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Abstract
Memristor-based physical reservoir computing holds significant potential for efficiently processing complex
spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical
node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of
eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir
computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual
photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The
system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir
comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with
memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir
states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical
dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial
light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of
multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a
recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for
implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design.

Introduction
With the development of artificial intelligence tech-

nology, various artificial hardware neural networks such
as recursive neural networks1, convolutional neural net-
works2, and spiking neural networks3 have been proposed
to meet the efficient processing and recognition of mas-
sive data. Recently, the physical reservoir computing
(PRC) network has received extensive attention due to its
advantages of no need to establish the isomorphic rela-
tionship between hardware and algorithm, low training

cost, and has become one of the main neuromorphic
computing paradigms for high-dimensional and nonlinear
computing4–7. Many physical reservoirs have been
demonstrated to enable reservoir computing (RC), such as
memristors8, atomic switching networks9, silicon photo-
nics10, and spintronic oscillators11. In particular,
memristor-based RC systems have been widely reported
in RC in recent years due to simple structure, high degree
of freedom system response, and high integration12–14.
However, current work on dynamic memristor-based

RC systems often focuses on using the output current or
conductance state of the devices as the dynamically
evolving reservoir state to map input temporal sig-
nals15–18. This approach overlooks some important issues
that are critical for RC. On one hand, using electrical
signals as the single node in the reservoir can lead to
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issues of overlapping and interference in the reservoir
state during the mapping of complex sequential signals.
This often results in difficulties in effectively extracting
the spatiotemporal characteristics of complex informa-
tion, thus limiting the richness of the reservoir state in
physical reservoir computing. Although some work has
proposed extracting features of input signals by using
mixed modalities such as light and electricity, the reser-
voir in those cases still relies on a single electrical evo-
lution as the reservoir node, which cannot be further
optimized12,15,17,19. On the other hand, using a single-
node strategy for the reservoir makes it challenging to
meet the requirements of mapping multiple features of
high-dimensional data in the real world, which puts for-
ward higher requirements for the parallel processing of
data. For instance, when working with multichannel pic-
tures, in addition to two dimensions of height and width,
there are three RGB color channels20,21 (Fig. 1b). How-
ever, the previously reported memristor reservoir system
only consists of a single type of physical node (Fig. 1a),
and they only map the input signal through a single fea-
ture, which makes the recognition of the memristor
reservoir system only from the shape of the image con-
tent, and cannot realize the parallel processing of multi-
feature information8,19,20. Therefore, it is crucial to
develop new dynamic memristors with mixed nodes based
on novel device physics and material designs in order to
simultaneously meet the requirements of a rich reservoir
state and parallel processing of high-dimensional data.
In this work, we report a mixed physical node reservoir

computing system based on artificial light-emitting synapses
(LES) (Fig. 1b). The device not only has the performance of
electrical synapses, which can map the input timing signal
with the short-term memory current induced by electrical
pulses but also exhibits the behavior of luminescent synapses
to map the amplitude of input signals in the form of
dynamic emission. Therefore, the device as a physical
reservoir can construct a 2D reservoir state space to extract
the spatiotemporal characteristics of the temporal signal
more effectively and achieve more than 97.22% recognition
accuracy in the image classification task based on the
MNIST dataset. More importantly, with the help of short-
term memory current and dynamic luminescence char-
acteristics with nonlinear optical effects, the signal mapping
method of different physics makes the device can also be
used in the reservoir computing of multi-feature fusion
recognition to solve the problem of low reservoir state
richness caused by the single reservoir node of traditional
dynamic memristors, which improves the recognition
accuracy of multichannel image recognition from 93.16% to
99.25%. This work proposes a new idea for developing
neural hardware for complex reservoir computing networks
and has great potential in the development of a new gen-
eration of artificial neuromorphic hardware.

