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In-silico clearing approach for deep refractive index
tomography by partial reconstruction and
wave-backpropagation
Osamu Yasuhiko 1✉ and Kozo Takeuchi 1✉

Abstract
Refractive index (RI) is considered to be a fundamental physical and biophysical parameter in biological imaging, as it
governs light-matter interactions and light propagation while reflecting cellular properties. RI tomography enables
volumetric visualization of RI distribution, allowing biologically relevant analysis of a sample. However, multiple
scattering (MS) and sample-induced aberration (SIA) caused by the inhomogeneity in RI distribution of a thick sample
make its visualization challenging. This paper proposes a deep RI tomographic approach to overcome MS and SIA and
allow the enhanced reconstruction of thick samples compared to that enabled by conventional linear-model-based RI
tomography. The proposed approach consists of partial RI reconstruction using multiple holograms acquired with
angular diversity and their backpropagation using the reconstructed partial RI map, which unambiguously reconstructs
the next partial volume. Repeating this operation efficiently reconstructs the entire RI tomogram while suppressing MS
and SIA. We visualized a multicellular spheroid of diameter 140 µm within minutes of reconstruction, thereby
demonstrating the enhanced deep visualization capability and computational efficiency of the proposed method
compared to those of conventional RI tomography. Furthermore, we quantified the high-RI structures and
morphological changes inside multicellular spheroids, indicating that the proposed method can retrieve biologically
relevant information from the RI distribution. Benefitting from the excellent biological interpretability of RI
distributions, the label-free deep visualization capability of the proposed method facilitates a noninvasive
understanding of the architecture and time-course morphological changes of thick multicellular specimens.

Introduction
Optical imaging has been used to elucidate various

biological and physiological phenomena in living speci-
mens with minimal invasiveness and a resolving power
sufficiently high to visualize subcellular structures. How-
ever, optical imaging only achieves low imaging depth
owing to multiple scattering (MS) and sample-induced
aberration (SIA), caused by the inhomogeneity of the
refractive index (RI) of thick samples1 (Fig. 1a). MS
attenuates single-scattering (SS) light by inducing severe
wavefront distortion, thereby concealing the SS light in

the MS background. In contrast, SIA broadens the width
of the point spread function by causing relatively slow
varying wavefront distortion, degrading the imaging
resolution and sensitivity. Therefore, overcoming MS and
SIA is key to realizing high-resolution deep optical
imaging1.
A representative approach for suppressing MS is to

selectively detect SS waves using temporal or spatial
gating operations, as implemented in optical coherence
tomography2 (OCT) or confocal microscopy, respectively.
Additionally, full-field OCT3,4 realized high-spatial-
resolution imaging via spatial and temporal gating lever-
aging low-coherent spatial and temporal interference. A
computational spatial gating method has also been pro-
posed5. The performance of the gating operation depends
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on the efficiency of extracting constructively interfering
SS photons from MS photons. Unfortunately, SIA sig-
nificantly deteriorates the spatial gating performance due
to the loss of spatial coherency. SIA is generally addressed
using adaptive optics (AO)6,7. Most AO methods employ
dynamic correction elements, such as deformable mirrors
or spatial light modulators, to introduce compensatory
distortion of SIA. SIA is usually estimated by direct sen-
sing, a wavefront sensor or guide star, or by the indirect
optimization of the sharpness metric calculated from
multiple images. AO has become a valuable tool in var-
ious imaging techniques, such as confocal microscopy and
multi-photon microscopy8. However, when imaging deep
within samples or for samples with a large surface cur-
vature, a single aberration correction works well only in
the vicinity of the aberration measurement location, called
the isoplanatic patch, owing to the spatially varying SIA7.
This makes it difficult to efficiently and accurately correct

the SIA throughout the volume of interest. Furthermore,
most AO methods fail to accurately compensate for SIA
in the presence of a strong MS background1. Therefore,
there is generally trade between MS and SIA tolerance.
Recently, several label-free coherent imaging techniques

have successfully addressed the detrimental effects by
exploiting the optical and computational suppression of
MS and SIA. The time-gated reflection matrix
approach9–11, which contains all input-output responses
at a certain depth, accurately corrected up to high-order
aberrations without guide stars by insightfully identifying
the aberrations hidden in the reflection matrix by post-
processing. Another approach based on the incoherent
synthesis of multi-angle OCT images with data-driven
ray-trajectory correction12,13 successfully achieved high-
resolution, speckle-free, and isotropic visualization. Ben-
efitting from epi-detection configurations, these methods,
including OCT, enable in vivo label-free observation at an
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Fig. 1 Overall working principle of in-silico clearing RI tomography. a Two detrimental effects, i.e., MS and SIA, degrade the resolving power of
microscopes as the depth increases. b Schematic of the imaging system. Plane waves are irradiated onto a sample at various angles, and the
diffracted light is interferometrically captured by a camera. c Pipeline of the in-silico clearing approach. In-silico clearing RI tomography reconstructs a
partial RI map near the detection lens from the captured complex fields and computationally backpropagates the complex fields through the partial
RI map. This operation eliminates wavefront distortion caused by the inhomogeneity of the partial RI map, suppresses MS and SIA, and enables
unambiguous visualization of the next partial RI map. Repeating this operation till the top of the sample allows entire high-resolution reconstruction.
d Quantitative phase imaging (QPI) and quantitative phase gradient imaging (QPGI) of a homogeneous sphere. Images obtained by QPI have a long
tail along the optical axis, whereas those obtained by QPGI have a short tail, enabling selective visualization of the sample at a certain depth. e Partial
RI map reconstruction using MSS-Rytov, which was proposed previously. MSS-Rytov calculates through-focus QPGI images from multi-angle complex
fields. This reconstruction scheme takes advantage of the optical sectioning effect of QPGI. f Backpropagation using the partial RI map. In the
proposed approach, captured complex fields are backpropagated through the partial RI map by multi-slice-based propagation
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unprecedented depth. However, epi-detection configura-
tions may face difficulty in visualizing detailed biological
structures, such as the morphology of individual cells and
weak-backscattering subcellular structures, which reflect
the architecture of the tissue and functionality of cells.
Recently developed dynamic full-field OCT tackled this
problem by performing temporal analysis on a series of
FFOCT images, visualizing intracellular structures via
intracellular motility14,15.
RI tomography, or holotomography, another technique

