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Abstract
The development of memory devices with functions that simultaneously process and store data is required for
efficient computation. To achieve this, artificial synaptic devices have been proposed because they can construct
hybrid networks with biological neurons and perform neuromorphic computation. However, irreversible aging of
these electrical devices causes unavoidable performance degradation. Although several photonic approaches to
controlling currents have been suggested, suppression of current levels and switching of analog conductance in a
simple photonic manner remain challenging. Here, we demonstrated a nanograin network memory using
reconfigurable percolation paths in a single Si nanowire with solid core/porous shell and pure solid core segments.
The electrical and photonic control of current percolation paths enabled the analog and reversible adjustment of the
persistent current level, exhibiting memory behavior and current suppression in this single nanowire device. In
addition, the synaptic behaviors of memory and erasure were demonstrated through potentiation and habituation
processes. Photonic habituation was achieved using laser illumination on the porous nanowire shell, with a linear
decrease in the postsynaptic current. Furthermore, synaptic elimination was emulated using two adjacent devices
interconnected on a single nanowire. Therefore, electrical and photonic reconfiguration of the conductive paths in Si
nanograin networks will pave the way for next-generation nanodevice technologies.

Introduction
Simultaneous processing and storage of data in a single

memory device are required for efficient computation, in
addition to the traditional read and write functions in the
von Neumann-structured device1,2. To this end, artificial
synaptic devices to control signal weights have been
developed by mimicking synaptic behaviors in biological
systems3–8. While arrays of the devices are capable of
neuromorphic computation, single devices alone can form
hybrid networks with biological neurons that enable
interaction and communication between the brain and
computer3–11. Approaches such as filament formation
and ion-transport recombination have been widely used

to control the current level and perform the computation;
an electric field causes filament formation or ion vacancy
movement in metal oxides of memristors, thereby allow-
ing non-volatile resistance switching and analog in-
memory computation12–18. However, it is widely known
that performance degradation of these devices is una-
voidable because of the irreversible aging caused by the
evolution of the internal structures19.
On the other hand, photonic devices have been pro-

posed for controlling current levels without device
degradation20–24. For example, photon-triggered transis-
tors and atomically thin phototransistors were success-
fully demonstrated showing high device performance20,21.
Photonic synapses for neuromorphic applications were
also demonstrated, including the utilization of low-
dimensional materials25,26. However, photocurrent gen-
eration in these semiconductor devices was typically used
for current enhancement20–26. Suppression of current
levels and switching of analog conductance remain
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challenging in a photonic manner. Although light-
induced current reduction has been reported in gra-
phene/MoS2 photoresponsive devices and mechano-
photonic devices27,28, the fact that these devices require
specific conditions for their operation, such as low tem-
peratures of 130 K or mechanical displacements in milli-
meters, places critical constraints on their practical
implementation and integration. Therefore, using the
advantages of electronic and photonic devices, it is
necessary to demonstrate the analog and reversible con-
trol of a persistent current path in a nanodevice without
structural deformation. Such a memory device will be
useful not only for simultaneous data processing and
storage, but also for advanced applications such as
synaptic interactions.
Here, we demonstrated reconfigurable percolation

paths in nanograin networks for synaptic interactions,
using a single Si nanowire (NW) with a solid core and
porous shell segment. The electrical and photonic control
of the conductive paths in the Si nanograin networks of
the NW shell efficiently adjusted the persistent current
level in an analog and reversible manner. In addition to
memory behavior, photonic habituation in the NW device
was demonstrated by abruptly disconnecting the current

percolation path under laser illumination. Furthermore,
using potentiation and habituation processes, the char-
acteristics of a nanoscale synaptic device were demon-
strated in this single NW memory. In particular, synaptic
elimination was achieved in two adjacent devices inter-
connected on a single NW, by using photonic habituation
as a kill switch for the device under illumination. We
believe that electrical and photonic reconfiguration of the
conductive paths in Si nanograin networks, as well as
emulating synapses in NW memory, will be essential for
next-generation nanodevice technologies.