Result
Characterization of artificial synaptic properties in LES
Figure 2a shows the 3D structure of the artificial light-

emitting synaptic device as a physical reservoir. The device is
a three-layer structure device composed of ITO/ active layer
/Ag. The active layer is composed of poly[2-methoxy-5-(2-
ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), the ion
transport matrix poly (ethylene oxide) (PEO), the ion
transport matrix poly (ethylene oxide) (LiCF3SO3) and the
dopant MXene (Ti3C2TX), which are used as luminescent
polymer semiconductors, ion transport substrates, electro-
lyte salts and dopants. The chemical structural formula of
MEH-PPV, PEO, LiCF3SO3, and Ti3C2TX are shown in Fig.
2a. The I–V characteristics of the LES applied for five
consecutive dual positive voltage sweeps (0→6→0 V) are
displayed in Fig. 2b. The device’s I–V cycle exhibits a
counterclockwise hysteresis, which is explained by the active
layer’s ion relaxation effect22. Additionally, the LES generates
red light with a wavelength of 540 nm as its conductance
steadily rises and becomes saturated with an increasing
number of voltage sweeps (Fig. S1). Figure 2c shows the
trend of excitatory postsynaptic current (EPSC) and excita-
tory postsynaptic brightness (EPSB) with the increase of
pulse voltage (5–8 V, 90ms). When the pulse voltage was
raised from 5V to 8 V, the attenuation time lengthened,
indicating memory-enhancing capabilities akin to those of
biological synapses. Furthermore, the peak value of EPSB
increased by almost ten times when the pulse voltage was
raised from 5V to 8 V, and transient luminance gradually
increased. (The illustration in Fig. 2c). The variations in
postsynaptic current and luminescence intensity brought
about by ten electrical pulses with a 6 V pulse amplitude, a
60ms pulse duration, and a 60ms pulse interval are dis-
played in Fig. 2d. As the number of pulses increases, so does
the postsynaptic current. The insertion plot makes it evident
that the transitory luminance increases with the number of
applied pulses by displaying the corresponding postsynaptic
luminous intensity. This finding demonstrates that synaptic
enhancing behavior is also shown by the transitory optical
signal generated by LES. In addition, by applying pulses of
various widths and frequencies, the spike duration time-
dependent plasticity (SDDP) (Figs. S2 and S3) and the spike
rate-dependent plasticity (SRDP) (Figs. S4 and S5) were
achieved. Fig. S6 displays the maximum EPSC value and
EPSC gain measured at various frequencies, whereas Fig. S7
displays the highest EPSB value and EPSB gain observed at
various frequencies. The spike number-dependent plasticity
(SNDP) (Figs. S8 and S9) was examined by progressively
increasing the number of pulses. The PPF behavior simu-
lated by the artificial luminous synapse is shown in Fig. S10,
where two consecutive electrical pulses (6 V, 30ms) are
applied to the ITO electrode at 30ms intervals. The EPSC
peak stimulated by the second pulse was 1.23 times higher
than that stimulated by the first pulse. At the same time, the
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EPSB peak stimulated by the second pulse was 1.68 times
that of the first pulse. The PPF index is calculated by the
following formula:

PPFindex ¼ A2 � A1

A1
ð1Þ

Figure 2e fits the attenuation process of the PPF index
of EPSC and EPSB through the following single

exponential function:

PPFindex ¼ B0 þ e�
4T
τ þ B1 ð2Þ

As the pulse interval gradually increases, the PPF index
decreases to close to 100%.

The mechanism of the synaptic behavior of LES
After an electrical pulse is applied to the device, the

mobile anions move toward the anode and the cations
move toward the cathode, forming an electric double layer
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Fig. 1 Single physical node reservoir computing system schematic and mixed physical node reservoir computing system schematic.
a Schematic illustration of a memristor-based RC system, which builds physical node by reading current. The RC system maps the time sequence
pulse signal to the current to realize the recognition of the binary image. b Schematic diagram of a mixed physical node RC system based on LES,
which builds mixed physical node by two signals of current and light intensity. The RC system can realize the recognition of multichannel image by
mapping time sequence pulse signal to current and mapping pulse amplitude signal to light intensity
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(EDL) at the interface between the active layer and the
electrode (Fig. 2f). When the voltage is higher than the
semiconductor band gap of MEH-PPV (V pre > E g/e),
MEH-PPV is oxidized to an oxidation state (MEH-
PPV(O)) or reduced to a reduced state (MEH-PPV(R)), the
charges are injected through the barrier and then elec-
trostatic compensated by Li+ and CF3SO3

