Lin et al. Light: Science & Applications (2020)9:158
https://doi.org/10.1038/s41377-020-00386-5

Official journal of the CIOMP 2047-7538
www.nature.com/Isa

ARTICLE Open Access

Tailoring the lineshapes of coupled plasmonic
systems based on a theory derived from first
principles

Jing Lin', Meng Qiu', Xiyue Zhang', Huijie Guo', Qingnan Cai', Shiyi Xiao?, Qiong He'” and Lei Zhou'?

Abstract

Coupled photonic systems exhibit intriguing optical responses attracting intensive attention, but available theoretical
tools either cannot reveal the underlying physics or are empirical in nature. Here, we derive a rigorous theoretical
framework from first principles (i.e., Maxwell's equations), with all parameters directly computable via wave function
integrations, to study coupled photonic systems containing multiple resonators. Benchmark calculations against Mie
theory reveal the physical meanings of the parameters defined in our theory and their mutual relations. After testing
our theory numerically and experimentally on a realistic plasmonic system, we show how to utilize it to freely tailor the
lineshape of a coupled system, involving two plasmonic resonators exhibiting arbitrary radiative losses, particularly
how to create a completely “dark” mode with vanishing radiative loss (e.g., a bound state in continuum). All theoretical
predictions are quantitatively verified by our experiments at near-infrared frequencies. Our results not only help
understand the profound physics in such coupled photonic systems, but also offer a powerful tool for fast designing
functional devices to meet diversified application requests.

Introduction

Recently, photonic systems consisting of multiple plas-
monic/dielectric resonators coupled in different ways
have attracted much attention'™. Compared to simple
systems containing only one type of resonators, coupled
systems exhibit more fascinating near-field (NF) proper-
ties (e.g., local field enhancement) and far-field (FF)
responses manifested by unusual lineshapes, such as Fano
resonance”’ and Rabi oscillations®®, dictated ultimately
by how the involved resonators are coupled together.
Couplings have offered more opportunities for controlling
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the NF and FF light environments of such complex
photonic systems as desired, making them particularly
useful in applications, such as nanolasing'®'!, fluores-
cence enhancement!?>™'*, and information transportls’”.

Despite great advances on the experimental side, the
theoretical understandings of such systems are far from
satisfactory, which also hinders the rapid design of
appropriate systems with desired NF and FF responses.
For example, full-wave simulations require huge com-
puting costs and reveal very little physics. Meanwhile,
although many models (e.g., coupled-mode theory
(CMT)*™®2!, Fano’s formula®**, or effective circuit
models®**®) were proposed to analyze the underlying
physics, they typically require model parameters fitted
from simulation results, and thus cannot predict
unknown phenomena before having studied the systems
numerically. As an early attempt, a photonic tight-binding
method (TBM)?®, with all involved parameters compu-
table without fitting procedures, was proposed to suc-
cessfully predict the resonance peak positions of a coupled
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system. Unfortunately, the TBM provides no information
on the entire optical responses (e.g., the lineshapes),
which are usually more desired for practical applications.
The intrinsic difficulties are that these systems are open in
nature, in which different resonators can couple not only
with each other via NFs but also, more importantly, with
external free space via FF interactions (Fig. la). To
establish a complete theory to predict the entire optical
properties of arbitrarily coupled photonic systems, one
needs to rigorously consider both NF and FF interactions
on the same foot. While several semi-analytical approa-
ches have recently appeared, they have their own limita-
tions and are not generic enough to study arbitrarily
coupled systems in a formal way*’ >’

In this paper, we derive a formal theoretical frame-
work from first principles (i.e., Maxwell’s equations),
with all involved parameters directly computable with-
out fitting procedures, to predict the optical lineshapes
of arbitrarily coupled photonic systems. The obtained
equations resemble the empirical CMT but are derived
from first principles, and thus have unambiguous phy-
sical meanings, as clearly revealed by benchmark cal-
culations against rigorous Mie theory on a model
system. After validating our theory through comparison
with experimental/numerical results on a realistic
plasmonic metasurface, we present how to employ it to
tailor the lineshape of a coupled plasmonic system as
desired by varying the interresonator coupling. In par-
ticular, we show that it is possible to generate a com-
pletely “dark” optical mode with vanishing radiative loss
(ie., a bound state in continuum (BIC)**3!) in such
systems, although the constituent resonators exhibit
moderate radiative losses. All theoretical predictions are
quantitatively verified by experimental results on a ser-
ies of metasurfaces containing plasmonic resonators
coupled in different ways.

