radiative loss
(i.e., a bound state in continuum (BIC)30,31) in such
systems, although the constituent resonators exhibit
moderate radiative losses. All theoretical predictions are
quantitatively verified by experimental results on a ser-
ies of metasurfaces containing plasmonic resonators
coupled in different ways.

Results
Establishment of the formal theory
We start by establishing a formal theory applicable to

generic coupled open systems. As shown in Fig. 1a, we
consider the scatterings of a system consisting of M
arbitrary resonators located at different positions in a host
medium under certain external illumination. Such an
open system can be schematically described by the model
depicted in Fig. 1b, where the region containing resona-
tors is connected to the external continuum via N ports
with well-defined properties. Formally, we need to solve
the following Schrödinger-like equation:

bHΨð~r;ωÞ ¼ ωΨð~r;ωÞ ð1Þ

where Ψð~r;ωÞ is the total wave function, and bH ¼ bHh þP
m
bVm is the Hamiltonian of the whole system with bHh

describing the host medium and bVm the potential
contributed by the mth resonator.
To expand the unknown function Ψð~r;ωÞ appro-

priately, we need a complete set of basis wave functions
that are orthogonal to each other and normalizable in
certain ways. In the same spirit as the TBM26,32, here, we
define a set of wave functions fψLEM

m ð~r;ωÞ;m ¼ 1; :::;Mg,
which are the (approximate) solutions of the HamiltonianbHm ¼ bHh þ bVm (with eigenvalue ω), describing the sub-
system containing only the mth resonator. For simplicity,
here, we assume that each resonator supports only one
mode, and the extensions to more general cases (e.g.,
resonators exhibiting multiple or degenerate modes) are
straightforward. Different from the systems treated by the
TBM, which are closed26, and thus have well-defined
localized eigenfunctions, here, the open systems under
study only support leaky eigenmodes (LEM), as explained
subsequently.
Suppose that the resonators exhibit high quality (Q)

factors; we can use the following approach to obtain
ψLEM

m ð~r;ωÞ. Shining the subsystem with external illumi-
nation, we can solve bHmΨm ¼ ωΨm to obtain Ψm analy-
tically or numerically, and then obtain the response
spectrum of the system. We then identify the resonance
frequency ωm of the mth resonator from the maximum of
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Fig. 1 Schematics of the system under study and our theory.
a Photonic system containing multiple arbitrary resonators coupled
together under external illumination. The inset shows a typical optical
lineshape of such a system. b Schematics of our theory: under certain
external illumination, the total scattered field of the coupled system is
a linear combination of leaky eigenmodes (LEM, ψLEM

m ) of different
resonators, each containing a near-field part ψNF

m and a far-field tail ψFF
m
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the response spectrum. Choosing a “background” repre-
senting the system at a frequency far from all resonances,
we can calculate the background wave function ΨB by
shining the “background” medium with the same external
illumination. We finally obtain the desired LEM wave
function through ψLEM

m ¼ Ψm �ΨB for the mth resonator.
We note that fψLEM

m g are quite different from the quasi-
normal-mode (QNM) functions defined in refs. 27,28,33.
While fψLEM

m gare wave functions of the systems under
external illumination at real frequencies ωm, QNM func-
tions are eigenfunctions of the systems without external
illumination corresponding to complex eigenfrequencies.
Moreover, LEM functions do not diverge at infinity,
whereas QNM functions inevitably diverge34,35. There-
fore, LEM functions are particularly suitable for the
lineshape problems studied here, which require external
illumination. Examples of how to obtain ψLEM

m and
detailed comparisons between LEM and QNM are pre-
sented in Sec. I of the Supplementary Information.
Before proceeding further, we first discuss the proper-

ties of ψLEM
m ð~r;ωmÞ. Due to nonnegligible radiation in

open systems, ψLEM
m ð~r;ωmÞ must contain an FF tail pro-

pagating to the external continuum (see the inset in
Fig. 1b), making ψLEM

m ð~r;ωmÞ un-normalizable within the
whole space. To solve this issue, we purposely reexpress
ψLEM