based on the image contrast mechanism different from
OCT, enables volumetric visualization of an RI distribu-
tion. It allows visualization of intracellular structures such
as chromosomes, lipid droplets, mitochondria, and lyso-
somes16–19, benefiting from the RI being a biophysical
parameter that reflects cellular properties. RI tomography
retrieves RI distribution from a series of captured images
under various illumination or detection conditions, such
as angle-scanning illumination16,20–23 and through-focus
imaging23,24, by solving the inverse scattering problem.
The conventional reconstruction algorithm is based on a
linear model that is derived from a weak scattering
approximation (first Born or Rytov), providing excellent
visualization of single cells; however, it is not valid for MS
samples such as thick multicellular specimens. To over-
come this limitation, recent studies have exploited more
accurate forward propagation models, such as a multi-
slice-based method25–28 and a series convolution
approach of the Lippmann–Schwinger equation29–31.
These nonlinear wave propagation models provide accu-
rate RI distribution but have limited practical applicability
due to their high computational costs. Recently, we pro-
posed a multiple-scattering suppressive Rytov (MSS-
Rytov) approach to realize efficient RI reconstruction of
thick samples32. Unlike the conventional Rytov approx-
imation, which applies first-order phase approximation to
angle-scanned coherent fields and often suffers from
severe phase distortion caused by MS samples, MSS-
Rytov suppresses the MS by a numerical accumulation of
the fields and applies the Rytov approximation to the MS-
suppressed fields. Thus, it overcomes the limitation of the
conventional Rytov approximation and a successful
reconstruction of multicellular thick specimens is
demonstrated. Additionally, in contrast to the non-linear
approach, MSS-Rytov provides computationally efficient
reconstruction due to the linearized model at the expense
of reconstruction accuracy. Although the MSS-Rytov
approach succeeded in visualizing subcellular structures
inside multicellular spheroids, its imaging depth is still
limited due to the tradeoff between MS and SIA sup-
pression, restricting its application to more complicated
biological specimens.
In this study, we propose a novel linear-model-based

approach, called in-silico clearing, to significantly improve

the imaging depth of RI tomography in comparison with
conventional linear-model-based methods by simulta-
neously addressing MS and SIA. MS and SIA have the
same origin, that is, the heterogeneity of the RI distribu-
tion. In-silico clearing RI tomography directly addresses
this fundamental limitation. The proposed approach
consists of partial reconstruction of RI distribution and
wave-backpropagation through the partial RI map
(Fig. 1c). First, the proposed approach partially recon-
structs the RI distribution from angle-scanned complex
fields within the range where the resolution is not
degraded. After partial reconstruction, the complex fields
are numerically backpropagated using a multi-slice-based
method, which removes the wavefront distortions caused
by the current partial RI map and allows unambiguous
reconstruction of the next partial RI volume while sup-
pressing MS and SIA. These operations are repeated till
the top of the sample, realizing high-resolution RI
reconstruction over an extended imaging depth. Each
partial RI reconstruction is based on a linear model, and
multi-slice-based propagation is performed only once for
each partial volume, end to end, allowing computationally
efficient reconstruction. Here, we first provide a detailed
explanation of in-silico clearing RI tomography. Then, we
computationally demonstrate its deep imaging capability
and computational efficiency using a simulated multi-
cellular spheroid. Subsequently, we experimentally
demonstrate its superior deep imaging performance
compared to that of conventional RI tomography and
rapid, computationally efficient reconstruction using a
liver spheroid of diameter 140 µm. Additionally, we
demonstrate the generalization performance of the pro-
posed method independent of sample morphology by
visualizing a variety of cell-type spheroids. Subsequently,
we estimate the lipid-droplet volume inside hepatocyte
spheroids, demonstrating that the proposed RI tomo-
graphy can at least semi-quantitatively assess RI-specific
structures deep inside the specimens. Finally, we assess
the morphological changes caused inside the spheroid by
treatment with staurosporine (an apoptosis inducer) to
verify whether the proposed RI tomography has sufficient
resolving power to analyze subcellular morphological
changes inside thick specimens and estimate biologically
relevant information.

Results
Principle of partial reconstruction of refractive index
distribution
Figure 1c shows a pipeline of the in-silico clearing

approach. Generally, the resolution of optical microscopy
decreases as the depth increases (Fig. 1a). The proposed
approach first partially reconstructs the RI map within the
range where the resolution is maintained and then
removes the MS and SIA effects caused by the partial RI
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map using computational wave-backpropagation. The
entire sample volume is split into several blocks in the
z-direction and the aforementioned operations are repe-
ated up to the top of the sample.
The experimental setup for in-silico clearing RI tomo-

graphy involves a standard holographic tomography sys-
tem, where the sample is illuminated with multiple
incident angles and the diffracted light is recorded by an
off-axis interferometer (Fig. 1b). The scattering potential
V(r) of the sample is related to its RI distribution n(r) via

V rð Þ ¼ k2b nðrÞ=nbð Þ2�1
� �

, where kb ¼ 2πnb=λ0 is the
wavenumber in the medium, λ0 is the free-space wave-
length, and nb is the refractive index of the medium. The

incident plane wave with incident wavevector kjin (j ¼
1; ¼ ;Nin, where Nin is the total number of incident

angles) is denoted as uinðr; kjinÞ ¼ expðikjin � rÞ. When the

wave illuminates the sample, the diffracted field uðr; kjinÞ
is given by the Lippmann–Schwinger equation as follows:

uðr; kjinÞ ¼ uinðr; kjinÞ þ
Z

dr0G r � r0ð ÞV r0ð Þuðr0; kjinÞ ð1Þ

where G(r) is Green’s function of the Helmholtz equation.