− 23–25. The
regions where electron-hole recombination occurs (n-
doped and p-doped) are formed by the electrochemical
redox26–28 (Fig. 2g). The role of MXene is to promote the
dissociation of LiCF3SO3 in PEO, thus, the ion transport
in the polymer matrix is greatly promoted29–33. With the
increase of the number of electrical pulses, the n and p
doping regions continue to expand (Fig. 2h–j), and the
channel current density increases accordingly, resulting in
the enhancement of EPSC. At the same time, an increase
in electron-hole recombination leads to a more pro-
nounced transient EPSB (Fig. 2k–m)25,28.

Dynamic properties of artificial light-emitting synaptic
devices as physical reservoirs
To validate the efficacy of the artificial light-emitting

synaptic device as a physical reservoir for reservoir
computing, an extensive investigation was conducted to
analyze its dynamic characteristics. This comprehensive
analysis encompassed the examination of ion dynam-
ics34,35, nonlinear attenuation36–38, short-term mem-
ory39–41, separability42–44, and echo state
characteristics45,46 of the device. The resulting findings
unequivocally demonstrate that the device satisfies the
essential criteria required for reservoir computing.
Firstly, we characterize the internal dynamics of ions in
artificial light-emitting synaptic devices. As shown in
Fig. 3a, 14 identical electrical pulses (6 V, 30 ms) at
different time intervals are applied to the device to
generate the corresponding device current. When the
applied electrical pulses have a short time interval, the
conductance of the device exhibits a continuous
increase (as shown by the red arrow in Fig. 3a). This is
ascribed to the accumulation of ions near the electrode
under the continuous stimulation of the electrical pulse
and the continued expansion of the n and p doping

regions in the device21 (Fig. 2h–j). When the applied
electrical pulse has interval for a long time, the ions are
gathered at the channel interface produce reverse
migration, and the conductance of the device shows a
spontaneous attenuation phenomenon19 (as shown by
the black arrow in Fig. 3a). Figure 3b shows that under
the stimulation of 10 continuous pulse sequences (6 V,
90 ms), the output current response of the artificial
light-emitting synaptic device increases with the
increase of the number of pulses, but the current
increment gradually decreases when the number of
pulses reaches a certain value. At the same time, the
output light response of artificial light-emitting synaptic
device also increases with the increase of pulse number,
but when the pulse number reaches a certain number,
the increment of light response gradually decreases. The
device exhibits an obvious nonlinear current and light
response to the excitation of an external electric pulse.
Figure 3c shows the attenuation memory characteristics
of a LES device, where the output current increases
when the device is stimulated by different coding vol-
tages and decreases over time when the voltage is
withdrawn. The property of temporal short-term
memory enables LES to effectively discriminate input
sequences with varying temporal orders, making it an
ideal choice for implementing the reservoir computing
system.
Another important characteristic of a reservoir is its

separability. Separability refers to the ability to distinguish
inputs with different temporal characteristics using dif-
ferent reservoir responses. To evaluate the separability of
LES, we input 16 different pulse sequences respectively
(0000, 0001, 0010, 0100, 1000, 1001, 1010, 1100, 0110,
0101, 0011, 0111, 1110, 1011, 1101, 1111), “1” (6 v, 60 ms;
0 v, 90 ms), “0” (0 v, 150ms) to LES. Before applying the
pulse train, we give the LES a preset voltage pulse: “1” (6 v,
60 ms; 0 v, 90 ms). Depending on the attenuation process
of the output optical signal and the electrical signal, we
use different optimization methods. For the output light
signal, we use optimization methods I (Fig. S11): The
maximum light response produced by LES after stimula-
tion with electric pulse sequence was taken as reservoir