m ð~r;ωmÞ as

ψLEM
m ð~r;ωmÞ ¼ ψNF

m ð~r;ωmÞ þ ψFF
m ð~r;ωmÞ ð2Þ

where ψNF
m and ψFF

m represent the NF and FF parts of the
wave function, respectively. Technically, for any given
system with well-defined external ports, we can always
project ψLEM

m onto the port modes on reference planes of
all external ports and then construct ψFF

m by these port
modes, which are assumed to fill the entire space. With ψFF

m
known, we then obtain ψNF

m numerically based on Eq. (2).
The NF functions ψNF

m have good properties to help us
perform further analyses. In the vicinity of the scatterer,
under the high-Q approximation where the FF part of the
wave function is significantly weaker than the NF part,
ψNF
m can be approximately viewed as the eigenfunction of

the Hamiltonian bHm with a real eigenvalue ωm,

bHm ψNF
m

�� � � ωm ψNF
m

�� � ð3Þ

Meanwhile, ψNF
m can be normalized since it is well

localized around the mth resonator. Moreover, consider-
ing that these wave functions are spatially well separated,
we find that they approximately satisfy the following
orthonormal condition:

ψNF
m jψNF

n

� �
V � δmn ð4Þ

where the integrals are performed over the entire space.
We note that one needs to multiply ψLEM

m by the same
normalization constant that is used to normalize ψNF

m ,
since these two functions are connected by Eq. (2).
Equation (4) indicates that fψNF

m ;m ¼ 1; :::;Mg form a set
of orthogonal bases to expand the total wave functions in
the NF region. Note that the approximation Eq. (4) is
widely used in the TBM for treating electrons in solids26.
We now identify the FF eigenbases of the system. In the

FF region, eigenmodes are just a set of propagating

modes k ±
q

��� En o
allowed by the system, where +(−)

denotes the incoming (outgoing) propagation direction, q
labels the mode channel, and k is the wavevector satis-
fying certain dispersion relation kq(ω). These wave
functions satisfy the following orthogonal condition:

kσp jkσ
0

q

D E
S
¼ δσσ

0
pq ð5Þ

where the integrals are performed on the reference plane
of a particular external port. In principle, extending our
theory to study cases with continuum scattering ports36,37

is also possible, although one needs to compute all
parameters related to these scattering channels.
We are now ready to represent Ψ as a linear combina-

tion of these basis functions. We have Ψ=ΨB+Ψsca,
where Ψsca is contributed by the scatterings of all reso-
nators. In the same spirit as the TBM, Ψsca can be
approximately written as a sum of scattered fields Ψsca

m

associated with each individual scatterer. At first glance,
one may expect that Ψsca

m ð~r;ωÞ must be ψLEM
m ð~r;ωmÞ

defined previously. However, ψLEM
m ð~r;ωmÞ is the scattered

wave at resonance frequency ωm, not at arbitrary fre-
quencies as required in Eq. (1). We can amend
ψLEM

m ð~r;ωmÞ slightly to obtain the form of ψLEM
m ð~r;ωÞ for a

frequency ω not far from ωm. The NF part [ψNF
m ð~r;ωmÞ] is

solely determined by ωm, as it is (approximately) an
eigensolution of Eq. (3) for eigenfrequency ωm. Since, we
will need to utilize the orthonormal properties of ψNF

m ð~rÞ
offered by Eq. (3) later, here, we take the original form of
ψNF
m ð~rÞ in constructing the trial wave functions at general

frequencies ω ≠ ωm. Meanwhile, the FF part ψFF
m ð~r;ωmÞ

contains propagating terms depending on the wavevector
kq, which must be modified from kq(ωm) to kq(ω)
according to the dispersion relations. We note, however,
that ψLEM

m ð~r;ωÞ thus obtained neglects the frequency
corrections to the FF radiation amplitudes. In principle,
such corrections can be taken into account by considering
the NF–FF relation of a given source38,39. To obtain a
concise analytical form for our theory, here, we neglected
such corrections, justified by the high-Q approximation.
Later, we show that such an approximation works quite
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well even though the original modes supported by indi-
vidual resonators do not exhibit extremely high-Q factors.
We can finally construct the total wave function as