First, we describe the reconstruction of the partial RI
map from angle-scanned complex fields. For the partial
reconstruction of an RI distribution, it is important to
eliminate the crosstalk from outside the current block to
the extent possible to avoid reconstruction errors. To
circumvent crosstalk, the fields before reconstruction
should be locally and quantitatively related to the RI map.
In the conventional Rytov approximation, the RI map is
reconstructed from the phase maps of the angle-scanned
complex fields, where the phase map is called the quan-
titative phase imaging (QPI). However, using QPI images
as pre-reconstructed fields hinders partial reconstruction
owing to the undesired crosstalk caused by their heavy-
tailed distribution in the depth direction. This heavy-
tailed distribution is caused by the low illumination
numerical aperture (NA) of each complex field. Tradi-
tionally, the optical sectioning in linear microscopes, such
as DIC and confocal microscope, has been achieved by
simultaneously increasing the illumination and detection
NA. By contrast, each angle-scanned illumination com-
prises a single spatial frequency, resulting in the heavy-
tailed distribution owing to the absence of the optical
sectioning effect. A possible solution is to computationally
synthesize the angle-scanned fields to increase the effec-
tive illumination NA. Fields can be synthesized in several
ways, such as coherent5,32 or incoherent32 accumulation
of fields, showing the optical sectioning effect (for a
detailed explanation, see Supplementary Note 1). How-
ever, the coherent synthesis of fields is vulnerable to
SIA32. Thus, we utilize the incoherent synthesis and
employ quantitative phase gradient imaging (QPGI)

images as a pre-reconstruction field. QPGI is known as a
quantitative version of DIC33,34, showing the optical sec-
tioning effect. QPGI images can be computationally
simulated from angle-scanned complex fields using the
following incoherent accumulation32:

W rð Þ ¼ 1
Nin

X
j

uðr; kjinÞu�ðr þ δr; kjinÞ ð2Þ

where uðr; kjinÞ :¼ uðr; kjinÞ expð�ikjin � rÞ, �f g� is the
complex conjugate operation and δr is the shear vector
of the QPGI. The QPGI is given by the phase of W rð Þ.
The z-stacked QPGI images can be calculated using
digital wave propagation for angle-scanned complex
fields, followed by Eq. (2). Figure 1d shows QPI with
normal incidence θx; θy

� � ¼ 0�; 0�ð Þ� �
and QPGI images

calculated from diffracted fields measured for a homo-
geneous sphere. Here, we set the NA of the detection and
illumination lenses to 1.0 and the diameter of the sphere
to 2λ0. The QPI image exhibits a long-tailed distribution
in the z-direction, which potentially causes undesired
crosstalk. On the other hand, the QPGI image shows a
short-tailed distribution owing to its optical sectioning
capability. Therefore, QPGI images can potentially avoid
crosstalk and realize partial RI reconstruction. To
reconstruct an RI map from QPGI images, we need a
quantitative relationship between the RI map and QPGI
images. This relationship has been described as incoher-
ent MSS-Rytov (iMSS-Rytov) in our previous study32,
providing a theoretical relationship between an RI map
and a QPGI image by applying Rytov approximation to
incoherently accumulated fields (Eq. (2)) using perturba-
tion theory. Using the convolution kernel derived from
this theoretical relationship, the RI distribution was
calculated by deconvolution of the z-stacked QPGI
images. Therefore, applying iMSS-Rytov to a partial QPGI
image allows partial reconstruction of the RI distribution
(Fig. 1e). In this study, deconvolution is performed by
iteratively solving a regularized optimization problem that
uses a non-negative constraint and 3D total variation
regularization. The detailed procedure and the pseudo-
code for in-silico clearing RI tomography are provided in
the Materials and methods section and Supplementary
Notes 2 and 3.

Wave-backpropagation using a partial RI map
Once the partial RI map is obtained, in-silico clearing RI

tomography backpropagates the captured complex fields
through the partial RI map to remove phase distortions
caused by the RI map using the multi-slice-based method
(Fig. 1f). To date, various slice-by-slice propagation
methods have been proposed25,27,28. Among them, the
beam propagation method (BPM) was used in this study
owing to its computational efficiency and practically
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sufficient accuracy. The BPM comprises two operations:
non-paraxial diffraction and phase distortion by an object.
The operations can be represented as follows:

uðrt; z þ Δz; kjinÞ ¼ Oðrt; z þ Δz; kjinÞPΔzfuðrt; z; k jinÞg
ð3Þ

where rt ¼ ðx; yÞ is the transverse spatial coordinate, Δz
is the propagation distance, PΔz �f g ¼
F�1fexpði

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2b � ktj j2

q
ΔzÞF �ð Þg is the non-paraxial dif-

fraction with a step size Δz, F �ð Þ and F�1 �ð Þ are the 2D
Fourier and inverse Fourier transforms, respectively,
kt ¼ ðkx; kyÞ is the transverse wavenumber,

Oðrt; z; kjinÞ ¼ exp½ik0δnðrt; zÞαðkjinÞΔz� is the phase dis-
tortion,　k0 and kb are the free-space wavenumber and
the wavenumber in the medium, δn rt; zð Þ ¼ n rt; zð Þ �
nb, and αðkjinÞ ¼ 1= cos θjin ¼ kb=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2b � jkjin; tj2

q
is an

obliquity factor. The obliquity factor is required to
modify the amount of phase distortion for an oblique
incidence35. In in-silico clearing RI tomography, the
partially reconstructed RI map from the QPGI images
is used in δn rt; zð Þ, and the BPM is executed in the
backward direction using the captured complex fields
as the initial fields:

uðrt; z � Δz; kjinÞ ¼ O�ðrt; z � Δz; kjinÞP�Δzfuðrt; z; kjinÞg
ð4Þ

As both MS and SIA originate from the same physical
phenomena, namely spatial variations in RI distribution,
this backpropagation operation simultaneously mitigates
them.

Imaging a simulated multicellular spheroid
We applied in-silico clearing RI tomography to a

simulated multicellular spheroid exhibiting MS and SIA
and compared it to the case without in-silico clearing
(equivalent to MSS-Rytov) to numerically demonstrate
the deep imaging performance and computational effi-
ciency of the proposed method. To analyze the perfor-
mance of the reconstruction methods, we calculated the
simulated measurements using the BPM as a forward
model. To ensure the reliability of the simulation results,
it was necessary to confirm the effects of the slice-by-slice
approximation of the BPM on the accuracy of the
simulated measurements. Therefore, we compared
the accuracy of the two methods, BPM and the
Lippmann–Schwinger equation, and confirmed that BPM
has sufficient accuracy for simulating the measurements,
as described in Supplementary Notes 4.I, 4.II. Moreover,
to confirm the performance of BPM when used for
backpropagation in in-silico clearing RI tomography, we

confirmed the effect of the obliquity factor on the accu-
racy of wave-backpropagation in Supplementary Note
4.III. All processing in this study was performed using an
NVIDIA RTX A6000 GPU and AMD Ryzen Threadripper
3990X CPU installed on a desktop computer.
The simulated spheroid has a diameter of 122λ0, and is

within a volume of 672 × 672 × 336 voxels with a resolu-
tion of λ0=5 ´ λ0=5 ´ 2λ0=5, comprising 331 cells with a
diameter of 14λ0 arranged in a body-centered cubic lattice
with a lattice constant of 18λ0. Each cell in the spheroid
comprised cytoplasm (n= 1.370), a nucleus (n= 1.355), a
nucleolus (n= 1.370), and several vesicles (n= 1.410), and
the cells were randomly rotated. The sample was illumi-
nated by 341 incident waves whose incident wavevectors
were distributed in a regular grid pattern in k-space with a
maximum illumination NA of 1.0. We set a detection NA
to 1.0. We set the block length to lb= 20λ0 in in-silico
clearing RI tomography, splitting the entire volume into
seven blocks.
Figure 2a shows the maximum intensity projection