(see figure on previous page)
Fig. 3 Physical reservoirs dynamic properties of artificial light-emitting synaptic devices. a Internal dynamic characteristics of ions: The
dynamic response of the device current when stimulated by a pulse stream composed of the same electrical pulses (6 v, 90 ms) with different pulse
intervals, the response trend is shown by the red arrows and black arrows. b Nonlinear response: Device current output and light intensity output as a
function of the number of applied electrical pulses (6 v, 90 ms). c Short-term memory properties triggered by sequential voltage pulses.
d Experimental read-current responses generated by sixteen 4-bit electrical pulse trains (6 v, 90 ms) ranging from (0000) to (1111). Experimental
photo-responses generated by sixteen 4-bit electrical pulse trains ranging from (0000) to (1111). e The echo state characteristic of the device current:
the current response of the device under the stimulation of 10 identical pulses (6 v, 90 ms) with different pulse intervals (50 ms, 80 ms, 100 ms). f The
echo state characteristic of the device light intensity: the photo-response of the device under the stimulation of 10 identical pulses (6 v, 90 ms) with
different pulse intervals (90 ms, 120 ms, 150 ms). g Current reservoir states which are generated under the stimulation of electrical pulses at different
voltages (5 v, 6 v, 7 v, 8 v). h Light reservoir states which are generated under the stimulation of electrical pulses at different voltages (5 v, 6 v, 7 v, 8 v)
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state. For the output electrical signal, we use optimization
methods II (Fig. S11): The average of the current within
the relaxation time (90 ms) after the electric pulse
sequence stimulation was taken as the reservoir state. As
shown in Fig. 3d and Fig. S12, 16 pulse sequences from
0000 to 1111 produce 16 clearly distinguishable electrical
output states and 16 clearly distinguishable optical output
states, which implies a powerful ability to map complex
spatiotemporal signals to reservoir states, demonstrating
excellent separability of LES. There are potential overlaps
between current reservoir status distributions of four
certain inputs (1110, 0110, 1010, and 0010) in the square
frame of Fig. 3d, which can be further distinguished by
adding light intensity reservoir states. Consequently, the
feature space can streamline the classification process of
the reservoir by reducing the dimensionality of the initial
data from 4-bit digital inputs to 2 analog outputs, then
optimizing performance through the utilization of these
outputs as inputs for the linear readout layer.
Figure 3e reveals the changes in the current response of

LES under three stimuli of the same amplitude of 6 v and
the same pulse width of 90 ms, but with pulse intervals of
50 ms, 80 ms, and 100ms, respectively. When the pulse
interval is 50 ms, the current response increment of the
device is 0.0375 A after the stimulation of 10 consecutive
pulses. When the pulse interval is 80 ms, the current
response increment of the device is 0.0163 A after 10
continuous pulse sequences are stimulated. When the
pulse interval is 100ms, the current response increment
of the device is 0.0115 A after stimulating 10 continuous
pulse sequences. This is associated with the accumulation
of ions on the interface when a higher frequency electrical
pulse is applied, resulting in a rapid increase in the cur-
rent of the device. When a lower frequency electrical
pulse is added, the large pulse interval provides sufficient
time for the diffusion of ions, thus inhibiting the accu-
mulation of ions and the continuous increase of current.
Figure 3e also reveals that the current response of the
device depends not only on the current electrical pulse
input but also on the recent electrical pulse input. The
hollow points in Fig. 3e are considered to be the final
current response, and the pulse timing input of the pre-
vious period can be inferred according to the final current
response, which indicates that the current response of our
device has the characteristics of the echo state of the
reservoir.
Figure 3f shows the changes in the light response of LES

under three stimuli of the same amplitude of 6 V and the
same pulse width of 90 ms, but with pulse intervals of
90 ms, 120ms, and 150 ms, respectively. When the pulse
interval time is 90 ms, the optical response increment of
the device is 0.3202 V after 10 consecutive pulse stimu-
lations. When the pulse interval time is 120 ms, the
incremental optical response of the device is 0.1497 V

after 10 consecutive pulses. When the pulse interval time
is 150 ms, the optical response increment of the device is
0.1278 V after 10 consecutive pulses. These phenomena
are ascribed to the fact that when higher frequency elec-
trical pulses are applied, the increase in current makes the
interface produce more holes and electrons, and their
recombination probability greatly increases, thus enhan-
cing the optical response of the device. When the elec-
trical pulse of a lower frequency is applied, the increase of
current is suppressed, the number of holes and electrons
decreases, and their recombination probability decreases,
resulting in the decreased optical response of the device.
Figure 3f also indicates that the optical response of the
device depends not only on the current electrical pulse
input but also on the recent electrical pulse input. The
hollow points in Fig. 3f are considered the final optical
response, and the pulse timing input of the previous
period can be inferred according to the final optical
response, which indicates that the optical response of our
device also has the characteristics of the echo state of the
reservoir.
To demonstrate the robust capability of the LES reser-