Ψð~r;ωÞ ¼
X
q

sþq Ψ
q
Bþ
X
n

an ψLEM
n

�� �
ð6Þ

where {an} are a set of unknown coefficients representing
the strengths of fields scattered by different resonators
under external illumination represented by fsþq g denoting
the excitation amplitudes at different incoming ports, and
Ψq

B denotes the background wave function obtained when
only the qth port is excited with unit amplitude.
Substituting Eq. (6) into Eq. (1), projecting both sides by
ψNF
m

� �� and utilizing the orthogonal condition Eq. (4), we
obtain the following equations to determine{an}:

�iωam ¼ �iðωm � iΓmÞam þ
X
n≠m

ð�itmn þ XmnÞan

þ
X
q

κmqs
þ
q

ð7Þ

We next multiply both sides of Ψð~r;ωÞ defined in Eq. (6)
by each FF outgoing basis k�q

D ���, and then perform the
field integrations at the reference planes of all ports. Using
the orthonormal conditions Eq. (5), we finally obtain the
set of equations:

s�q ¼
X
p

sþp cqp þ
X
m

amdqm ð8Þ

to determine s�q ¼ k�q jΨ
D E

S

n o
, which describe the

strengths of scattered fields measured at different external
ports. Here, all parameters in Eqs. (7) and (8) are
unambiguously defined and can be calculated via the
following integrals:

Γm ¼ i ψNF
m

� ��bVm ψFF
m

�� �
V

tmn¼ ψNF
m

� ��bVm ψNF
n

�� �
V

Xmn ¼ �i ψNF
m

� ��bVm ψFF
n

�� �
V

κmq¼� i ψNF
m

� ��bVm Ψq
B

�� �
V

cqp ¼ k�q jΨq
B

D E
S

dqm ¼ k�q jψFF
m

D E
S

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð9Þ

where “V” and “S” denote whether the integrals are
performed over the entire volume or at the reference
plane of a port. The physical meanings of all involved
parameters can be clearly seen from their expressions. For
example, tmn and Xmn represent the coupling strengths
between two resonators due to their NF and FF

interactions, respectively. Derivations of Eqs. (7)–(9) can
be found in Sec. II of the Supplementary Information.
It is helpful to explicitly discuss the conditions imposed

on our systems to make the derived theory (e.g., Eqs. (7)–
(9)) valid. By re-examining Eq. (7) for the single-scatterer
case, we find that Im(Γm), if it exists, can shift the reso-
nance frequency ωm, and thus, a large Im(Γm) implies that
ψNF
m is not reasonably chosen. Therefore, the first criterion

is ImðΓmÞ ! 0, which determines the accuracy of our
theory at resonance. Meanwhile, we also require
ReðΓmÞ<<ωm, which is responsible for the correctness of
our theory in describing the entire lineshape. The second
criterion can be easily satisfied by a moderate Q value
(e.g., Q > 5), as long as the frequency dispersion of the
material is not significant and high-order modes are all far
from the mode under study. The first criterion, however,
requires the resonators to be deep subwavelength in size
so that ψFF

m and ψNF
m can exhibit a π/2 phase difference

inside the whole region occupied by the resonator38,
leading to a negligible Im(Γm). For plasmonic resonances,
such a deep-subwavelength condition is easily satisfied.
However, for dielectric resonances, such a condition can
only be satisfied in systems with a very high refraction
index (n), which pushes the Q factors to even higher
values (see Sec. IX in the Supplementary Information for
more details).
We note that Eq. (9) is derived for lossless systems, and

thus, Γm must only contain radiation damping. In realistic
systems, we also need to consider another parameter Γam,
representing the damping due to absorption (i.e., repla-
cing Γm by Γm þ Γam in Eq. (8)). This parameter can be

computed using Γam ¼ i ψNF
m

� ��ðbHa
m � bH0

mÞ ψNF
m

�� �
V , wherebHa

m represents the Hamiltonian of the realistic lossy sys-

tems, while bH0
m describes the same system with material

losses omitted40.