Results
We utilize nanograin networks to control persistent

current paths in a reversible manner without structural
deformation (Fig. 1a, b). Because numerous nanograins
are interconnected, such networks have a high resistance;
however, electrical charging can form current percolation
paths with a lower resistance. Indeed, electric charges are
stored in the networks because of the self-capacitive
nature of the nanograins29,30. As the electrical charges
increase, the current flow process changes from electron
hopping to space-charge-limited one (Fig. 1a). First, the
electron hopping is dominant in the absence of charging,
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Fig. 1 Reconfigurable current percolation paths in nanograin networks. a, b Schematic diagrams describing the current flow in the nano-
crystalline grain networks. a Current paths are formed depending on charging in the networks. The electron hopping is dominant in the low
charging condition due to the Coulomb barrier in nanograins (left). With increasing electrical charging, the current percolation paths are created and
the space-charge-limited current flows (right). Gray and black slashes indicate low and high charging in the networks, respectively. b The current
percolation paths are blocked under illumination (left). With increasing incident light intensity, more current percolation paths are disconnected
(right). c Calculated weight function, w, as a function of parametric charge, QP. QC is the critical parametric charge. Calculated QP (d) and total current
ID (e) as a function of bias voltage, VD. QC was set to 0.2, which corresponds to the set point at VD= 2 V. Charging and discharging (black arrows)
occur in the forward and backward sweeps in VD, respectively. Photonic habituation occurs by light illumination on the nanograin networks (red
arrows), based on the operational mechanism in (b)
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due to the Coulomb barrier in nanograins (left, Fig. 1a).
The current percolation paths start to be created by
charging in the nanograin networks, allowing for the
space-charge-limited current (right, Fig. 1a). We note that
the current by electron hopping (IH) is much lower than
the space-charge-limited current (ISCL). This is due to the
fact that the electrical connection in the percolation path
is simply accomplished by the charged nanograin net-
works, whereas hopping process requires the activation
energy to overcome Coulomb barrier31. Thus, by adjust-
ing the IH and ISCL, the analog control of the persistent
current level is feasible.
The reverse process can be demonstrated by reducing

electrical charging. Although a reverse bias voltage can be
applied for this purpose, percolation paths in the net-
works are simply re-created in the backward direction,
preventing an effective decrease in current. Interestingly,
the nanograin networks facilitate photonic habituation
that progressively suppresses the current by the annihi-
lation of charges and the disconnection of the current
percolation paths under illumination (Fig. 1b). The
charges stored in the nanograin networks are released in
the light condition. This process is opposed to that the
current is enhanced by the photocarrier generation in
semiconductors21. Depending on the light intensity, the
current can be gradually reduced by disconnecting part or
all of the percolation paths (left and right, Fig. 1b).
We theoretically investigate the contribution of IH and

ISCL to the total current using the percolation theory of
conductivity32. The stored charge in the nanograin net-
works is described by the parametric charge, QP (see
“Methods” section). As a function of QP, we calculated the
weight function, w, which indicates the number of current
percolation paths (Fig. 1c). Based on the percolation
theory of conductivity, w was zero when QP <QC because
there were no current percolation paths, whereas w
increased when QP >QC, where QC is the critical para-
metric charge. Notably, the total current, ID= (1 − w)
IH+w ISCL, was determined by the history of the applied
bias voltage, VD. We then calculated QP and ID with the
VD sweep in our model (Fig. 1d, e). As VD increases from
0 to 5 V (forward sweep), QP and ID increase by charging.
ID is the same as IH until the set point (QP=QC), but then
starts to increase rapidly with the contribution of ISCL (Fig.
1e). On the other hand, ID (and QP) decreases for the
backward VD sweep; at the same VD, ID exhibits a larger
value than the one with the forward VD sweep. This
hysteresis loop is formed due to the delayed response of
QP in the VD sweep. Since the characteristic time for
charging in the nanograin networks is an order of seconds
by the high resistance of hopping transport31, the char-
ging (or discharging) does not immediately follow the VD

sweep. Moreover, the quick analog suppression of ID
under illumination can erase the history of the applied VD