voir system to map complicated spatiotemporal signals to
reservoir states, we demonstrate the currents nonlinear
mapping of 4-bit inputs (Fig. 3g) and the light intensity
nonlinear mapping of 4-bit inputs (Fig. 3h) which are
under different voltages (5 V, 6 V, 7 V, 8 V) based on the
LES reservoir. The result shows the nonlinear dynamic
evolution of currents and the nonlinear dynamic evolu-
tion of light intensity are both well separated. It is worth
noting that the richness of nonlinear dynamic evolution in
the optical reservoir is significantly higher than that of the
electrical reservoir. As a result, the variation of the output
light intensity can be used to map the variation of dif-
ferent voltage amplitudes of the pulse signal. The above
data results verify that the artificial light-emitting synaptic
device has the characteristics of a physical reservoir, and
the reservoir system can be built based on this device. In
addition, in Supplementary Information Note 2, the
relationship between reservoir computing and the devices
in this paper is described in detail through mathematical
models.

Realization of mixed physical node RC in the Learning of
Digital Images
RC networks have become a strong candidate for effi-

cient image recognition and classification due to their
ability to extract high-dimensional features from spatio-
temporal inputs. Compared with the single physical node
RC system, the mixed physical node RC system enriches
the reservoir through the two output modes of electrical
response and optical response, which can effectively
improve the efficiency of image recognition. To illustrate
the working principle of the mixed physical node RC
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system, using the number “6” as an illustration. Each row
of digits was converted into different coded electrical
pulses. The yellow pixels correspond to the code “1” (6 v,
60 ms; 0 v, 90 ms), while the remaining blue pixels cor-
respond to the code “0” (0 v, 150ms). The impulses of five
rows are sequentially applied to the five corresponding
LES, and the resulting EPSC and EPSB were input to the
readout layer for training47,48, as shown in Fig. 4a. With
reservoir states mapped by the currents (Fig. S13) and
light intensity (Fig. S14) from five LES, and the ten output
neurons (labeled 0–9) correspond to the predicted
numeric value of the input image. By comparing the
confusion matrix obtained after 20 training cycles of the
digital pictures of 20 pixels of the single physical node
reservoir and the mixed physical node reservoir (Figs.
S15 and S16), the mixed physical node reservoir can
recognize all the digits 100% accurately, while the single
physical node reservoir cannot recognize the number “3”,
“5”, “8” and “9” accurately (Fig. 4b and c). As shown in Fig.
4d, the mixed physical node RC system can accurately
identify every temporal sequence of pulses from the 10
original images after 6 training epochs, with a matching
accuracy of 100%.
To further demonstrate the advantage of mixed physical

node reservoirs, more sophisticated handwritten digit
recognition is executed. For handwritten digital image
recognition, the image is first converted into a binary pixel
image, as shown in Fig. 4e. In theory, however, using the
whole row as a single stream of input pulses produces 220

different patterns, which is difficult for LES to distinguish.
To solve this problem, each row is divided into 5 sections,
each containing 4 pixels to separate the input more effi-
ciently. Using the picture of the number 2 as an illustra-
tion, a row (marked by a red line) is divided into five parts:
0000, 0000, 0001, 1100, 0000 (Fig. 4e). The binary image is
converted into the corresponding voltage pulse sequence,
which is input into the mixed physical node reservoir, so
as to generate 200 kinds of photoelectric signal mixed
reservoir state. The simulated reservoir states shown in
Fig. 4g correspond to the three handwritten digital pic-
tures (highlighted by the red line in Fig. 4f), demonstrat-
ing the significant difference in the LES reservoir states.
Finally, the reservoir states are trained in the readout
network (see experiment section and Supplementary
Information Note 1 for details). The recognition accuracy
of the handwritten digital images is shown in Fig. 4h.
After 20 training sessions, the recognition accuracy of the
mixed physical node RC system achieved 97.22%, while
the single physical node was only 89.47%.