Equations (7)–(9) are the core results of this paper, which
have clear and profound physical meanings. While Eq. (7)
describes the dynamics of each mode under certain excita-
tions, Eq. (8) describes the measurable scattering spectra.
We note that Eqs. (7) and (8) resemble the two equations in
CMT18,19, but our theory is different and possesses the
following merits. In the empirical CMT, the key parameters
defined are usually obtained by fitting with numerical
simulations, while the remaining parameters can be derived
by energy-conservation and time-reversal arguments41. In
contrast, here, in our theory, all parameters can be unam-
biguously evaluated by Eq. (9), and therefore, one can use it
to predict the lineshapes of coupled systems before per-
forming numerical simulations on them. Moreover, the
empirical CMT cannot explicitly consider the NF couplings
between resonators18, while in our approach, NF couplings
tmn can be unambiguously determined (see Eq. (9)) and
explicitly included in determining the lineshape (Eq. (8)).
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Although single-resonator parameters (ωres and Γres) can be
analytically obtained for certain high-symmetry structures
for that analytical formulas of scattering coefficients are
available42, such an approach is not general enough to deal
with arbitrary coupled systems without analytical expres-
sions of scattering coefficients and cannot be used to study
the couplings between different resonators.

Applications to photonic systems and benchmark tests
We now apply the developed formal theory to photonic

systems, described generally by an inhomogeneous per-
mittivity function εð~r;ωÞ, in which at each local point ~r,
the permittivity is εðωÞ ¼ ε1½1þ ω2

p=ðω2
0 � ω2 þ iωΓeÞ�,

where ε∞, ω0, ωp, and Γe are all position- and frequency-
independent parameters, describing the local properties of
constituent materials. The governing equations (i.e.,
Maxwell’s equations in the frequency domain) can be
formally rewritten as Eq. (1)40, where the Hamiltonian is
given by

bH ¼

0 � i
μ∇ ´ 0 0

i
ε1

∇ ´ 0 0 � i
ε1

0 0 0 i

0 iω2
pε1 �iω2

0 �iΓe

0BBBB@
1CCCCA ð10Þ

and the wave function is defined as Ψð~rÞ ¼ ~H ~E ~P
�

~V ÞT , with ~E, ~H , and ~P denoting the electric, magnetic, and

polarization fields, respectively, and ~V ¼ d~P=dt describing
the polarization current. Consider the lossless case first (i.e.,
Γe= 0). The inner product between two wave functions is
defined as26,40

ψ1ð~rÞjψ2ð~rÞh iV¼
1
2

Z
dτ½μ~H�

1 � ~H2 þ ε1~E�
1 �~E2

þω2
0ðω2

pε1Þ�1~P�
1 �~P2

þðω2
pε1Þ�1~V �

1 � ~V2� ð11Þ

Meanwhile, in the FF region occupied by air, the inner
product between two-port modes can be defined as

kσ1 jkσ02
� �

S¼
1
2

I
½μ0ð~Hσ

1 Þ� � ~Hσ 0
2 þ εhð~Eσ

1 Þ� �~Eσ 0
2 �~c � d~S

ð12Þ

where ~c is the light speed in the host medium. This
ensures that different port modes are orthogonal and that
each mode carries a unit of energy flux43. With Eqs. (10)–(12)
and supposing that fψNF

m ;ψFF
m g are obtained, one can

substitute them into Eq. (9) to compute all parameters
(see Sec. III in the Supplementary Information) and then
substitute them into Eqs. (7) and (8) to determine the
lineshape.