Results
Establishment of the formal theory

We start by establishing a formal theory applicable to
generic coupled open systems. As shown in Fig. 1a, we
consider the scatterings of a system consisting of M
arbitrary resonators located at different positions in a host
medium under certain external illumination. Such an
open system can be schematically described by the model
depicted in Fig. 1b, where the region containing resona-
tors is connected to the external continuum via N ports
with well-defined properties. Formally, we need to solve
the following Schrodinger-like equation:

ﬁ‘l’(?, w) = 0¥, o) (1)

where (7, w) is the total wave function, and H = Hy, +
> u Vi is the Hamiltonian of the whole system with Hy
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Fig. 1 Schematics of the system under study and our theory.

a Photonic system containing multiple arbitrary resonators coupled
together under external illumination. The inset shows a typical optical
lineshape of such a system. b Schematics of our theory: under certain
external illumination, the total scattered field of the coupled system is
a linear combination of leaky eigenmodes (LEM, x//,LnEM) of different
resonators, each containing a near-field part ¢\" and a far-field tail g

describing the host medium and V,. the potential
contributed by the mth resonator.

To expand the unknown function ¥(7 ) appro-
priately, we need a complete set of basis wave functions
that are orthogonal to each other and normalizable in
certain ways. In the same spirit as the TBM>*??, here, we
define a set of wave functions {y5*™ (7, w),m = 1,..., M},
which are the (approximate) solutions of the Hamiltonian
H, =H,+V, (with eigenvalue w), describing the sub-
system containing only the mth resonator. For simplicity,
here, we assume that each resonator supports only one
mode, and the extensions to more general cases (e.g.,
resonators exhibiting multiple or degenerate modes) are
straightforward. Different from the systems treated by the
TBM, which are closed®®, and thus have well-defined
localized eigenfunctions, here, the open systems under
study only support leaky eigenmodes (LEM), as explained
subsequently.

Suppose that the resonators exhibit high quality (Q)
factors; we can use the following approach to obtain
YLEM(7 o). Shining the subsystem with external illumi-
nation, we can solve ﬁ,,}l’m = wV¥,, to obtain ¥,, analy-
tically or numerically, and then obtain the response
spectrum of the system. We then identify the resonance
frequency w,,, of the mth resonator from the maximum of
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the response spectrum. Choosing a “background” repre-
senting the system at a frequency far from all resonances,
we can calculate the background wave function ¥y by
shining the “background” medium with the same external
illumination. We finally obtain the desired LEM wave
function through M = ¥, — W for the mth resonator.
We note that {y/5EM} are quite different from the quasi-
normal-mode (QNM) functions defined in refs. 27*%33,
While {y5EM}are wave functions of the systems under
external illumination at real frequencies w,,, QNM func-
tions are eigenfunctions of the systems without external
illumination corresponding to complex eigenfrequencies.
Moreover, LEM functions do not diverge at infinity,
whereas QNM functions inevitably diverge®*. There-
fore, LEM functions are particularly suitable for the
lineshape problems studied here, which require external
illumination. Examples of how to obtain yiEM and
detailed comparisons between LEM and QNM are pre-
sented in Sec. I of the Supplementary Information.
Before proceeding further, we first discuss the proper-
ties of yLEM(7 w,,). Due to nonnegligible radiation in
open systems, ¥5*M (¥, w,,) must contain an FF tail pro-
pagating to the external continuum (see the inset in
Fig. 1b), making ¢5™ (7, w,,) un-normalizable within the
whole space. To solve this issue, we purposely reexpress

YEM(7 w,,) as
(//I;nEM(r “)Wt) = ‘//ZF(K C‘)Wt) + ’//an(?’ “)m) (2)
where ¢NF and yfF represent the NF and FF parts of the

wave function, respectively. Technically, for any given
system with well-defined external ports, we can always
project ¥EM onto the port modes on reference planes of
all external ports and then construct yff by these port
modes, which are assumed to fill the entire space. With yfF
known, we then obtain ' numerically based on Eq. (2).