(red arrows, Fig. 1e), providing a function of reversible kill
switch of charging.
These unique properties of nanograin networks can be

realized using porous Si structures on the tens of nan-
ometer scale20. The memory device is specifically imple-
mented by rationally designing a single Si NW with a solid
core and porous shell structure (Fig. 2a). This Si NW has
two distinct segments along the longitudinal NW axis.
One segment is composed of the single-crystal solid Si
core and the porous Si shell, whereas the other is only the
solid Si. Two electrodes are placed on each segment to
apply the bias voltage to the porous shell. Then, the
proposed memory property can be seen between the solid
core channel and the electrode.
To fabricate the NW devices with two structurally dis-

tinct segments, we used metal-assisted chemical etching
(see “Methods” section)20. As shown in a scanning elec-
tron microscope (SEM) image of a NW structure (Fig. 2b),
the left and right electrodes were fabricated on the long
solid segment (▲) and the short core/shell segment (★),
respectively. In addition, we performed the transmission
electron microscopy (TEM) analysis to investigate the
interface between the pure solid and core/shell segments
(inset, Fig. 2b). The ~15-nm-thick porous shell was
observed in the core/shell segment, showing a brighter
contrast than the solid core. This feature was more clearly
seen in the high-resolution TEM image, in which the
core/shell segment exhibited numerous nanometer-sized
Si crystallite networks and nanoscale voids of the porous
shell and single-crystal lattice of the solid core (Fig. S1).
To investigate the memory property, we measured the

I–V curve of the fabricated NW device. The current
changed by dual sweeping of applied voltage (black
arrows) (Fig. 2c). A clear hysteresis loop was observed at
bias voltages between 0 and 5 V, as expected in the the-
oretical analysis of Fig. 1e, whereas the pure Si NW device
exhibited a linear I–V curve (Fig. S2). The current showed
a similar behavior in the negative voltage sweep, but the
lower current level was formed because of the Schottky
barrier between the porous Si shell and the solid Si core
(Fig. S3).
Furthermore, photonic habituation was demonstrated

in the NW device by illuminating the 658-nm laser on the
porous shell region (Fig. 2d, e). We measured current
levels under a bias voltage of 5 V, while the laser was off
and on for every 7 s (Fig. 2d). In the dark, the current
increased from ~0.5 to ~6 μA by electrical charging. In
contrast, when the laser was turned on, the high current
level was immediately decreased to maintain the low
current level, as expected in Fig. 1. In response to the laser
cycle, the measured current level reproducibly cycled with
the periodic dark and light conditions. Systematic
experiments were performed under various illumination
conditions with laser powers ranging from 17 to 720 μW.
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Notably, as the laser power increased, the current in the
light condition decreased. This photon-triggered current
level was plotted as a function of the pump power,
revealing that the lowest laser power for photonic habi-
tuation was ~17 μW (Fig. 2e). In addition, when the laser
power was larger than ~520 μW, the current was main-
tained at ~2.5 μA. Furthermore, we investigated current
levels under laser illumination at various wavelengths (Fig.
S4). The measurement showed that the current in the
light condition decreased further as the wavelength of the
pump laser was shorter. We note that photonic habitua-
tion is highly sensitive to laser power and wavelength,
enabling the precise analog control of the current in the
memory device.
By using the memory behavior and photonic habi-

tuation, the NW can function as an artificial synaptic
device8,12. To examine the synaptic behaviors of short-
term and long-term plasticity, we measured the current
by applying paired pulses with a peak voltage of 5 V, a
width of 100 ms, and a time interval (Δt) of 200 ms (Fig.
3a). The current level was then recorded with a read
voltage of 0.5 V; the operation of the NW device was not

affected by this small read voltage. The measurement
showed that two current peaks were generated by the
voltage pulses. The excitatory postsynaptic current
(EPSC), the difference between the next peak current
and the initial current, increased with each voltage
pulse12. We can understand these features based on our
model in Fig. 1: a current percolation path is created
inside the nanograin network by the electrical charging
of the nanograin when a voltage pulse is applied. When
two short-interval pulses are applied, the formation of
percolation paths overlaps, resulting in a higher second
current peak than the first one. The on-off ratio for the
first voltage pulse in Fig. 3a was ~4, which is comparable
to previous work8,33,34. Furthermore, the enhanced
current called postsynaptic current (PSC) was observed
after the voltage pulses were turned off. In particular,
the PSC decreased slowly with increasing time and
exhibited the significant dependence on the iteration
number of the voltage pulses and the width of the single
voltage pulse (Fig. S5). We note that these behaviors of
the NW device are similar to the plasticity properties of
synapses12,35.
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To assess the characteristics of the short-term plasticity,
we obtained the paired-pulse facilitation (PPF) index
defined by the difference between the first and second
EPSCs, with varying Δt from 200 to 2000 ms (Fig. 3b). The
maximum PPF was 205% at Δt of 200ms, and this value
decreased gradually as Δt increased. Such a high PPF
index of the short-term synaptic plasticity enables the