For photonic resonators with regular shapes, fψNF
m ;ψFF

m g
can be obtained analytically. For arbitrary resonators, we
need to numerically obtain the required wave functions.
We emphasize that, however, such numerical calculations
are only needed once. Once fψNF

m ;ψFF
m g are obtained, we

can predict the lineshapes of the coupled systems without
having to perform simulations on them.
We first choose an analytically solvable system—a single

gold sphere illuminated by an x-polarized plane wave—to
test our theory against Mie theory. As shown in Fig. 2a,
consider a sphere located at the origin with radius rm=
0.036λp and Drude permittivity εðωÞ ¼ ε0½1� ω2

p=ω
2�,

with ωp and λp denoting the plasmon resonance frequency
and wavelength. Such a problem can be analytically solved
by Mie theory44,45, yielding an analytical form of
Ψscað~r;ωÞ. When the scatterer is much smaller than the
wavelength of incident light, the electric dipole channel
dominates in the frequency range plotted46, and thus, we
can obtain ωres ¼ ½1� 8π2ðrm=λpÞ2=15þ :::�ωp=

ffiffiffi
3

p
and

the analytical forms of ψLEM;ψFF, and ψNF, as well as k ±j i
(see Sec. IV in the Supplementary Information). Figure 2a
depicts the field distributions of ψLEM;ψFF, and ψNF :ψNF

exhibits a clear electric dipole resonance feature, and ψFF

represents the FF radiation of an electric dipole located at
the origin.
Substituting all wave functions into Eq. (9), we find κ ¼

d ¼ 2:92 ´ 10�2 ffiffiffiffiffiffi
ωp

p
i and Γ ¼ 4:28 ´ 10�4ωp. Since there

is only one scatterer and one port in the system, we
neglect all subscripts without causing confusion. Sub-
stituting these parameters into Eqs. (7) and (8), we obtain
the scattering spectrum of the nanosphere, defined as

σðωÞ ¼ 3π 1� Rj j2=ð2η0k20Þ, with η0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p
being the

vacuum impedance and R � s�=sþ, representing the
scattering coefficient. The spectrum thus calculated is
depicted in Fig. 2b as a solid line, well matching the Mie
theory (squares) and FEM calculation (circles) results.
Under the electric dipole approximation, we further

simplify the analytical expressions of all involved para-
meters (see Sec. IV in the Supplementary Information) as

Γ ¼ ωres ´ Im f~p� ´~EFFg=2 ¼ p2ω4
res= 12πε0c30
� �

κ ¼ ipω2
res=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πε0c30

p
d ¼ ipω2

res=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πε0c30

p
8><>:

ð13Þ

with ~p ¼ R sphere~Pð~rÞd~r (~P is the polarization field inside
the sphere; see the inset in Fig. 2a), representing the
effective dipole moment of the nanosphere. Equation (13)
reveals a few important physics difficult to obtain from
numerical calculations. First, κ and d, defined as two
distinct field integrations (Eq. (9)), surprisingly generate
identical results (see Eq. (13)), which is consistent with the
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time-reversal symmetry argument19. Second, Γ takes an
expression identical to that derived for a dipole emitter
based on Poynting’s theorem (see Eq. (8.74) in ref. 38),
revealing the clear physical meaning of the radiation
damping. Finally, Eq. (13) uncovers the relation 2Γ ¼
pj j2ω4

res=ð6πε0c3Þ ¼ dj j2 verified by numerical calcula-
tions (see Fig. 2c), which ensures energy conservation
consistent with Poynting’s theorem38. We note that these
relations were derived by energy-conservation and time-
reversal arguments in the empirical CMT. Here, they are
directly and rigorously demonstrated in our theory simply
because our theory is established based on Maxwell’s
equations, which already satisfy energy-conservation and
time-reversal symmetry.
After studying coupled electric dipole resonators to

justify our theory against analytical formulas derived in
prior literature47,48 (see Sec. V in the Supplementary
Information for details), we implement our theory to
study arbitrary photonic coupled systems. As shown in
Fig. 3a, the system we consider is a periodic metasurface
with unit cells arranged in a hexagonal lattice (with per-
iodicity 550 nm), each containing two different types of
nanoparticles (bar and C-shaped resonator) coupled
together. All nanoparticles are made of silver and are
placed on a semi-infinite dielectric substrate (n= 1.55).
Following the general strategy established above, we first