The NF functions ¢\F have good properties to help us
perform further analyses. In the vicinity of the scatterer,
under the high-Q approximation where the FF part of the
wave function is significantly weaker than the NF part,

NE can be approximately viewed as the eigenfunction of
the Hamiltonian H with a real eigenvalue w,,,,

H,|y)F) = om|¥)) (3)

Meanwhile, yNF can be normalized since it is well
localized around the mth resonator. Moreover, consider-
ing that these wave functions are spatially well separated,
we find that they approximately satisfy the following
orthonormal condition:

W)y~ S (4)
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where the integrals are performed over the entire space.
We note that one needs to multiply L™ by the same
normalization constant that is used to normalize YT,
since these two functions are connected by Eq. (2).
Equation (4) indicates that {y/\F, m = 1,..., M} form a set
of orthogonal bases to expand the total wave functions in
the NF region. Note that the approximation Eq. (4) is
widely used in the TBM for treating electrons in solids*®

We now identify the FF eigenbases of the system. In the
FF region, eigenmodes are just a set of propagating

modes {’k;>} allowed by the system, where +(—)

denotes the incoming (outgoing) propagation direction, g
labels the mode channel, and & is the wavevector satis-

fying certain dispersion relation kq(@). These wave
functions satisfy the following orthogonal condition:

(kilkg ) = 53 (5)

where the integrals are performed on the reference plane
of a particular external port. In principle, extending our
theory to study cases with continuum scattering ports>®>
is also possible, although one needs to compute all
parameters related to these scattering channels.

We are now ready to represent ¥ as a linear combina-
tion of these basis functions. We have ¥ = ¥g + ¥°%,
where W*** is contributed by the scatterings of all reso-
nators. In the same spirit as the TBM, ¥**® can be
approximately written as a sum of scattered fields W57
associated with each individual scatterer. At first glance,
one may expect that W5?(7,w) must be Y EM(7 w,,)
defined previously. However, y5¥M (7, ,,) is the scattered
wave at resonance frequency w,, not at arbitrary fre-
quencies as required in Eq. (1). We can amend
yEEM(7, w,,) slightly to obtain the form of l//LEM(I" ) for a
frequency o not far from ®,,. The NF part [yNF (7, w,,)] is

solely determined by w,, as it is (approx1mately) an

eigensolution of Eq. (3) for eigenfrequency w,,. Since, we
will need to utilize the orthonormal properties of y\F(7)
offered by Eq. (3) later, here, we take the original form of

wNE(7) in constructing the trial wave functions at general
frequencies o # w,,. Meanwhile, the FF part ¢f (7, 0,)
contains propagating terms depending on the wavevector
kg which must be modified from ki (w,) to ki)
according to the dispersion relations. We note, however,
that ¥ (7, w) thus obtained neglects the frequency
corrections to the FF radiation amplitudes. In principle,
such corrections can be taken into account by considering
the NF-FF relation of a given source®®*>°. To obtain a
concise analytical form for our theory, here, we neglected
such corrections, justified by the high-Q approximation.
Later, we show that such an approximation works quite
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well even though the original modes supported by indi-
vidual resonators do not exhibit extremely high-Q factors.
We can finally construct the total wave function as

‘P(?, co) = ng\PqB+Zﬂn|(//IV;EM> (6)
q n

where {a,,} are a set of unknown coefficients representing
the strengths of fields scattered by different resonators
under external illumination represented by {s; } denoting
the excitation amplitudes at different incoming ports, and
W1 denotes the background wave function obtained when
only the gth port is excited with unit amplitude.
Substituting Eq. (6) into Eq. (1), projecting both sides by
<l//§f| and utilizing the orthogonal condition Eq. (4), we
obtain the following equations to determine{a,}:

—iway, = —i(©y — iLy)dm + Z(*itmn + Xoun) an

n#m

(7)
+D_KmgS;
q

We next multiply both sides of ¥(7, ) defined in Eq. (6)
by each FF outgoing basis (k. |, and then perform the
field integrations at the reference planes of all ports. Using
the orthonormal conditions Eq. (5), we finally obtain the
set of equations:

S7 =D Sy Cap+ Y Al (8)
P m

to determine {s; = <kq’ |‘P>S}, which describe the

strengths of scattered fields measured at different external
ports. Here, all parameters in Egs. (7) and (8) are
unambiguously defined and can be calculated via the
following integrals:

L = iy [VaulyT),
=W Vi[9,
Xomn = =iy |Vl wiF)
o= = AV 9), ?)
Cp = <k¢;|\PqB>S

o = (K i)

where “V” and “S” denote whether the integrals are
performed over the entire volume or at the reference
plane of a port. The physical meanings of all involved
parameters can be clearly seen from their expressions. For
example, ¢, and X, represent the coupling strengths
between two resonators due to their NF and FF
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interactions, respectively. Derivations of Egs. (7)—(9) can
be found in Sec. II of the Supplementary Information.

