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Abstract

Time-resolved volumetric fluorescence imaging over an extended duration with high spatial/temporal resolution is a
key driving force in biomedical research for investigating spatial-temporal dynamics at organism-level systems, yet it
remains a major challenge due to the trade-off among imaging speed, light exposure, illumination power, and image
quality. Here, we present a deep-learning enhanced light sheet fluorescence microscopy (LSFM) approach that
addresses the restoration of rapid volumetric time-lapse imaging with less than 0.03% light exposure and 3.3%
acquisition time compared to a typical standard acquisition. We demonstrate that the convolutional neural network
(CNN)-transformer network developed here, namely U-net integrated transformer (Ul-Trans), successfully achieves the
mitigation of complex noise-scattering-coupled degradation and outperforms state-of-the-art deep learning networks,
due to its capability of faithfully learning fine details while comprehending complex global features. With the fast
generation of appropriate training data via flexible switching between confocal line-scanning LSFM (LS-LSFM) and
conventional LSFM, this method achieves a three- to five-fold signal-to-noise ratio (SNR) improvement and ~1.8 times
contrast improvement in ex vivo zebrafish heart imaging and long-term in vivo 4D (3D morphology + time) imaging
of heartbeat dynamics at different developmental stages with ultra-economical acquisitions in terms of light dosage
and acquisition time.

Introduction

Fluorescence imaging technology is extremely powerful
for revealing structural and functional information of
specimens and has had a number of innovative advance-
ments, including imaging strategies' ™ and labeling tech-
niques*~®, offering exciting prospects for comprehensive
studies of complex processes in many fields such as life
science””®, materials science, medicine and so on’ %,
Specifically, there has been a rapid development of three-
dimensional (3D) fluorescence imaging techniques in
recent decades to provide molecular contrast with sub-
cellular resolution throughout “mesoscopic” (millimeter-
centimeter) samples due to the proliferating studies of
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biological processes at the whole-organism level®.
Among those imaging techniques, light sheet fluorescence
microscopy (LSFM) has gained increasing popularity due
to its advantage of exceptional resolution and scale, low
phototoxicity, and high speed, especially in the study of
in vivo biological processes over an extended period of
time (e.g. embryogenesis'®, neuronal calcium dynamics'’,
etc.). Moreover, a number of sophisticated approaches in
LSFM have been further developed to improve its per-
formance and extend its applications. For instance, in
terms of engineering the laser intensity profile, lattice light
sheets provide improved axial resolution, rapid imaging
with reduced phototoxicity/damage to the sample'®, while
Airy/Bessel beams, especially with two-photon excitation,
provide a superior axial resolution across a wider lateral
extent'>?°. In terms of engineering the optical geometry,
dual excitation/detection®”*?, line confocal approa-
ches*®** and multi-modal integration OPTiSPIM*® can
effectively reduce artifacts/blurring and alleviate the
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scattering problems associated with light sheet imaging.
In terms of post-processing, deconvolution methods
applied in LSEM with propagation-invariant beams?"**
can provide improved isotropic resolution and larger field
of view.

While there are numerous improvement strategies of
LSFM in various scenarios, its application to in vivo study
of 3D cardiac dynamics of mesoscale biological samples
(e.g. the model organism zebrafish) remains challenging,
because imaging quality depends not only on the spatial
resolution provided by the optical system, but also on the
desired temporal resolution, the targeted fluorophore
density and the total duration of a designed experiment as
well as the inevitable scattering, photobleaching and
phototoxicity of samples. Trade-offs are often made by
considering the imaging speed, light exposure and reso-
lution. In vivo imaging of beating zebrafish hearts typically
requires an exposure time of less than 5 ms®’, resulting in
an extremely low signal-to-noise ratio (SNR) due to the
restrictive maximal light exposure compatible with sam-
ple health. For the scattering issue, in vivo optical imaging
is practical in some mesoscale organisms (e.g. D. rerio and
C. elegans), yet the image quality is deteriorated by the
presence of scattering caused by refractive index inho-
mogeneity and morphological complexity of samples.

In order to address these challenges, denoising techni-
ques®®*! have been widely employed in post-processing to
recover meaningful information. Classical denoising meth-
ods, including spatial domain and transform domain
methods (e.g. wavelet denoising, BM4D, non-local mean
algorithms, etc**~>%), are regularly used for LSFM images.
With the rapid advancement of deep learning, convolu-
tional neural network (CNN) based methods (e.g. Noise2-
Noise, DeepCAD, residual channel attention network
(RCAN), etc®*>7) have been developed in the field of
digital image denoising and restoration, leading to superior
performance compared to traditional algorithms®®. Espe-
cially, there are a number of CNN-based networks specifi-
cally designed for denoising and restoring LSFM volumetric
images, for the ease of visual analysis. A content-aware
image restoration (CARE) network is able to address dif-
ferent kinds of image degradation such as low SNR due to
low light dosages, axial resolution degradation, etc., by
training with simulated images or actual high/low SNR
images™. Isotropic divide stages-to-process double-ring
modulation selective plane illumination microscopy
(IDDR-SPIM) adopts a combination of DR-modulated light
sheet and CNN to simultaneously achieve LSFM image
denoising and volume imaging isotropy™. Complementary
beam extraction combined the blind deconvolution and
denoising (CBS-CBDD) achieves CNN network training for
Bessel LSFM denoising and deconvolution®’.