perform lossless FEM simulations to study the scattering
properties of two model systems, each containing reso-
nators of a particular type arranged in the same hexagonal
lattice (see Fig. 3a). Due to the periodic arrangements with
deep-subwavelength spacing, only the zero-order trans-
mission/reflection channels survive in the FF. From the
calculated reflection spectra (circles) shown in Fig. 3b, c,
we identify the resonance frequencies {ωm, m= 1, 2} of
the two resonators (see dashed lines in Fig. 3b, c). We
then follow the general strategy described in the last
section to determine the needed NF and FF wave func-
tions fψFF

m ;ψNF
m ;m ¼ 1; 2g. Substituting these single-

resonator properties into Eq. (9), we obtain all needed
parameters (see Sec. VI in the Supplementary Information
for details) and, in turn, the desired transmission/reflec-
tion spectra. The reflectance spectra calculated by our
theory are plotted in Fig. 3b, c as black lines, in perfect
agreement with FEM simulations (circles) of realistic
structures. This is remarkable since we did not perform
any fitting procedures in obtaining these spectra. The
lineshape of the coupled system predicted by our theory is
further confirmed by our experiments. We fabricated
three samples according to the designs using the standard
electron-beam lithography (EBL) method (see left panel in
Fig. 3b–d for their scanning electron microscopy (SEM)
images) and experimentally characterized their reflection
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spectra. The spectra of the three samples are shown in Fig.
3b–d as triangles, measured with a homemade macro-
scopic spectrometer (see Sec. VII in the Supplementary
Information). The excellent agreement among the FEM,
the experimental and our theoretical results unambigu-
ously justify our theory.

Implementations of the theory in lineshape tailoring
We now apply our theory to “design” the lineshape of a

photonic system. Figure 3d shows that the interresonator
coupling can dramatically change the lineshape of a
coupled system, essentially determined by the two “dres-
sed” modes with frequencies and bandwidths f~ω± ; ~Γ± g.

Therefore, we must first understand the properties of the
dressed modes f~ω± ; ~Γ± g.
Consider a two-mode two-port system with two reso-

nators placed on the same plane illuminated by a normally
incident wave. Assuming Γa1 ¼ Γa2 ¼ Γa for simplicity, we
can explicitly rewrite Eq. (7) as

�iω
a1
a2

� 	
¼ �i

ω1 t

t ω2

� 	
� i

Γa 0

0 Γa

� 	
 �
a1
a2

� 	
þ �Γ1 X

X �Γ2

� 	
a1
a2

� 	
þ κ11

κ21

� 	
sþ1

ð14Þ

Diagonalizing the matrix containing t by an orthogonal
transformation M, we obtain the following equation
describing the amplitudes of two collective modes ~a± :

�iω
~aþ
~a�

� 	
¼ �i

~ωþ 0

0 ~ω�

� 	
� i

~Γa 0

0 ~Γa

 !" #
~aþ
~a�

� 	

þ �~Γþ ~X
~X �~Γ�

 !
~aþ
~a�

� 	
þ ~κ11

~κ21

� 	
sþ1

ð15Þ
where ~Γ± ¼ ðΓ1 þ Γ2Þ=2± ð2t ffiffiffiffiffiffiffiffiffi

Γ1Γ2
p þ ΔωΔΓÞ=

ð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ Δω2

p Þ, ~ω± ¼ ðω1 þ ω2Þ=2 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ Δω2

p
, with

Δω ¼ ðω1 � ω2Þ=2 and ΔΓ ¼ Γ1 � Γ2, and
~aþ ~a�ð ÞT¼ M a1 a2ð ÞT. Since an orthogonal trans-

formation does not change the trace of a matrix, it is
sufficient to study Δ~ω ¼ ~ωþ � ~ω� and Δ~Γ ¼ ~Γþ � ~Γ�,
which are determined by t, Δω, and ΔΓ via