It is helpful to explicitly discuss the conditions imposed
on our systems to make the derived theory (e.g., Eqs. (7)-
(9)) valid. By re-examining Eq. (7) for the single-scatterer
case, we find that Im(T,,), if it exists, can shift the reso-
nance frequency w,,,, and thus, a large Im(T,,,) implies that
wNF is not reasonably chosen. Therefore, the first criterion
is Im(T,,) — 0, which determines the accuracy of our
theory at resonance. Meanwhile, we also require
Re(T,;) << wy, which is responsible for the correctness of
our theory in describing the entire lineshape. The second
criterion can be easily satisfied by a moderate Q value
(e.g., Q>5), as long as the frequency dispersion of the
material is not significant and high-order modes are all far
from the mode under study. The first criterion, however,
requires the resonators to be deep subwavelength in size
so that yfF and yNF can exhibit a 77/2 phase difference
inside the whole region occupied by the resonator®,
leading to a negligible Im(I',,,). For plasmonic resonances,
such a deep-subwavelength condition is easily satisfied.
However, for dielectric resonances, such a condition can
only be satisfied in systems with a very high refraction
index (1), which pushes the Q factors to even higher
values (see Sec. IX in the Supplementary Information for
more details).

We note that Eq. (9) is derived for lossless systems, and
thus, T',,, must only contain radiation damping. In realistic
systems, we also need to consider another parameter I%,,
representing the damping due to absorption (i.e., repla-
cing T, by I',, + I, in Eq. (8)). This parameter can be
computed using I? = L<t//EF‘(ﬁfn - ﬁ%)h//f}v, where
ﬁin represents the Hamiltonian of the realistic lossy sys-

tems, while ﬁ?n describes the same system with material
losses omitted™.

Equations (7)—(9) are the core results of this paper, which
have clear and profound physical meanings. While Eq. (7)
describes the dynamics of each mode under certain excita-
tions, Eq. (8) describes the measurable scattering spectra.
We note that Egs. (7) and (8) resemble the two equations in
CMT'®", but our theory is different and possesses the
following merits. In the empirical CMT, the key parameters
defined are usually obtained by fitting with numerical
simulations, while the remaining parameters can be derived
by energy-conservation and time-reversal arguments*'. In
contrast, here, in our theory, all parameters can be unam-
biguously evaluated by Eq. (9), and therefore, one can use it
to predict the lineshapes of coupled systems before per-
forming numerical simulations on them. Moreover, the
empirical CMT cannot explicitly consider the NF couplings
between resonators'®, while in our approach, NF couplings
Lmn can be unambiguously determined (see Eq. (9)) and
explicitly included in determining the lineshape (Eq. (8)).
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Although single-resonator parameters (w,.s and I's) can be
analytically obtained for certain high-symmetry structures
for that analytical formulas of scattering coefficients are
available®, such an approach is not general enough to deal
with arbitrary coupled systems without analytical expres-
sions of scattering coefficients and cannot be used to study
the couplings between different resonators.

Applications to photonic systems and benchmark tests

We now apply the developed formal theory to photonic
systems, described generally by an inhomogeneous per-
mittivity function &(7, ), in which at each local point 7,
the permittivity is &(w) = ex[l + @/ (0§ — ©* +iwl,)],
where &.., wg, ®p, and T, are all position- and frequency-
independent parameters, describing the local properties of
constituent materials. The governing equations (ie.,
Maxwell’s equations in the frequency domain) can be
formally rewritten as Eq. (1)*°, where the Hamiltonian is
given by

0 - /il V x 0 0

| iv 0 R

A=|&"" o (10)
0 0 0 i
0 iwf,eoc —iw}  —il,

and the wave function is defined as ¥(F) = (H E B
V)", with E, H, and P denoting the electric, magnetic, and
polarization fields, respectively, and V= d1_5/ d¢ describing
the polarization current. Consider the lossless case first (i.e.,