Realization of mixed physical node RC for multichannel
image learning
The reservoir system based on memristor mostly uses

binary dataset for coding. This binary coding scheme

encodes the shape of the identified object and inputs it
into the reservoir as a pulse sequence to generate the
corresponding current reservoir state. This can reduce
the difficulty of signal processing of memristor to some
extent. However, this kind of binary coding which
recognizes the task only by mapping the shape of an
object will inevitably cause data distortion and recog-
nition errors to a certain extent. For instance, in Fig. 5a,
after preprocessing the images of two kinds of fruits,
apple, and pear, converting the images into binary pixel
maps, and then constructing their respective reservoir
reservoirs according to different codes, it can be seen
that there are large differences in their reservoirs (Fig.
5c), and accurate identification can be achieved (Fig.
S17a). However, for watermelons and cantaloupes with
small shape differences (Fig. 5b), the two reservoirs
constructed by the memristor-based RC system have
high similarity (Fig. 5d), resulting in the misidentifica-
tion of the two fruits (Fig. S17b). In Fig. 5e and Fig.
S17c, the mixed physical node RC system in this paper
uses the two outputs of reading current and light
intensity respectively to construct a dual-modal reser-
voir for mapping the shape and gray value of task
objects, current reservoirs, and light intensity reservoirs
can be obtained (the right part of Fig. 5e). The current
reservoir state can distinguish pulse sequences of dif-
ferent time series input by its short-term memory
characteristics (Fig. 3c), and the light intensity reservoir
state can distinguish pulse sequences of different
amplitude by its dynamic emission characteristics (Fig.
3h). When current reservoirs are similar in height,
objects can be distinguished by light intensity reservoirs.
To validate the ability of nonlinear mapping input
information on the mixed physical node reservoir sys-
tem, we perform image recognition of the multichannel
fruit dataset with the mixed physical node reservoir
system (Figs. S18 and S19): By linearly mapping grays-
cale values [0, 255] to voltage amplitude values [4 V,
10 V] (Fig. S20), the gray value is calculated by the
formula:

Gray ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2:2 þ ð1:5GÞ2:2 þ ð0:6BÞ2:2
1þ 1:52:2 þ 0:62:2

2:2

s

ð3Þ

Then, converting the images into continuous voltage
streams that can be processed by LES to generate cor-
responding current and light intensity reservoir state.
Finally, the reservoir states are trained in the readout
network (see experiment section for details). By com-
paring the confusion matrix of single physical node
reservoirs (Fig. 5f) and mixed physical node reservoirs
(Fig. 5g) after 20 training cycles, the mixed physical
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node reservoir can identify the target more accurately.
The recognition accuracy of the multichannel fruit
dataset is shown in Fig. 5h. The final recognition rate is
improved to 99.25% compared to 93.16% for a single
physical node reservoir.
Finally, we summarize the advantages of the mixed

physical node reservoir system in the following aspects: (i)
Mixed reservoir nodes: Unlike traditional dynamic
memristors for RC, this device not only maps timing
signals through dynamic current changes, but also
extracts spatiotemporal and amplitude characteristics of
signals in parallel through dynamic luminescence. As a
result, the device as a reservoir layer can map timing
signals in multiple physical dimensions, significantly
improving the richness of reservoir states. (ii) Visual
information presentation: The device can directly map
different timing signals in the form of dynamic emission,
directly avoiding the crosstalk problem with the dynamic
current reservoir state while visualizing, which is the main
challenge of traditional hardware reservoir devices. (iii)
Multi-feature fusion task recognition: Compared with the
evolution of timing signals by a single reservoir node, the
reservoir system of mixed physical nodes greatly expands
the extraction range of spatiotemporal features of the
input signal by means of the parallel mapping of memory
current and dynamic luminescence, and the multichannel
image recognition task accuracy is improved from 93.16%
to 99.25%.