demonstration of volatile memory devices35. In addition,
the spike-timing-dependent plasticity (STDP) was inves-
tigated to show the long-term plasticity for a non-volatile
memory behavior12,13. To demonstrate the STDP, the
ratio of the PSC and initial current level, ΔW, was plotted
as a function of Δt (Fig. 3c). A pair of the +5 and –5 V (or
–5 and +5 V) voltage pulses were applied for Δt > 0 (or
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Δt < 0), to realize the cases that a pre-synaptic spike leads
to (or follows) a post-synaptic spike (insets, Fig. 3c). In
both cases, a shorter Δt resulted in greater values of the
PPF index and ΔW on the device, enabling the mod-
ification of short-term and long-term memory, respec-
tively. When the pulse interval is sufficiently long, the
increase rates of the PPF index and ΔW are low due to the
loss of some charge between each pulse.
Next, we demonstrated electrical potentiation and

photonic habituation for memory and erasure, respec-
tively, using the plasticity property of the NW device (Fig.
3d). First, the potentiation process was performed by
applying voltage pulses of 5 V (width of 100ms and Δt of
200ms) for the first 6 s, which resulted in the gradual
increase of PSC. The NW device was reliable in the five
cyclic potentiation processes (Fig. S6). After the poten-
tiation was done, the photonic habituation was performed
for the next 6 s. In this process, the 658-nm laser pulses
(power of 702 μW, width of 100ms, and Δt of 200 ms)
were incident to the NW shell, while the current was
recorded by the read voltage of 0.5 V (Fig. S7). The
measurement showed that the current level was modu-
lated depending on the on and off states of the laser.
Interestingly, the current increased and decreased rapidly
in the light and dark conditions, respectively. This process
is different from the one in Fig. 2d, which showed the
reduction in current in the light condition due to the
application of a continuous bias voltage of 5 V to the NW.
For the quantitative analysis of the photonic habitua-

tion, we plotted the PSC as a function of the pulse number
(Fig. 3e). The PSC gradually decreased during 30 repeti-
tions of the laser pulse. Whereas the maximum PSC was
~200 nA at the 30th voltage pulse in the potentiation
process, the PSC decreased linearly with increasing
number of laser pulse, down to ~100 nA at the 60th laser
pulse. We also analyzed the current levels during photo-
nic habituation with varying laser powers from 66 to
641 μW (Fig. 3f). We measured the higher (lower) current
in each light (dark) condition, as the laser power
increased, which resulted in a smaller PSC (Fig. S8). The
consecutive photonic habituation of the electric charges
stored in the porous NW shell during potentiation can
explain the decrease in PSC with increasing number of
laser pulse. In this case, higher laser power releases more
stored charges and reduces the PSC further.
Furthermore, we performed the pattern recognition

simulations to investigate the potential of the NW devices
for neuromorphic computing, when photonic and elec-
trical habituation processes were used. To compare pho-
tonic and electrical habituation, we also demonstrated
electrical habituation following electrical potentiation (Fig.
S9). The current level modulation and PSC behavior were
similar to those shown in Fig. 3d, e, respectively; however,
the linearity of the PSC was lower than in Fig. 3e.

According to our model, in photonic habituation, the
charged electrons in the nanograin network are excited to
a higher electronic state and are immediately removed by
the illumination20, resulting in a linear decrease of the PSC
with increasing number of laser pulses (Fig. 3d, f). How-
ever, in electrical habituation, the linearity of the PSC
becomes relatively poor due to the Schottky junction
between the porous Si shell and the solid Si core36 (Fig.
S9). Based on the PSC fitting results obtained in Figs. 3e
and S9, the backpropagation method, a common method
for benchmarking synaptic array architectures, were used
on two data sets of 8 × 8 and 28 × 28 pixels image versions
of handwritten digits37. We calculated the recognition
accuracies of networks after training epochs (Fig. 3g, h).
After 20 training epochs, the photonic and electrical
processes can read small-size (large-size) handwritten
digits with accuracies of 94.7% (93.1%) and 93.2% (88.0%),
respectively, showing that the photonic process approa-
ches the ideal case with an accuracy of 95.5% (98.1%).
Therefore, these comprehensive results confirm that the
NW memory functions as a reliable synaptic device. Fur-
thermore, the large difference in numeric, photonic, and
electrical accuracies for large-size handwritten digits
compared to small-size handwritten digits is due to the
fact that networks processing large-size handwritten digits
have more synapses than networks processing small-size
handwritten digits, making them more vulnerable to the
nonlinear properties of the device.
Finally, we highlight that using our NW devices, we can