Δ~ω ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ðΔωÞ2

q
Δ~Γ ¼ ð2t þ Δω´ΔΓÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ ðΔωÞ2

q
8><>: ð16Þ

Here, and in what follows, we have scaled all involved
physical quantities (i.e., Δ~ω, Δ~Γ, Δω, ΔΓ, and t) by

ffiffiffiffiffiffiffiffiffi
Γ1Γ2

p
to make them dimensionless. Equation (16) shows that
even for two resonators with fixed properties, one can still
use the interresonator coupling t to change the properties
of the “dressed” modes and, in turn, “design” the final
lineshape of the coupled system.
The left and right panels in Fig. 4a depict, respectively,

how Δ~ω and Δ~Γ vary with Δω and t, with ΔΓ set at two
different values. We find that while Δ~ω exhibits circular
equal-value lines on the Δω ~ t plane independent of ΔΓ,
Δ~Γ, exhibits fascinating behavior on the Δω ~ t plane
depending sensitively on ΔΓ. In particular, on each Δω ~ t
phase plane with a fixed ΔΓ, we always find two special
lines, defined as Δ~Γ ¼ 0 (red lines) and Δ~Γ ¼ ± ðΓ1 þ Γ2Þ
(green lines), to separate the whole space into four sub-
regions with distinct properties. Physically, while the
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and a= 85, all in units of nm. b–d Reflectance spectra of periodic
metasurfaces containing b bar resonators only, c C resonators only,
and d the two resonators coupled together, obtained by our theory
(solid lines), FEM simulations (circles), and measurements (triangles).
White dashed lines and gray areas denote the frequencies and widths
of the resonant modes. The right panels of c and d are SEM images of
the fabricated samples with scale bars (white lines) of 500 nm
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condition Δ~Γ ¼ 0 implies that the two dressed modes
have identical bandwidths (i.e., ~Γþ ¼ ~Γ�), the other con-
dition Δ~Γ ¼ ± ðΓ1 þ Γ2Þ means that one dressed mode
exhibits vanishing radiative damping. Interestingly, these
two phase boundary lines rotate as ΔΓ changes, as shown
in Fig. 4b.
To illustrate the key features of the four subregions, we

purposely choose eight points from a circle on the Δω ~ t
plane with ΔΓ= 2 (see Fig. 4a) and illustrate in Fig. 4c
how the reflection spectra of the corresponding systems
evolve. Consistent with our expectations, the spectra of
systems 1 and 5 only exhibit one peak, as the other mode
is completely dark, while the spectra of systems 3 and 7
exhibit two peaks with equal bandwidths. In between
these special points, the spectra gradually evolve. Notably,
the radiation damping (bandwidths) of the two “dressed”
modes can vary continuously from 0 to Γ1+ Γ2, while
moving on the circle (see Fig. 4d).
The physics is very clear: now that the dressed modes

are appropriate linear combinations of two original
modes, their radiation damping must also be linear
combinations of that of the two original modes. There-
fore, varying Δω and t can dramatically modify the relative

portions of the two original modes in constructing the
dressed modes and, in turn, efficiently control the radia-
tion damping of the dressed modes. In principle, one can
realize any desired lineshapes based on our phase diagram
by choosing certain original modes and “tuning” the
coupling t. Of particular interest is the appearance of a
purely dark mode with infinitely long lifetime, which
shares the same physical origin as the BIC and has many
interesting applications49–51.
We now experimentally verify our predictions on line-

shape tailoring based on coupled systems constructed by
the two resonators studied in Fig. 3a. Since t is solely
determined by the overlap between the ψNF

m of two reso-
nators (see Eq. (9)), we understand that changing the
resonators’ relative configuration can dramatically modify
t. Indeed, as we rotate the C-shaped resonator with
respect to the bar resonator, we find that t drastically
changes (see solid line in Fig. 5a). In particular, increasing
the relative angle θ between two resonators can drive t to
change from a positive value to a negative value, passing
through 0 at a particular angle. Such an intriguing t ~ θ
relation can be simply explained by an effective model for
plasmonic coupling established previously47,48.
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Choosing six points on the t ~ θ curve, as shown in Fig.
5a, we employ our theory to study the optical lineshapes
of their corresponding realistic systems. Since the two
original modes have fixed properties, these six systems
with different t are located on a straight line in the phase
diagram passing through two phase boundaries (see Fig.
5b). Their reflection spectra, computed by our theory, are
depicted in Fig. 5c as solid lines, exhibiting the expected
behaviors. In particular, the spectrum of the third system
only exhibits one peak, while that of the fifth system
contains two equal-bandwidth peaks, consistent with the
phase diagram shown in Fig. 5b. Once again, we empha-
size that all spectra are calculated with our theory directly
and without any fitting procedures.
We then perform both experiments and simulations to