I',=0). The inner product between two wave functions is
defined as***

U L L
O = [ drlufl; o+ ek - Ey

+w§((o28m)71f3* . P,

+Hwlew) Vi - V) (11)
Meanwhile, in the FF region occupied by air, the inner

product between two-port modes can be defined as

(k7 |KS"y o= f{ o (HO)" - HY + &,(E9)" - ES )¢ - dS

(12)

where ¢ is the light speed in the host medium. This
ensures that different port modes are orthogonal and that
each mode carries a unit of energy flux®®. With Egs. (10)—(12)
and supposing that {yNF yfF} are obtained, one can
substitute them into Eq. (9) to compute all parameters
(see Sec. III in the Supplementary Information) and then
substitute them into Egs. (7) and (8) to determine the
lineshape.
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For photonic resonators with regular shapes, {y\F, yfF
can be obtained analytically. For arbitrary resonators, we
need to numerically obtain the required wave functions.
We emphasize that, however, such numerical calculations
are only needed once. Once {¢NF, y!F} are obtained, we
can predict the lineshapes of the coupled systems without
having to perform simulations on them.

We first choose an analytically solvable system—a single
gold sphere illuminated by an x-polarized plane wave—to
test our theory against Mie theory. As shown in Fig. 2a,
consider a sphere located at the origin with radius r,, =
0.0361, and Drude permittivity &(w) = &[l —w}/w?],
with o, and 1, denoting the plasmon resonance frequency
and wavelength. Such a problem can be analytically solved
by Mie theory™*, vyielding an analytical form of
Y*?(¥, w). When the scatterer is much smaller than the
wavelength of incident light, the electric dipole channel
dominates in the frequency range plotted*®, and thus, we
can obtain wes = [1 — 87(rn/A,)°/15 + ...]Jw,/+/3 and
the analytical forms of Y™, yfFf, and yNF, as well as [k *)
(see Sec. IV in the Supplementary Information). Figure 2a
depicts the field distributions of y'tM, ¢, and yNF . yNF
exhibits a clear electric dipole resonance feature, and 't
represents the FF radiation of an electric dipole located at
the origin.

Substituting all wave functions into Eq. (9), we find x =
d =292x10"?, /@i and T = 4.28x 10 *w,. Since there
is only one scatterer and one port in the system, we
neglect all subscripts without causing confusion. Sub-
stituting these parameters into Egs. (7) and (8), we obtain
the scattering spectrum of the nanosphere, defined as

o(w) = 371 — R|>/(217,k2), with 5, = \/H/€0 being the
vacuum impedance and R =s/s*, representing the
scattering coefficient. The spectrum thus calculated is
depicted in Fig. 2b as a solid line, well matching the Mie
theory (squares) and FEM calculation (circles) results.

Under the electric dipole approximation, we further
simplify the analytical expressions of all involved para-
meters (see Sec. IV in the Supplementary Information) as

T = wresx Im {p* x EFF} /2 = p2w?
K = ipw?,/\/6meocy
= ipw?,/+/6meocy

(127gocy)

res

(13)

with g = [ Sphere (F)d7 (P is the polarization field inside
the sphere; see the inset in Fig. 2a), representing the
effective dipole moment of the nanosphere. Equation (13)
reveals a few important physics difficult to obtain from
numerical calculations. First, x and d, defined as two
distinct field integrations (Eq. (9)), surprisingly generate
identical results (see Eq. (13)), which is consistent with the
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Fig. 2 Benchmark test against Mie theory. a Distributions of the £,-component in the ¢, ¢, and ¢ of a gold sphere (with r,, = 0.0361,)
obtained by Mie theory. The inset shows the distribution of P, inside the sphere at the central xoy plane. b Spectra of the scattering cross section of
the gold sphere derived by our theory (line), FEM calculations (circles), and the Mie solution (squares). ¢ k, d, and I of a series of gold spheres with
different sizes, computed by our theory

time-reversal symmetry argument19. Second, T takes an
expression identical to that derived for a dipole emitter
based on Poynting’s theorem (see Eq. (8.74) in ref. *%),
revealing the clear physical meaning of the radiation
damping. Finally, Eq. (13) uncovers the relation 2I =
|p|*w,/(6megc®) = |d|* verified by numerical calcula-
tions (see Fig. 2c), which ensures energy conservation
consistent with Poynting’s theorem®®. We note that these
relations were derived by energy-conservation and time-
reversal arguments in the empirical CMT. Here, they are
directly and rigorously demonstrated in our theory simply
because our theory is established based on Maxwell’s
equations, which already satisfy energy-conservation and
time-reversal symmetry.