(MIP) and x–y cross-section at z ¼ 13:2λ0; 49:2λ0;
85:2λ0; 121:2λ0 of the RI distributions of the ground
truth, reconstructed RI distribution with and without in-
silico clearing, respectively. The QPGI images calculated
during the process with and without in-silico clearing are
provided in Supplementary Note 5. Figure 2 shows that
RI tomography without in-silico clearing failed to resolve
fine structures at a depth of 49.2λ0 and was unable to
produce images of sufficient resolution beyond this
depth. In contrast, in-silico clearing RI tomography suc-
cessfully resolved intracellular structures such as nuclei
and nucleoli, even at a depth of 121.2λ0. To assess the
performance of each method quantitatively, we calcu-
lated the normalized reconstruction error (NRE), peak
signal-to-noise ratio (PSNR), and structural similarity
index measure (SSIM) for the RI maps (see Materials and
methods section for detailed definitions of the metrics).
To quantify the reconstruction quality as a function of
depth, we split the RI volumes into 18λ0 thick layers
(which equals the lattice constant) and calculated the
metrics for each layer. The metrics were then plotted as a
function of the depth of the center of the layer (Fig. 2b).
All three metrics showed that the case with in-silico
clearing exhibited superior performance compared to the
case without in-silico clearing at greater imaging depths.
The total reconstruction times were 55 s and 124 s for
cases without and with in-silico clearing, respectively.
Although in-silico clearing RI tomography required 2.2
times longer processing times owing to the BPM opera-
tion, it demonstrated efficient RI reconstruction within a
few minutes of processing. Additionally, we presented the
in-process complex fields after propagating through each
RI block in Supplementary Note 6, which shows that the
phase of the complex fields gradually flattened and the
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single-to-multiple scattering ratio36 improved, thereby
indicating that the proposed method correctly compen-
sates for the wavefront distortion caused by the sample.
Furthermore, we showed the RI distribution recon-
structed by the conventional Rytov model in Supple-
mentary Note 7; the reconstruction completely failed
owing to severe phase distortion caused by MS, because
the conventional Rytov approximation is only valid
against a spatially slowly varying phase of the output field.
Numerical simulations performed for the low NA and an
absorbing sample, discussed in Supplementary Note 8
and 9, respectively, confirmed imaging depth improve-
ment of in-silico clearing RI tomography compared to
that of RI tomography without in-silico clearing. These

results numerically confirm that the proposed approach
enables deeper RI tomography compared to conventional
linear-model-based methods in a computationally effi-
cient manner even in the presence of MS and SIA.

Imaging a live multicellular spheroid
To experimentally demonstrate the performance of in-

silico clearing RI tomography, we observed a 3D-cultured
human hepatoma HepG2 multicellular spheroid. 3D cul-
ture models are advantageous over traditional two-
dimensional (2D) culture models as they can simulate
the architecture and functionality of native tissues.
However, the subcellular-resolution visualization of the
entire sample by optical imaging is difficult due to MS and
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SIA. As a reference for visualization using other imaging
modalities, we show the confocal and two-photon images
of a HepG2 spheroid in Supplementary Note 13; notably,
confocal microscopy lost resolution with an increase in
depth and could not visualize the entire spheroid. In
general, for high-quality imaging of a multicellular
spheroid, optical clearing37–40 and an RI matching med-
ium41 are used to mitigate the effects of MS and SIA,
respectively. However, these methods are inseparable
from invasive manipulations, chemical exposure, and
labeling procedures. Therefore, it will be beneficial to
visualize a 3D culture system in a noninvasive and label-
free manner. It is known that 3D cultured hepatocyte
more accurately represents their in vivo counterpart42

compared to 2D cultured hepatocyte. The liver plays a
central role in metabolism with over 500 vital function-
alities in vivo. Therefore, it is valuable for versatile
applications related to liver function to visualize whole
hepatocyte spheroids by overcoming MS and SIA.
We built an off-axis holographic RI tomography system

equipped with a 2D scanning mirror and an HeNe laser
(λ0= 632.8 nm) as the light source. The sample was illu-
minated by plane waves with 333 different incident angles
in a regular grid pattern in k-space with an illumination
NA of 0.95. Each diffracted wave passed through a
detection objective lens (×60/1.0 NA, water immersion)
and was combined with a reference beam to generate an
off-axis hologram on a CMOS camera. A series of images
were recorded in 4.5 s. The captured raw images were
converted to complex fields using digital holographic
processing43. The detailed experimental setup, which was
used for all experiments in this study, is described in
Supplementary Note 12.
Figure 3a and b shows the MIPs of the reconstructed RI

distribution with and without in-silico clearing, respectively.
The reconstruction volume contained 1038 × 1002 × 338
voxels with a voxel size of 0.138 × 0.138 × 0.400 μm3. In the
process of in-silico clearing, we set the block length
lb= 15 μm and the thickness of the slice for wave-
backpropagation as 0.4 µm, thereby dividing the entire
volume into nine blocks. Here, the block length was
empirically determined based on the observation of several
multicellular spheroids. The same block length and voxel
size were used for all experiments in this study. In the RI
reconstruction without in-silico clearing, as the whole
volume data were too large to reconstruct on GPU, we
axially split the volume into nine blocks and stitched the RI
maps together after reconstructing them individually. As
seen in the MIPs of the x-z plane, in-silico clearing RI
tomography succeeded in visualizing detailed structures
that could not be resolved without in-silico clearing at large
imaging depth (see Supplementary Video 1 showing all
cross-sections). Figure 3c and d shows the four lateral slices
for each reconstructed volume at depths of z= 16.8 µm,