demonstrate a new synaptic interaction that is not
achievable in electrical processes. For example, in two
adjacent NW devices connected in parallel, photonic
habituation as the kill switch prevents the construction of
a current percolation path of one device and allows the
enhancement of current in the other device. In fact, this
process mimics the synaptic elimination in biological
systems38. While two synapses are active with balanced
stimulations (left, Fig. 4a), punishment signals from the
more active synapse (synapse 2) can inactivate the less
active synapse (synapse 1) (right, Fig. 4a). Since the illu-
mination on one NW device during the potentiation
process functions as a punishment signal, the other NW
device in the dark condition exhibits the enhanced signal.
Such a process cannot be demonstrated using electrical
habituation, because the current percolation path is
always formed by applying a forward or reverse bias
voltage.
Two adjacent NW devices were fabricated in a single

NW, using a long core/shell segment and two metal
electrodes on it with 2 μm distance (Fig. 4b). Device 1 and
device 2 defined by the two electrodes are connected in
parallel by the solid core with low resistance. The insets of
Fig. 4f show the measured I–V curves of the two NW
devices; similar hysteresis loops were observed. Then,
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using these devices, we design three different cases to
emulate various synaptic interactions. First, in Case I, the
two adjacent devices are in the dark condition (Fig. 4c).
The charges move through the solid core, and the current
percolation paths are generated in both devices. Second,
in Case II, the laser is illuminated on only device 1 (Fig.
4d). Device 1 has a relatively high resistance since the

current percolation path cannot be created there, and
more charges move toward device 2. Third, Case III is
similar to Case II, but device 2 is under illumination and
only device 1 exhibits the high current flow (Fig. 4e).
These three cases were examined through systematic

experiments (Fig. 4f–h and “Methods” section). For the
potentiation process, 10 pulses with a peak voltage of 5 V,
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Fig. 4 Synaptic elimination using two adjacent NW devices. a Schematic illustration of synaptic elimination occurring between two adjacent
synapses. b SEM image of two fabricated devices in a single NW. Symbols of ▲ and ★ indicate the pure solid and core/shell segments, respectively.
Both devices 1 and 2 were fabricated on the core/shell segment (★), whereas the ground electrode was fabricated on the pure solid segment (▲).
Scale bar, 2 μm. c–e Schematic illustrations showing the operations of device 1 and device 2 in the dark condition (c: Case I) and under illumination
on either device 1 (d: Case II) or device 2 (e: Case III). f–h Measured currents in device 1 (left panel) and device 2 (right panel) as a function of time, for
Case I (f), Case II (g), and Case III (h). For the potentiation process, 10 electrical pulses with a peak voltage of 5 V, a width of 100 ms, and Δt of 200 ms
were applied between 10 and 12 s. The 658-nm laser with a power of 2.1 mW was incident continuously to either device 1 (g) or device 2 (h). The
read voltage was 0.5 V. The insets in the left and right panels of (f) show the I–V curves of devices 1 and 2, respectively. i, j EPSC (i) and retention (j)
changes of devices 1 and 2 for Case I, Case II, and Case III. The EPSC of device 1 was initially ~640 nA (Case I) and changed to ~340 nA (Case II) and
~1150 nA (Case III). Also, the EPSC of device 2 was changed to ~570 nA (Case II) and ~70 nA (Case III) from ~240 nA (Case I)
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a width of 100ms, and Δt of 200ms were applied to both
the devices between 10 and 12 s. The current of each
device was measured as a function of time. While Case I
was realized in the dark condition, the 658-nm laser with
a sufficiently high power was continuously illuminated on
either device 1 or device 2 for Case II or Case III,
respectively. In the dark condition of Case I, the current of
device 1 was measured to be larger than that of device 2,
because the solid channel length for device 2 was longer
than that of device 1 (Fig. 4f). In contrast, in Cases II and
III, the current in the device illuminated by the laser
decreased almost twice, whereas the current in the other
device increased twice (Fig. 4g, h). For the quantitative
analysis, we summarized the EPSC and retention in the
three cases (Fig. 4i, j). In particular, the retention of the
devices eliminated by the light illumination (Fig. 4j) can be
explained by the annihilation of charges in the porous
shell. Therefore, the synaptic elimination was verified in
terms of the current level and retention of each device.
Taken together, this synaptic interaction is a successful
example of providing groundbreaking application possi-
bilities by leveraging the photonic features of the NW
memory device.