After studying coupled electric dipole resonators to
justify our theory against analytical formulas derived in
prior literature*”*® (see Sec. V in the Supplementary
Information for details), we implement our theory to
study arbitrary photonic coupled systems. As shown in
Fig. 3a, the system we consider is a periodic metasurface
with unit cells arranged in a hexagonal lattice (with per-
iodicity 550 nm), each containing two different types of
nanoparticles (bar and C-shaped resonator) coupled
together. All nanoparticles are made of silver and are
placed on a semi-infinite dielectric substrate (n = 1.55).
Following the general strategy established above, we first

perform lossless FEM simulations to study the scattering
properties of two model systems, each containing reso-
nators of a particular type arranged in the same hexagonal
lattice (see Fig. 3a). Due to the periodic arrangements with
deep-subwavelength spacing, only the zero-order trans-
mission/reflection channels survive in the FF. From the
calculated reflection spectra (circles) shown in Fig. 3b, c,
we identify the resonance frequencies {w,,, m=1, 2} of
the two resonators (see dashed lines in Fig. 3b, c). We
then follow the general strategy described in the last
section to determine the needed NF and FF wave func-
tions {yfF, yNF m =1,2}. Substituting these single-
resonator properties into Eq. (9), we obtain all needed
parameters (see Sec. VI in the Supplementary Information
for details) and, in turn, the desired transmission/reflec-
tion spectra. The reflectance spectra calculated by our
theory are plotted in Fig. 3b, c as black lines, in perfect
agreement with FEM simulations (circles) of realistic
structures. This is remarkable since we did not perform
any fitting procedures in obtaining these spectra. The
lineshape of the coupled system predicted by our theory is
further confirmed by our experiments. We fabricated
three samples according to the designs using the standard
electron-beam lithography (EBL) method (see left panel in
Fig. 3b—d for their scanning electron microscopy (SEM)
images) and experimentally characterized their reflection
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Fig. 3 Benchmark test of our theory on a realistic system.

a Schematic of the coupled plasmonic system under study. Here, the
geometrical parameters are p =530, d = 30, w = 240, | = 420, R= 110,
and a =85, all in units of nm. b—d Reflectance spectra of periodic
metasurfaces containing b bar resonators only, ¢ C resonators only,
and d the two resonators coupled together, obtained by our theory
(solid lines), FEM simulations (circles), and measurements (triangles).
White dashed lines and gray areas denote the frequencies and widths
of the resonant modes. The right panels of ¢ and d are SEM images of
the fabricated samples with scale bars (white lines) of 500 nm

spectra. The spectra of the three samples are shown in Fig.
3b—d as triangles, measured with a homemade macro-
scopic spectrometer (see Sec. VII in the Supplementary
Information). The excellent agreement among the FEM,
the experimental and our theoretical results unambigu-
ously justify our theory.

Implementations of the theory in lineshape tailoring

We now apply our theory to “design” the lineshape of a
photonic system. Figure 3d shows that the interresonator
coupling can dramatically change the lineshape of a
coupled system, essentially determined by the two “dres-
sed” modes with frequencies and bandwidths {&.,T . }.
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Therefore, we must first understand the properties of the
dressed modes {@s,T+ }.

Consider a two-mode two-port system with two reso-
nators placed on the same plane illuminated by a normally
incident wave. Assuming I = I’ = I for simplicity, we
can explicitly rewrite Eq. (7) as

i) -=((3 o) DI
-, X a, Kiy 4

A )l ()

(14)

Diagonalizing the matrix containing ¢ by an orthogonal
transformation M, we obtain the following equation
describing the amplitudes of two collective modes a . :

(v -5 2))E)
(% )G

(15)
T, = (1 +Ty)/2+ (2t/T1T5 + AwAT)/

where

2V 4+ Aw?), @+ = (01 +02)/2tVE* 4+ Aw?,  with
Aw = (01 — w2)/2 and Al =T; — Ty, and

(4, a_)"=M(a; ay)". Since an orthogonal trans-
formation does not change the trace of a matrix, it is
sufficient to study A@ =&, —@_ and AT =T, —T_,
which are determined by ¢, Aw, and AT via

Ad =24/ + (Aw)®
(16)
AT = (2t + Awx AT)/1/ 2 4 (Aw)?