49.6 µm, 80.8 µm, and 113.6 µm. Although the case without
in-silico clearing produced a sharp resolution up to
z= 16.8 µm, it began to lose its resolution at z= 49.6 µm
and failed to resolve intercellular detailed structures and
discriminate individual cells beyond z= 80.8 µm. However,
the case with in-silico clearing produced a sharp resolution
to discriminate individual cells and resolve intracellular
structures, such as the nuclei and nucleoli. The total
reconstruction times using our algorithm were 187 s and
386 s for the cases without and with in-silico clearing,
respectively. Furthermore, we showed the RI distribution
based on a reconstruction using the conventional Rytov
model in Supplementary Note 14. However, the recon-
struction failed owing to strong MS. Collectively, we have
demonstrated the computational efficiency and improved
deep imaging capability of the proposed method for a
biological multicellular specimen compared to conventional
linear-model-based techniques.

Visualization of various cell-type spheroids
Subsequently, we demonstrate the generalization ima-

ging performance of in-silico clearing RI tomography.
Over the last few decades, 3D cultured cells have shown
drastic phenotypic improvements across several cell types.
As spheroids can mimic the architecture and functionality
of native tissues, different cell-type spheroids represent
their unique morphological complexity. To handle this
diversity, the 3D imaging technique should provide con-
sistent performance independent of sample morphology.
To demonstrate the generalization performance of in-
silico clearing RI tomography across different sample
morphologies, we observed spheroids comprised of four
different cell types: HepG2, A549 (human lung carci-
noma), A172 (human glioblastoma), and F9 (mouse
embryonal carcinoma).
Figure 4a–d shows the MIPs and lateral cross-sections

of RI distributions of HepG2, A549, A172, and
F9 spheroids reconstructed by in-silico clearing RI
tomography. Furthermore, Fig. 4e–h shows the 3D
visualization rendered through alpha blending to illus-
trate their surface profiles (see Materials and methods for
a detailed description of alpha blending). HepG2 (Fig. 4a)
and A549 (Fig. 4b) spheroids comprised relatively round
and anisotropically elongated cells, respectively. The
A172 (Fig. 4c) spheroid showed cells having an aniso-
tropically stretched shape; however, the surface of the
spheroid had bumps and dips (Fig. 4g), which is different
from the relatively smooth surface of the A549 spheroid
(Fig. 4f). Although the F9 (Fig. 4d) spheroid had an
individual cell morphology similar to that of the
HepG2 spheroid, each cell was relatively small, thereby
indicating that F9 spheroid has high cell density. For
comparison, we also reconstructed the RI distribution
without in-silico clearing and demonstrated that the
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entire spheroid could not be imaged with sufficient
resolution, as shown in Supplementary Note 15. In
conclusion, in-silico clearing RI tomography achieved

consistent imaging performance that was independent of
the spheroid morphology at least for the specimens
observed in this experiment.
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Semi-quantification of high-RI structures inside hepatocyte
spheroids
Further, to assess whether in-silico clearing RI tomo-

graphy can quantify RI-specific structures, we performed
lipid volume estimation inside HepG2 spheroids using the
reconstructed RI distributions. Lipids are the fundamental
components of all cells and play a key role in various
processes and diseases44. Therefore, the visualization and
quantification of lipids are valuable in the field of bio-
medicine. Owing to its high RI contrast structure, the
visualization of lipid droplets is a promising application of
RI tomography, as reported in previous studies17,32.
Unfortunately, the localized high RI structure induces
severe MS, hindering the visualization and quantification
of detailed structures deep inside the samples. Accord-
ingly, we assessed whether in-silico clearing RI tomo-
graphy can estimate lipid volume even in the presence of
severe MS.
To induce lipid droplet production, HepG2 spheroids

were exposed to different concentrations of oleic acid
(OA): 0, 75, 150, and 300 µM. Existing studies demon-
strated that lipid droplet formation by OA treatment is
linearly correlated to OA concentration in 2D-cultured
HepG2 cells45. Herein, we confirmed this relation in 3D-
cultured hepatocytes using in-silico clearing RI tomo-
graphy. We observed six spheroids at each OA con-
centration, resulting in a total of 24 spheroids. We showed
the MIPs (Fig. 5a) and lateral cross-sections (Fig. 5b) of
the RI distributions at each OA concentration. Further-
more, we rendered spheroids with concentrations of 0 and
300 µM for visualization in a 3D volume (Fig. 5c). The
MIPs, lateral cross-sections, and 3D renderings of the
HepG2 spheroids under various OA concentrations illu-
strated that the number of high-RI structures increased as
OA concentration increased. To estimate the lipid volume
inside the spheroids, we semi-quantitatively measured the
morphological parameters and volume of the high-RI
structures from the reconstructed RI distributions. We
calculated the volume, equivalent diameter, and volume
ratio of high-RI structures for each spheroid. The volume
was calculated as the sum of regions where n(r) > 1.34, the
equivalent diameter was calculated from the volume by
assuming that the sample was an ideal sphere, and the
volume ratio of high RI structures was calculated as the
ratio of volumes where n(r) > 1.375 and n(r) > 1.34, as
shown in Fig. 5d–f (see Materials and methods for
detailed definition of parameters). The mean equivalent
diameters (standard deviation) were 111.5 µm (6.1 µm),
111.5 µm (13.3 µm), 109.6 µm (14.4 µm), and 103.0 µm
(15.3 µm) for the OA concentration of 0, 75, 150, and
300 µM, respectively; therefore, the sizes of the spheroids
were almost equivalent. Figure 5f shows a high correlation
coefficient between the volume ratio of high-RI structures
and OA concentration, where the fitted line had a slope of

0.0069%/μM and an intercept of 0.23% with a coefficient
of determination R2= 0.90. This indicated that the lipid
concentration estimated from RI distributions was highly
correlated to the OA concentration. Taken together, these
results suggested that in-silico clearing RI tomography
had a semi-quantification capability to estimate biologi-
cally relevant events associated with RI-specific structures
even in the presence of severe MS.