Discussion
In summary, we developed a nanograin network mem-

ory using reconfigurable percolation paths in a single Si
NW with the solid core/porous shell and pure solid core
segments. The electrical and photonic control of current
percolation paths demonstrated the analog and reversible
adjustment of the persistent current level. The NW device
exhibited memory behavior with a hysteresis loop and
current suppression using photonic habituation. In addi-
tion, the synaptic behaviors of memory and erasure were
demonstrated by performing the potentiation and habi-
tuation processes in the single NW memory device.
Notably, photonic habituation was sensitive to the inci-
dent laser power, showing a linear decrease in the PSC.
Furthermore, photonic manipulation of the potentiation
processes in two adjacent devices interconnected on a
single NW enabled mimicking of the synaptic elimination.
Therefore, photonic habituation in a NW memory device
can show various synaptic interactions with a new func-
tion such as the kill switch.
Overall, electrical and photonic reconfiguration of

conductive paths in Si nanograin networks opens up a
new paradigm for next-generation nanodevice technolo-
gies. For a more practical implementation, the single NW
memory device needs to address the following issues.
First, while our NW devices are operated by electrical
potentiation and photonic habituation, all-optical opera-
tion is necessary to fully address the endurance issue.
Since photonic potentiation, as opposed to photonic
habituation, is already present in other devices25,26,39, all-

optical NW devices capable of both photonic habituation
and potentiation can be developed by combining unique
features of these devices. Second, scaling up the NW
device is required for the use of a practical synaptic
device. To this end, two-step metal-assisted chemical
etching40 and nanocombing assembly techniques41 can be
used to fabricate porous segments at desired locations in a
NW and aligned NW arrays, respectively. In the future,
using the single NW memory device, it will be interesting
to explore synaptic devices with synaptic density and
energy efficiency comparable to the human brain42,43,
because smaller device sizes reduce power consumption
while increasing integration density.

Methods
Transport model in the porous shell
We theoretically analyze the electric current in the

porous shell using two different transport mechanisms:
(1) electron hopping and (2) space-charge-limited cur-
rents. First, we consider the electron hopping current.
Because of the self-capacitive nature, the electrons can be
localized in the Si nano-crystalline grains of the porous
shell29,44. These electrons move to the neighboring grains
by hopping over the Coulomb barrier. Then, the current
due to electron hopping is given by

IH ¼ σ0 exp � eEA

kBT

� �
exp

ffiffiffiffiffiffiffi
Vd

V 0

r� �
Vd ð1Þ

where e, kB, T, σ0, E, and Vd are the elementary electric
charge, Boltzmann constant, temperature, conductivity
prefactor, activation energy, and bias voltage from drain
to source, respectively29,32. Here, V0 is given by

V 0 ¼ k2BT
2e�2 e

πε0εrd

� ��1

ð2Þ

where ε0, εr, and d are the permittivity in vacuum,
dielectric constant of Si, and thickness of the porous shell,
respectively44. Because of the high resistance of hopping
transport, IH is low even for porous layers with tens of
nanometers in thickness44.
Next, we consider the space-charge-limited current.

Due to the charging in the nano-crystalline grains, con-
tinuous networks of charged grains can form current
percolation paths, allowing for the space-charge-limited
current (ISCL)

32,45. With the analogy of the conventional
field effect transistor model, ISCL is given by

ISCL ¼ μeff Cgrain

d
V g � VTH � Vd

2

� �
Vd ð3Þ

where Cgrain, μeff, d, Vg, and VTH are the self-capacitance of
a grain in unit length, effective mobility, thickness of the
porous shell, effective gate voltage, and threshold voltage,
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respectively. ISCL is much higher than IH, due to the
current percolation paths from source to drain.
The contribution of IH and ISCL to the total current

varies depending on charging. We examine the change in
total current using the percolation theory of con-
ductivity32. The stored charge in the porous shell is
described by the parametric charge, QP. In addition, the
contribution of ISCL to the total current is described using
the weight function, w= (QP –QC)