Here, and in what follows, we have scaled all involved
physical quantities (i.e., A@, AT, Aw, AT, and £) by v/T1Ty
to make them dimensionless. Equation (16) shows that
even for two resonators with fixed properties, one can still
use the interresonator coupling ¢ to change the properties
of the “dressed” modes and, in turn, “design” the final
lineshape of the coupled system.

The left and right panels in Fig. 4a depict, respectively,
how A& and AT vary with Aw and ¢, with AT set at two
different values. We find that while A® exhibits circular
equal-value lines on the Aw ~ ¢ plane independent of AT,
AT, exhibits fascinating behavior on the Aw~t plane
depending sensitively on AT. In particular, on each Aw ~ ¢
phase plane with a fixed AT, we always find two special
lines, defined as AT = 0 (red lines) and AT = + (I'; 4 I'y)
(green lines), to separate the whole space into four sub-
regions with distinct properties. Physically, while the
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Fig. 4 Phase diagram for lineshape tailoring. a Frequency difference A& (left panels) and radiation-damping difference AT (right panels) of the
“dressed” modes versus Aw and t, with Al fixed at 2 (upper panels) and 0 (bottom panels), for a two-mode two-port system. b Phase-separation
surfaces defined by AT = 0 (red surface) and AL = = (T, +T,) (green surface) versus Aw, t, and Al ¢ Optical lineshapes of the systems
corresponding to the eight points defined on the black circle in the upper right panel of a. d Evolutions of the radiation damping of the two dressed
modes (I, and I'_) while moving on the circle defined in the upper right panel of a. Here, all quantities are scaled by /T'1T,

condition AT =0 implies that the two dressed modes
have identical bandwidths (i.e, [, =I_), the other con-
dition AT = #(I'; +TI',) means that one dressed mode
exhibits vanishing radiative damping. Interestingly, these
two phase boundary lines rotate as AI' changes, as shown
in Fig. 4b.

To illustrate the key features of the four subregions, we
purposely choose eight points from a circle on the Aw ~ ¢
plane with AI' =2 (see Fig. 4a) and illustrate in Fig. 4c
how the reflection spectra of the corresponding systems
evolve. Consistent with our expectations, the spectra of
systems 1 and 5 only exhibit one peak, as the other mode
is completely dark, while the spectra of systems 3 and 7
exhibit two peaks with equal bandwidths. In between
these special points, the spectra gradually evolve. Notably,
the radiation damping (bandwidths) of the two “dressed”
modes can vary continuously from 0 to I'y 4+ I, while
moving on the circle (see Fig. 4d).

The physics is very clear: now that the dressed modes
are appropriate linear combinations of two original
modes, their radiation damping must also be linear
combinations of that of the two original modes. There-
fore, varying Aw and ¢ can dramatically modify the relative

portions of the two original modes in constructing the
dressed modes and, in turn, efficiently control the radia-
tion damping of the dressed modes. In principle, one can
realize any desired lineshapes based on our phase diagram
by choosing certain original modes and “tuning” the
coupling ¢. Of particular interest is the appearance of a
purely dark mode with infinitely long lifetime, which
shares the same physical origin as the BIC and has many
interesting applications®*>",

We now experimentally verify our predictions on line-
shape tailoring based on coupled systems constructed by
the two resonators studied in Fig. 3a. Since ¢ is solely
determined by the overlap between the yNF of two reso-
nators (see Eq. (9)), we understand that changing the
resonators’ relative configuration can dramatically modify
t. Indeed, as we rotate the C-shaped resonator with
respect to the bar resonator, we find that ¢ drastically
changes (see solid line in Fig. 5a). In particular, increasing
the relative angle 8 between two resonators can drive ¢ to
change from a positive value to a negative value, passing
through 0 at a particular angle. Such an intriguing ¢~ 6
relation can be simply explained by an effective model for

plasmonic coupling established previously*”*®,
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Choosing six points on the ¢ ~ 8 curve, as shown in Fig.
5a, we employ our theory to study the optical lineshapes
of their corresponding realistic systems. Since the two
original modes have fixed properties, these six systems
with different ¢ are located on a straight line in the phase
diagram passing through two phase boundaries (see Fig.
5b). Their reflection spectra, computed by our theory, are
depicted in Fig. 5¢ as solid lines, exhibiting the expected
behaviors. In particular, the spectrum of the third system
only exhibits one peak, while that of the fifth system
contains two equal-bandwidth peaks, consistent with the
phase diagram shown in Fig. 5b. Once again, we empha-
size that all spectra are calculated with our theory directly
and without any fitting procedures.