Estimation of cell death inside spheroids
Finally, we demonstrate the ability of the proposed

method to resolve subcellular morphological changes due
to drug exposure inside the spheroids. As a representative
drug, we chose staurosporine, a well-known apoptosis
inducer. Apoptosis is genetically controlled cell death
with characteristic morphological changes, such as cell
shrinkage, nuclear segmentation, and fragmentation into
membrane-bound apoptotic bodies. We treated HepG2
spheroids with different concentrations of staurosporine,
observed subcellular morphological changes due to the
drug exposure by in-silico clearing RI tomography, and
semi-quantified the effect of the drug by analyzing
reconstructed RI distributions.
The HepG2 spheroids were treated with 12 different

concentrations of staurosporine in the range of
0–5000 nM for 24 h. We confirmed that staurosporine
treatment induced apoptotic cell death in HepG2 spher-
oids using fluorescent reagents Annexin V-FITC and
propidium iodide (Supplementary Note 19). We observed
and reconstructed six spheroids at each concentration.
Therefore, a total of 72 spheroids were evaluated in this
assay. Figure 6a, b shows the RI distributions of the
HepG2 spheroids at staurosporine concentrations of 0,
300, and 5000 nM (refer to also Supplementary Video 4–6
for the entire visualization). In the control spheroids, live
cells showed relatively smooth RI values and a clearly
defined nuclear structure. In the staurosporine-treated
spheroids with the highest concentration, the cells showed
nucleus loss and subsequent fragmentation into small
bodies, consistent with the morphological features of
apoptosis. We plotted the spheroid volume and equivalent
diameter, calculated similarly to Fig. 5, in Fig. 6d and e,
respectively. As the first step toward the application of
this method to drug efficacy estimation, semi-quantifying
the morphological changes in the RI distributions due to
staurosporine treatment is important. As shown in the
cross-sections of the RI map, the cells in the control
spheroids exhibited a relatively smooth distribution,
whereas the cells in staurosporine-treated spheroids
showed a distribution with a high spatial variation, sug-
gesting cell body fragmentation. To exploit this mor-
phological difference, we performed spatial filtering of the
RI distribution using the fourth derivative of the Gaussian
function to extract the fragmented regions. We defined
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the foreground of the cells as n(r) > 1.34. Further, we
defined the fragmented region as the intersection of the
foreground and the thresholded regions after applying a
convolution of the fourth derivative of the Gaussian
function with a standard deviation σx; σy; σz ¼
138 nm; 138 nm; and 400 nm to the RI distribution (see
Supplementary Note 17 for a detailed explanation). The
non-fragmented region was defined as the foreground
minus the fragmented region. The cross-sections of the RI
maps merged with the non-fragmented/fragmented

regions are shown in Fig. 6c. The extracted fragmented
regions overlapped well with the RI distribution showing
characteristic morphological changes. Using these
extracted morphological features, we semi-quantified the
efficacy of staurosporine and plotted it as a function of
staurosporine concentration, as shown in Fig. 6f. We
defined the non-fragmented ratio of each spheroid as the
ratio of the volume of the non-fragmented region to that
of the foreground region. The plot was fitted using
the Hill model46 (see Materials and methods section).
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The estimated relative 50% effective concentration EC50

and the Hill exponent H were EC50= 233 nM and
H= 1.71, respectively. This 50% effective concentration
was consistent with a previously reported experimental
validation, where EC50 was 410 nM for HepG2 spheroids
treated with staurosporine for 48 h47, considering that our
treatment was conducted for 24 h. Furthermore, we
conducted the same assay for A549 spheroids to
demonstrate the general applicability of the proposed
method to spheroids of different cell-type (see Supple-
mentary Note 18) and successfully semi-quantified drug
efficacy for different cell types. Collectively, these experi-
ments confirmed the capability of in-silico clearing RI

tomography for the semi-quantitative analysis of sub-cellular
morphological changes after staurosporine treatment.

Discussion
In this study, we proposed the in-silico clearing

approach to realize deep RI tomography overcoming MS
and SIA and conducted a label-free evaluation of multi-
cellular systems. We provided numerical and experi-
mental demonstrations using a simulated spheroid (Fig. 2)
and various multicellular spheroids (Figs. 3, 4), showing
the improved deep imaging capability of the proposed
method compared to other linear-model-based methods.
To clearly demonstrate that our method suppresses MS
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and SIA, we independently assessed the MS and SIA
tolerance using MS-dominant and SIA-dominant simu-
lated samples and confirmed the superior performance
compared to the case without in-silico clearing, as shown
in Supplementary Notes 10, 11. These proof-of-principle
demonstrations clearly support the generality of the
proposed method to improve reconstruction performance
for thick specimens compared to the conventional linear-
model-based RI tomography techniques. In-silico clearing
RI tomography provides deep imaging capability to the
standard tomographic holography system without any
hardware upgrades. Additionally, the linear MSS-Rytov
model and the computationally efficient BPM make the
proposed approach computationally efficient. Further,
experiments estimating lipid droplet production (Fig. 5)
and apoptotic morphological changes (Fig. 6) inside
spheroids demonstrated the capability of the proposed
method to conduct biological analyses of multicellular
systems. Image processing used during these estimations
was performed using primitive operations (thresholding
and fourth derivative Gaussian convolution) on the RI
distribution. This reflects the excellent biological inter-
pretability of the RI distribution even for multicellular
specimens. Furthermore, compared to fluorescence
microscopy, the label-free visualization and non-
invasiveness of the RI tomography circumvent the unex-
pected perturbation of critical biology owing to fluor-
escent staining or phototoxicity.
The in-silico clearing approach opens a new route

towards deep optical imaging of thick specimens as it
addresses the most fundamental cause of MS and SIA,
namely inhomogeneity of an RI distribution, by employing
partial RI reconstruction and wave-backpropagation.
Unlike conventional methods that reject MS light to
selectively detect single-scattering light, the proposed
method exploits MS light to form an optical image. As for
spatially varying SIA, in contrast to the in-silico clearing
approach, most conventional approaches need to split the
field of view into isoplanatic patches and compensate for
SIA on a patch-by-patch basis. Furthermore, the in-silico
clearing approach does not require invasive fixation or
time-consuming incubation, as conducted in the chemical
approach using the optical clearing method37.
To quantify the deep-imaging performance of the pro-