α, which indicates the
number of current percolation paths. Here, QC and α are
the critical parametric charge and the critical percolation
conductivity exponent, respectively. When QP <QC, w is
zero because there are no current percolation paths. In
Fig. 1c, w was calculated with QC of 0.2 and α of 1.3. The
total current, ID, is given by

ID ¼ 1� wð ÞIH þ wISCL ð4Þ

Next, we analyze the change in ID as a function of the
applied voltage, VD. ID is a function of QP, and QP is given
by

Qp t0 þ Δtð Þ ¼ Qp;0 þ VDCgrain � Qp;0

� �
1� exp �Δt

τ

� �� �

ð5Þ
where Δt, τ, and Qp,0 are the charging time interval,
characteristic time, and parametric charge at time t0,
respectively. The porous shell is assumed to be a thin-
layer capacitor. The constant VD is applied for Δt at t0.
The time series of QP is determined iteratively with the
history of the applied VD. To investigate the electric
current in the porous shell, we introduce the physical
parameters of porous Si to calculate the hysteresis loop in
the ID –VD curve (Fig. 1e). σ0, d, EA, and εr are set to
0.01Ω−1 m−1, 20 nm, 0.32 eV, and 11.7, respectively.
Cgrain is set to 6.5 × 10−10 C V−1 m−1 using the self-
capacitance of a sphere with a diameter of 3 nm. Also, μeff
is set to 1 cm2 V−1 s−1, which is similar to the value of
amorphous Si46,47. In addition, we set τ, Vg, VTH, α, and Qc

to 1 s, 2.5 V, 0.5 V, 1.3, and 0.2, respectively, as the free
parameters. Then, in the forward (backward) VD sweep
from 0 to 5 V (from 5 to 0 V), the voltage step of 0.1 V
(–0.1 V) is used. The constant VD is applied during Δt of
70ms in each voltage step. Qp,0 is set to zero at t= 0.
With these parameters, ID and QP are calculated using
Eqs. (4) and (5) (Fig. 1e).

Device fabrication
Si NWs with solid core/porous shell and pure solid core

segments were fabricated using a metal-assisted chemical
etching (MaCE) method20,48. First, a monolayer of
hexagonal-lattice closely packed polystyrene (PS) beads
was transferred to the surface of an n-Si substrate with a

moderated doping level (1–10Ω·cm). The diameters of
the PS beads were reduced from 300 nm to 180 nm by O2

plasma etching with a power of 50 mW for 20 s. Next, a
50-nm-thick Au layer was deposited on the prepared
sample using thermal evaporation, resulting in the for-
mation of Au mesh on the Si substrate. The PS beads were
removed by sonication in ethanol. To fabricate the NW
shown in Fig. 2b, the Si substrate with the Au mesh was
immersed in a mixed solution of HF, H2O2, and H2O
(volume ratio is 5:1:6) at room temperature for 10min. A
porous shell was formed on the NW surface, by applying
an external pulsed voltage of 4.5 V for 10 s to the Au mesh
during the etching process. To fabricate the NW shown in
Fig. 4b, two steps of MaCE were conducted. First, the Si
substrate with the Au mesh was immersed in a mixed
solution of HF, H2O2, and H2O (volume ratio is 5:0.5:3) at
room temperature for 2 min, to generate a short solid
segment. Then, the sample was immersed in a mixed
solution of HF, H2O2, and H2O (volume ratio is 5:1.5:3) at
room temperature for 5 min, to generate a long core/shell
segment. Finally, to fabricate the NW memory device, the
prepared NWs were dispersed onto a Si3N4/SiO2/Si sub-
strate, and metal contacts were defined using aligned
electron-beam lithography and thermal evaporation of Ti/
Au (7/300 nm). A lift-off process was conducted by
immersing the sample in acetone for 1 h.