We then perform both experiments and simulations to
verify the above theoretical predictions. We fabricate
samples according to the designs using the standard EBL
method, with the right panel in Fig. 5c showing SEM
images of the fabricated samples. Illuminating these
samples with normally incident light with E | j, we
measure their transmission/reflection spectra and depict
the reflection spectra as solid triangles in Fig. 5¢c. We also
perform FEM simulations to calculate their reflection
spectra (open circles in Fig. 5c). Both the experimental
and simulation results are in excellent agreement with the

spectra obtained by our theory (solid lines in Fig. 5c). In
particular, the measured/simulated spectra of sample 3
exhibit clear BIC features, while those of sample 5 contain
two peaks with equal bandwidths. We also employ our
theory to predict the transmission spectra of these sys-
tems, which are in excellent agreement with the measured
and simulated results (see Sec. VIII in the Supplementary
Information).

The solid line in Fig. 5d depicts how varying ¢ sig-
nificantly modulates the radiative Q factor of the low-
frequency dressed mode, as predicted by our theory. That
the Q factor diverges at a specific point signifies the
appearance of a BIC. The symbols are the Q factors of six
realistic samples obtained by analyzing their measured
reflection spectra. Excellent agreement is noted between
the experimental and analytical results. At the frequency
where the BIC appears, the radiations from the two
individual resonators exactly cancel each other, leading to
vanishing of the total radiative loss (see Sec. VI in the
Supplementary Information).

Discussion

In summary, we have derived a formal theoretical fra-
mework directly from Maxwell’s equations to study the
optical responses of arbitrarily coupled photonic systems,
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in which all involved parameters are unambiguously
computable without any fitting procedures. After testing
it against both Mie theory and numerical simulations on
different systems, we illustrate how to employ it to design
the lineshape of a coupled system by modulating the
couplings between resonators. In particular, we show that
one can always choose a specific coupling between two
arbitrary resonators to make one of the “dressed” modes
in the coupled system completely dark, creating a BIC. All
predictions are quantitatively verified by our experiments
and simulations at near-infrared wavelengths. In addition
to revealing the profound physics underlying the
coupling-induced phenomena, our theory also offers a
powerful tool to design optical devices with well-
controlled NF and FF properties, and can be extended
to study coupled systems for other types of waves.

Materials and methods
Simulations
We employed FEM simulations using the commercial
software COMSOL Multiphysics. The permittivity of Ag
2

was described by the Drude model ¢(w) = &5 — ﬁ,
with e = 5&p, @o = 0THz, and w, = 27x 2176.2 THz.
The effective damping rate was set as I, = 2 x 38.3 THz
for the bar structure and I', = 2w x 27.3 THz for the C-
shaped resonator, obtained by fitting with our experi-
mental results. The SiO, spacer was considered a lossless
dielectric with permittivity ¢=2.42. Additional losses
caused by surface roughness and grain boundary effects in
thin films, as well as dielectric losses were effectively
considered in the fitting parameter T,.

Fabrication

All our meta-devices were fabricated following standard
EBL and lift off processes. First, the positive resist was
successively spin coated on a silica substrate, and exposed
with EBL (JEOL 6300) with an acceleration voltage of
100 kV. After exposure, the samples were developed in the
solution of isopropanol alcohol and methyl isobutyl
ketone. Then, 3 nm Cr and 30 nm Au/Ag were deposited
using electron-beam evaporation. Finally, the top patterns
were formed after a lift of process. All samples had
dimensions of 80 um x 80 pum.

Optical characterizations

We used a homemade macroscopic spectrometer
equipped with a broadband supercontinuum white light
source and a fiber-coupled grating spectrometer
(Ideaoptics NIR2500) to characterize the optical proper-
ties of fabricated samples (see more details in Sec. VII of
Supplementary Information).
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