posed method, we evaluated the imaging-depth limit in
terms of the scattering mean free path lS, as shown in
Supplementary Note 21. First, we developed a method to
estimate lS based on the angle-scanned complex fields as
described in Supplementary Note 21.I and calculated lS
for various cell-type spheroids. It was determined that this
parameter was 17.2 µm and 33.2 µm for A172 and
HepG2 spheroids, respectively. This result indicates that
A172 is more difficult to image than HepG2. We then
observed large-sized spheroids and investigated the

maximum imaging depth based on whether the nucleolus
of these cells was resolved. This experiment quantified the
maximum imaging depth with and without in-silico
clearing as 6.78lS and 1.94lS, respectively (see Supple-
mentary Note 21 for a detailed description). This quan-
tification of deep-imaging performance is not only crucial
for evaluating the effectiveness of the proposed method,
but is also helpful in providing a basis for comparison
with future deep RI tomography methods in a unified
framework using the scattering mean free path.
It is necessary to consider whether the imaging depth of

in-silico clearing RI tomography is sufficient for various
biological applications. The required imaging depth is
highly dependent on its application. For example, the
HepG2 spheroid showed liver-specific gene expression
compared to the 2D culture, even at a diameter of
~100 µm48, similar size used in this study. In contrast,
tumor spheroid models generally require a large diameter
(>300 µm) to simulate hypoxic conditions. Therefore,
exploring improvements to assess a wide range of com-
plex biological systems is necessary.
There are several ways to improve the imaging-depth

limit in the process of in-silico clearing RI tomography,
which are associated with the underlying limitations of
the technique. As the RI governs light-matter interactions,
full characterization of the RI distribution leads to a
complete description of wave propagation. In principle,
there is no limit to the imaging depth that can be achieved
using in-silico clearing, except when there are significant
losses owing to absorption and undetected scattering,
such as backscattering, provided that the partial RI
reconstruction and wave-backpropagation are accurate.
However, as confirmed by the experimental results shown
in Fig. 5, the maximum value in the reconstructed RI
tomogram of the samples decreases as the depth increa-
ses, thereby indicating a gradual decrease in resolution
and thus insufficient accuracy of those operations (see
Supplementary Note 6 for residual wavefront distortion
due to insufficient accuracy). To increase the imaging-
depth limit, the accuracy of the partial RI reconstruction
and wave-backpropagation must be increased.
The lack of accuracy in the RI reconstruction can be

attributed to the fact that the mathematical model derived
in MSS-Rytov includes an approximation (modified Rytov
approximation) to prioritize computational efficiency over
reconstruction accuracy. Therefore, a more complex for-
ward model, as used in nonlinear RI reconstruction
methods25,28–31, can improve the accuracy if it can suc-
cessfully incorporate the partial reconstruction approach.
MSS-Rytov is also limited by the missing cone problem
owing to its finite NA. The axial resolution can be
improved by increasing the angular diversity, such as cell
rotation49,50 and illumination angle scanning13. An alter-
native software solution is the regularization technique,
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such as an unsupervised machine learning approach that
leverages the inherent regularization effect of convolu-
tional neural networks51. Additionally, the partial recon-
struction approach occasionally causes artifacts in the
block boundary owing to the limit of the optical sec-
tioning effect (see Supplementary Notes 8 and 11), which
deteriorates the resulting accuracy. As the performance of
optical sectioning also depends on the NA, the afore-
mentioned solutions could suppress the artifact. In addi-
tion, block thickness is an important parameter for
successfully imaging thick samples. If the block is too
thick, reconstruction will be inaccurate in deep regions of
the block. Conversely, if it is too thin, the computational
complexity will increase. In this study, we empirically
determined the block length, but it should be determined
depending on the sample’s scattering strength. One pos-
sible solution is to determine the block length based on
the scattering mean free path of the sample. In this case,
the method for obtaining the scattering mean free path
based on the angle-scanned fields as described in Sup-
plementary Note 21 would be useful.
The lack of accuracy in wave-backpropagation is due to

the simplicity of the BPM, which was adopted to prioritize
computational efficiency over accuracy. In recent years,
more accurate wavefront propagation methods have been
proposed in the field of RI tomography27,28, which can be
readily applied to the in-silico clearing approach.
We confirmed that in-silico clearing RI tomography has

the potential to semi-quantitatively assess high-RI struc-
ture even in the presence of severe MS (Fig. 5f). This might
be a key first step towards addressing the quantification of
biologically relevant structures in spheroids. To this end,
comparisons with conventional experiments (including
fluorescence staining) are important in establishing bio-
logical assays based on the results in Fig. 5. In this study,
we confirmed that the increment of high-RI structures
with respect to OA concentration (Fig. 5f) is comparable
with that of the lipid droplet volume ratio calculated from
fluorescence observation (Fig. S18). In addition, the esti-
mated volumes of high-RI structures (Fig. 5f) are in
approximately the same order as in the lipid droplet
volume ratio (Fig. S18). Although these results imply that
our proposed method can estimate lipid droplet forma-
tion, they were semi-quantitative analyses. To establish
quantitative assays, further improvements are essential in
the future including accurate segmentation of subcellular
structures by comparison with fluorescence images.
In-silico clearing RI tomography successfully char-

acterized subcellular morphological changes induced by
staurosporine treatment as shown in Fig. 6, suggesting the
possibility of the proposed method to estimate apoptotic
cell death. However, it has limitations when directly
assessing apoptosis, as suggested by the fluorescence-
based analyses (Fig. S21). Although few apoptotic cells

remain at 0 nM of staurosporine (Fig. S21a, c), our method
only detected ~80% of the spheroid volume as the non-
fragmented region (estimated as a live cell region). Simi-
larly, at 5000 nM of staurosporine, although most of the
cells were apoptotic (Fig. S21b, d), only 60% of the
spheroid volume was detected as a fragmented region
(estimated as an apoptotic region). These data suggest that
our method overestimates and underestimates cell death
at 0 and 5000 nM, respectively. We also observed necrosis-
like morphological change inside the HepG2 and
A549 spheroids, as discussed in Supplementary Note 18,
indicating a difference in the visualization of necrotic and
apoptotic morphological changes. These results indicate
that the proposed approach has potential applicability for
viability assay in a 3D culture system. The next step will be
accurate cell viability quantification inside the spheroids.
To achieve this, more advanced techniques such as deep
learning will be ideal, as seen in an existing study that
performed a label-free real-time viability assessment in a
2D culture system with high accuracy using fluorescent
images as the ground truth52. To take advantage of a data-
driven approach using fluorescent images as the ground
truth, combining RI tomography with 3D fluorescence
microscopy, such as confocal or multi-photon microscopy,
will be necessary. In this case, using wavefront compen-
sation based on the RI distribution obtained by in-silico RI
tomography, improving the imaging depth of 3D fluores-
cence microscopy without guide stars would be possible.
Another important step would be RI tomography