Electrical measurements
The I–V curves of the Si NW devices were measured using

a source measure unit (2450 SourceMeter, Keithley) and a
customized probe station. Voltage pulses were generated
using a wavefunction generator (33500B, Keysight), and the
current was measured as a function of time using a multi-
meter (DMM7510, Keithley). In the STDP experiment, the
post-spike has the opposite polarity of potential to the pre-
spike, and thus, it is commonly used to apply two bias vol-
tages of opposite polarity to the same electrode to achieve
pre-spike and post-spike12,13. The PPF index and ΔW were
recorded as the average of five measurements for each
experiment. The PPF index was defined as (I1 – Ii)/(I2 –
Ii) × 100%, where Ii, I1, and I2 are the currents before the
input spike voltage, current of the first spike voltage, and
current of the second spike voltage, respectively. ΔW was
defined as (Wt –W0)/W0 × 100%, where Wt and W0 are the
currents after and before applying the paired voltage pulses,
respectively. After measuring each data point of the PPF
index and ΔW, the low resistance state was reset by applying
a negative voltage of –1V to the NW device for 5 s.

Optical measurements
Photonic habituation were demonstrated using the optical

measurement setup shown in Fig. S7. The pump laser diode
(LD) with a wavelength of 658 nm was focused on the NW
devices using a ×50 objective lens with a numerical aperture
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of 0.55. A supercontinuum laser with a wide wavelength
range of 480 to 760 nm (SuperK EXTREME EXB-4, NKT
Photonics) was used in Fig. S4. The spot size of the laser was
~1 μm. In Figs. 2d, 3d–f, and 4, a pulsed laser (repetition rate:
1MHz, pulse width: 10 ns) was used to minimize the thermal
effect in the NW devices.

STDP and retention fitting
The values of ΔW in Fig. 3c were fitted using an STDP

learning function,

4W ¼ Aþexp
�4t
τþ

� �
if 4t > 0; andA�exp

�4t
τ�

� �
if4t < 0

The linear factors Aþ and A�, which indicate the
maximum change in device resistance for a single
switching event, were obtained as 190.34 and 121.62,
respectively. The exponential parameters τþ and τ�,
which represent the learning rate of the synapse, were
obtained as 154.8 ms and 120.8 ms, respectively.
The retention in Fig. 4j was obtained by fitting the

currents in Fig. 4f–h using an exponential decay function,

A1exp
�t
τ

	 

þ y0

where y0 is the current of memory at stabilized state, A1 is
the prefactor, and τ is the relaxation time constant.

Pattern recognition simulations
We performed an artificial neural network simulation

based on the platform CrossSim42,49,50, using the experi-
mentally measured PSC characteristics. A three-layer (one
hidden layer) neural network was used for the supervised
learning with backpropagation. The network simulations
were performed on two data sets: a small image version
(8 × 8 pixels) of handwritten digits from the “Optical
Recognition of Handwritten Digits” dataset and a large
image version (28 × 28 pixels) of handwritten digits from
Modified National Institute of Standards and Technology
(MNIST) dataset51. We trained our network using the
backpropagation algorithm with a gradient descent
function. For small digit images, the network size was
64 × 36 × 10. After training with 3823 images, recognition
was performed on a 1797-image testing set that had not
been used for training. For large digit images, the network
size was 784 × 300 × 10. After training with 60,000-ima-
ges, recognition was performed using a separate 10,000-
image testing set. The evaluation of recognition accuracy
was repeated 20 times (20 epochs).
Totally symmetric and linear PSC changes were used for

an ideal weight update process. However, the PSC fea-
tures measured in our experiment were asymmetric and
nonlinear. To include the nonlinearity of PSC in the
simulation, we used the following equations for

conductance (G ¼ IPSC=Vread), which changes as a func-
tion of the normalized pulse number P50:

G ¼ G1 1� e�νP
� �þ Gmin ðPositive pulseÞ

G ¼ Gmax � G1 1� e�νð1�PÞ
	 


ðNegative pulseÞ

whereG1 ¼ Gmax � Gmin

1� e�ν

Here, Gmin and Gmax are the minimum and maximum
conductance, respectively, and ν is a parameter that
characterizes the nonlinearity of the conductance. The
response is exactly linear when ν ¼ 0. In our case, the
PSC values between 21 and 72% for electrical habituation
and 10 to 66% for photonic habituation were used to
extract the nonlinearity parameters. Then, ν were 0.9 and
0.37 for the electrical and photonic habituation, respec-
tively. Based on the built-in asymmetric nonlinear update
model of CrossSim, these values were used in the
simulation process51. In addition, a learning rate of 0.1
was used to simulate small-digit and large-digit images.
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