Discussion
In conclusion, we propose a mixed physical node

reservoir system. This system utilizes the ion-electron
coupling principle of artificial light-emitting synaptic
devices to generate optical output with nonlinear optical
effects and electrical output with memory characteristics.
By extracting these characteristic outputs, a mixed phy-
sical node reservoir can be constructed. On this basis, the
handwriting digit recognition accuracy is higher than the
single-mode reservoir system. In addition, different from
the previous single physical node memristor reservoir
system, the mixed physical node reservoir system maps
the shape of the image to the current reservoir and the
gray value to the light intensity reservoir through the
characteristics of dual eigenvalue mapping, which can

realize the recognition of RGB multichannel image, and
can be applied to more scenarios and more complex
computing tasks. Hence, this innovative reservoir system
with a parallel output of optoelectronic signals shows
great potential in next-generation optoelectronic mixed
neural networks and material-algorithm collaborative
design.

Materials and methods
Materials
LiCF3SO3 (12 mg) and PEO (8mg) were dissolved in

1mL of cyclohexanone, respectively, and then magneti-
cally stirred for 18 h at 50 °C in an ambient atmosphere.
MEH-PPV (12 mg) was dissolved in 1mL tri-
chloromethane and then annealed at 50 °C for 10min.
The three solutions were mixed in a mass ratio of MEH-
PPV: PEO: LiCF3SO3= 1:0.25:0.04. MXene solution of
5 mg/mL was mixed with the above solution in a ratio of
0.5:100. Then the mixing solution was magnetically stir-
red for 3 h at 50 °C in an ambient atmosphere to make the
active layer.

Fabrication of LES
The active layer was prepared by spin coating the mixed

solution onto clean ITO electrodes-coated glass sub-
strates at 1400 rpm for 40 s, and then annealed at 90 °C for
10min in a nitrogen glove box. Ag electrodes of 50 nm
were deposited onto the active layer by thermal eva-
poration using a shadow mask.

Optoelectronic measurement
The electrical performance was characterized by the

semiconductor parameter analyzer (Keysight B2902A).
Light signals were detected by a non-amplified Photo-
detector (ET-2030) and converted to readable value by an
oscilloscope (Keysight DSOX1202). The EL spectra of the
devices were obtained using FL 4600.

Network training
A supervised learning algorithm was adopted to train

the readout layer for image recognition tasks
(Figs. 4 and 5). The reservoir states, which are repre-
sented by the current response and light intensity
response of light-emitting synaptic devices, are fed to

(see figure on previous page)
Fig. 5 Training and recognition of the multichannel image learning in mixed physical node reservoir computing system. a Image
preprocessing for fruit images with different shapes: After image processing, the images of apple and pear are converted into voltage pulse code.
b Image preprocessing for fruit images with similar shapes: After image processing, the images of watermelon and cantaloupe are converted into
voltage pulse code. c Current reservoir states of apple and pear mapped through the single physical node reservoir system. d Current reservoir states
of watermelon and cantaloupe mapped through the single physical node reservoir system. e A schematic of multi-dimensional feature recognition of
fruit images based on mixed physical node system. f Fruit image confusion matrix recognized by the single electric node reservoir. g Fruit image
confusion matrix recognized by the mixed physical node reservoir. h For the multichannel fruit image dataset, the recognition accuracy of a single
electric reservoir 93.16%, and the identification accuracy of the electro-optic mixed reservoir is 99.25%
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the readout network. RC readout networks adopt the
cross-entropy loss function to calculate the loss. The
back-propagation (BP) and batch gradient descent
algorithms were used to update the weights and mini-
mize the loss value using the SGD optimizer. Then, the
ReLU regression was used to fit the weight of readout, to
get the maximum probability index. Specifically, the
readout network of size 5 × 10 and 10 × 10 for simple
digital image recognition tasks used a learning rate of
0.05, and a batch size of 16. The accuracy of the hand-
written digital images classification, shown in Fig. 4e,
was obtained using another readout network of size
100 × 100 × 10 and 200 × 100 × 10, where the learning
rate was 0.001, and the batch size was 32. And using
another readout network of size 2500 × 1024 × 8 and
5000 × 1024 × 8 for the recognition task of multichannel
image, where the learning rate= 0.000005 and batch
size= 64.
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