operating in reflection mode. The proposed method
requires a transmission setup, thereby compromising the
opportunity for in vivo imaging. Therefore, a quest for
deep RI tomography using an epi-detection configuration
would be rewarding. Recently, scientists have already
begun addressing this issue53,54.
Traditionally, optical imaging has elucidated various

biological phenomena by observing two imaging mod-
alities: holistic imaging by label-free microscopies, such as
phase contrast and DIC microscopy, and molecular-
specific imaging, predominantly by fluorescence micro-
scopy. We believe that RI tomography can potentially play
the former role in 3D imaging. Furthermore, in contrast
to conventional label-free microscopy, RI tomograms
have an outstanding advantage in their quantitativeness
and biological relevance for the identification of some
intracellular structures. Recently, Jo et al. 55 demonstrated
that exploiting the quantitativeness and spatial distribu-
tion of RI maps enables label-free prediction of major
endogenous intracellular structures using a deep learning-
based model. In synergy with such an advanced technique,
in-silico RI tomography could significantly facilitate
system-level understanding of biological phenomena in
3D multicellular systems. In conclusion, we envisage that
our method will provide unprecedented information on
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complex biological specimens with minimal invasiveness
and find wide application in the evaluation of multi-
cellular specimens.

Materials and methods
Reconstruction of a refractive index distribution
In the in-silico clearing approach, RI maps are recon-

structed using x- and y-sheared QPGI images as pre-
reconstruction fields. This method was formulated in our
previous study32 as iMSS-Rytov. However, in contrast to
our previous study, we additionally imposed a total var-
iation regularization56 in this study. Let ψx; ψy be the
vector representations of the x-, y-sheared QPGI images.
To reconstruct the RI distribution x, we solve the fol-
lowing inverse problem:

min
x�0

1
2

CGd;xx� ψx

�� ��2
2þ

1
2

CGd;yx� ψy

���
���
2

2
þτ xk k1þξ Ψxk k1

ð5Þ
where Gd;x and Gd;y are the discretized derivatives of 3D
Green’s function with respect to the x- and y-directions,
respectively. C is the cropping operator, Ψ is the finite
difference operator, and τ, ξ are the tuning parameters.
Unless otherwise specifically noted, we used τ ¼
7:5 ´ 10�2, ξ = 0.1. We solved Eq. (5) using the alternating
direction method of multipliers (ADMM) and executed
50 iterations of ADMM. Both RI tomography with/
without in-silico clearing used Eq. (5) for the RI
reconstruction. The update rule for the ADMM is
described in detail in Supplementary Note 2.

Image quality metrics
Let nexact rð Þ be the ground truth of a RI distribution and

nrecon rð Þ be the reconstructed RI distribution. We define
NRE as

NRE ¼ knrecon rð Þ � nexact rð Þk22
knexact rð Þk22

ð6Þ

We also define PSNR as

PSNR ¼ 10 log10
L2

MSEðnrecon rð Þ; nexact rð ÞÞ ð7Þ

where L ¼ max nexact rð Þð Þ �min nexact rð Þð Þ; andmax �ð Þ
and min �ð Þ return the maximum and minimum values
of the argument, respectively, and MSEð�; �Þ returns the
mean squared error of the arguments. The SSIM between
an image f,g is defined as

SSIM ¼ 2μf μg þ C1

μ2f þ μ2g þ C1

2σ fg þ C2

σ2f þ σ2g þ C2
ð8Þ

where μf and μg are the averages of f ; g; respectively;
and σ f and σg are the standard deviations of f and g,
respectively, and σ fg is the covariance between f and g,
where these statistical parameters are calculated within a
small window. We set C1 ¼ ð0:01LÞ2; C2 ¼ 0:03Lð Þ2 and
the window size to 7 × 7 × 7.

Volume rendering
In alpha blended rendering, volume data is sampled in

the direction toward the viewpoint along a ray trajectory,
and the value of the volume data is superimposed in
sequence by using opacity for weighting. Consequently,
objects close to the viewpoint are highlighted. We per-
formed all 3D visualizations in this study using Vaa3D57.

Morphological and biochemical parameters
The volume of a spheroid Vsph was calculated by inte-

grating all voxels of the RI map with n(r) > 1.340. The
equivalent diameter deq was calculated from the volume
Vsph assuming that the shape of the object was spherical:
deq ¼ 2 3Vsph=4π

� �1
3. The volume ratio of high-structure

Chigh is defined as the ratio of the lipid volume Vhigh to the
spheroid volume Vsph, where Vhigh is calculated by inte-
grating all voxels in the region n(r) > 1.375.

Sample preparation
Multicellular spheroids were formed using a 3D cell

culture container, EZSPHERE 6-well plate (AGC Techno
Glass) in 2 mL of the standard culture medium as
described in Supplementary Note 22.
For the semi-quantitative analysis of high-RI structures,

HepG2 spheroids were further cultured for 2 days in
phenol-red-free Dulbecco’s modified Eagle’s medium
(DMEM, Gibco) containing 1% (w/v) fatty-acid-free
bovine serum albumin (BSA, FUJIFILM Wako Pure
Chemical) and different concentrations of sodium oleate
(Nacalai Tesque) between 0 and 300 µM. The spheroids
were then washed in Hanks’ balanced salt solution
(Gibco) and collected via centrifugation at 190 g for 3 min.
The HepG2 and A549 spheroids for apoptotic-like cell

death analysis were exposed to various concentrations of
staurosporine (FUJIFILM Wako Pure Chemical) for one
day after spheroid formation.

Fitting dose–response curve
We fitted the dose-response curve for staurosporine

treatment based on the Hill model46, which describes the
effect obtained at a given concentration C using the fol-
lowing equation:

EHill C; E1; E0; EC50; Hð Þ ¼ E0 þ E1 � E0
1þ EC50=Cð ÞH ð9Þ
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where EC50 is the relative 50% effective concentration, H
is the Hill exponent, E∞ is the maximum effect, and E0 is
the effect without a drug.
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