verify the above theoretical predictions. We fabricate
samples according to the designs using the standard EBL
method, with the right panel in Fig. 5c showing SEM
images of the fabricated samples. Illuminating these
samples with normally incident light with ~E k ŷ, we
measure their transmission/reflection spectra and depict
the reflection spectra as solid triangles in Fig. 5c. We also
perform FEM simulations to calculate their reflection
spectra (open circles in Fig. 5c). Both the experimental
and simulation results are in excellent agreement with the

spectra obtained by our theory (solid lines in Fig. 5c). In
particular, the measured/simulated spectra of sample 3
exhibit clear BIC features, while those of sample 5 contain
two peaks with equal bandwidths. We also employ our
theory to predict the transmission spectra of these sys-
tems, which are in excellent agreement with the measured
and simulated results (see Sec. VIII in the Supplementary
Information).
The solid line in Fig. 5d depicts how varying t sig-

nificantly modulates the radiative Q factor of the low-
frequency dressed mode, as predicted by our theory. That
the Q factor diverges at a specific point signifies the
appearance of a BIC. The symbols are the Q factors of six
realistic samples obtained by analyzing their measured
reflection spectra. Excellent agreement is noted between
the experimental and analytical results. At the frequency
where the BIC appears, the radiations from the two
individual resonators exactly cancel each other, leading to
vanishing of the total radiative loss (see Sec. VI in the
Supplementary Information).

Discussion
In summary, we have derived a formal theoretical fra-

mework directly from Maxwell’s equations to study the
optical responses of arbitrarily coupled photonic systems,
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in which all involved parameters are unambiguously
computable without any fitting procedures. After testing
it against both Mie theory and numerical simulations on
different systems, we illustrate how to employ it to design
the lineshape of a coupled system by modulating the
couplings between resonators. In particular, we show that
one can always choose a specific coupling between two
arbitrary resonators to make one of the “dressed” modes
in the coupled system completely dark, creating a BIC. All
predictions are quantitatively verified by our experiments
and simulations at near-infrared wavelengths. In addition
to revealing the profound physics underlying the
coupling-induced phenomena, our theory also offers a
powerful tool to design optical devices with well-
controlled NF and FF properties, and can be extended
to study coupled systems for other types of waves.

Materials and methods
Simulations
We employed FEM simulations using the commercial

software COMSOL Multiphysics. The permittivity of Ag

was described by the Drude model εðωÞ ¼ ε1 � ω2
p

ωðωþ iΓeÞ,
with ε1 ¼ 5ε0, ω0 ¼ 0THz, and ωp ¼ 2π ´ 2176:2THz.
The effective damping rate was set as Γe ¼ 2π ´ 38:3THz
for the bar structure and Γe ¼ 2π ´ 27:3THz for the C-
shaped resonator, obtained by fitting with our experi-
mental results. The SiO2 spacer was considered a lossless
dielectric with permittivity ε= 2.42. Additional losses
caused by surface roughness and grain boundary effects in
thin films, as well as dielectric losses were effectively
considered in the fitting parameter Γe.

Fabrication
All our meta-devices were fabricated following standard

EBL and lift off processes. First, the positive resist was
successively spin coated on a silica substrate, and exposed
with EBL (JEOL 6300) with an acceleration voltage of
100 kV. After exposure, the samples were developed in the
solution of isopropanol alcohol and methyl isobutyl
ketone. Then, 3 nm Cr and 30 nm Au/Ag were deposited
using electron-beam evaporation. Finally, the top patterns
were formed after a lift of process. All samples had
dimensions of 80 µm × 80 µm.

Optical characterizations
We used a homemade macroscopic spectrometer

equipped with a broadband supercontinuum white light
source and a fiber-coupled grating spectrometer
(Ideaoptics NIR2500) to characterize the optical proper-
ties of fabricated samples (see more details in Sec. VII of
Supplementary Information).
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