The above CNN-based methods have shown excellent
capabilities in denoising, deconvolution and super-
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resolution applications, especially for microscopic ima-
ges due to the readily accessible training data. However,
mesoscopic imaging of in vivo zebrafish heart beating
suffers from varying noise, inevitable uneven scattering,
and complex moving biological structures®? all of which
result in highly complex degradations in image quality.
While these CNN-based methods hold the potential to
enhance in vivo mesoscale-level volumetric imaging, the
efficient strategy for ample training data acquisition, and
the effectiveness for current methods to restore such
coupled degradations remain to be explored, especially
the latter one considering the challenge associated with
the limited receptive field in these methods to address the
scattered signals exhibiting extensive spatial variability
over a relatively large spatial range and closely resembling
the true signal in intensity.

Transformer, which is well-known for its ability in
natural language processing, achieves superior perfor-
mance in capturing intricate patterns and dependencies
within sequential data through self-attention mechan-
isms®. Vision transformer (ViT)**, which has extended
this transformative architecture to the realm of computer
vision in recent years, have achieved remarkable results in
various low-level tasks of biomedical image processing,
e.g. image denoising, deblurring, and so on**®. By com-
bining transformer and CNN architectures, it becomes
possible to comprehend complex scenarios while main-
taining the sensitivity to local image details, thereby
enhancing the network’s capacity to process intricate
images®’. There is an increasing interest in deep learning
research to explore various combinations of Transformer
and CNN architectures for diverse image processing
applications, each offering different advantages on its
designed purposes (details in Supplementary Table
S1)*7°°, yet more balanced hybrid architecture and
refined training for addressing complex noise-scattering-
coupled degradation remain to be explored. Furthermore,
if confocal line-scanning LSFM (LS-LSEM)* is integrated
to generate high-quality scattering-alleviating ground
truth (GT) datasets for training, the developed network is
equipped with the ability to learn the mapping relation-
ship from low-quality LSFM images to high-contrast GT,
offering a new path in the restoration and enhancement of
in vivo time-lapse volumetric LSFM imaging of
mesoscale-level organisms.

Herein, we present an approach that addresses the
aforementioned challenges in long-term in vivo
mesoscale-level volumetric LSFM imaging of zebrafish
heart beating. We develop a novel CNN-transformer
network, namely U-net integrated transformer (UI-
Trans), that successfully learns fine details while com-
prehending complex global features. With the fast gen-
eration of appropriate training data via easy switching
between confocal LS-LSFM and conventional LSFM, this
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method enables high-quality image restoration in 3D
mesoscopic fluorescence microscopy applications that
always suffer from complex noise-scattering-coupled
degradation. We characterize Ul-Trans and other state-
of-the-art networks (i.e. RCAN and CARE) and identify
that UI-Trans provides superior performance in terms of
denoising and scattering alleviation while better main-
taining structural details/fidelity. Finally, we investigate
the generalization capability of the pre-trained UI-Trans
network and demonstrate three- to five-fold SNR
improvement in multiple live samples, facilitating in vivo
4D high-quality imaging of zebrafish heartbeat dynamics
at different developmental stages using time and light-
efficient acquisitions.

Results
Developing Ul-Trans Network and the workflow for LSFM
Enhancement

The architecture of our developed UI-Trans network in
the context of the LSFM setup is illustrated in Fig. 1 and
Fig. 2. As summarized in Fig. 1(a), a novel architecture
was developed with a dual-branch encoder and decoder
structure. In order to achieve better comprehension of
complex global features while extracting details in feature
maps, a transformer-based architecture is employed in
one encoder branch and a multi-layer convolutional
structure in the other. At each down-sampling stage, the
image undergoes feature extraction and down-sampling
in both the transformer and convolutional branches, with
their output images concatenated along the channel
dimension for the next stage. The decoder adopts the
classic convolutional up sampling structure of U-Net.
Before each up-sampling operation, skip connections are
established at the corresponding positions in the encoder,
enabling the integration of high-resolution features dur-
ing the up-sampling process. More detailed network
architecture information can be found in Materials and
Methods B.

Figure 1b and c illustrates the optical geometry of the
LSFM system using a virtual light sheet generated by a
quick-sweeping Gaussian laser beam for the conventional
LSEM mode. In contrast, for the confocal LS-LSFM mode,
the rolling shutter exposure of the camera was switched
on to synchronize with the scanning of the excitation
beam, thereby reducing the contribution from scattered
light and providing high-quality scattering-alleviated
datasets as “ground truth” for training. With easy
switching between conventional LSFM and confocal LS-
LSFM, we achieve a readily accessible training dataset
generation strategy, which enables pixel-to-pixel aligned
image pair acquisition on the same imaging platform. A
total of 400 paired images of fixed zebrafish heart,
including low-quality LSEM images (with low exposure
time and low illumination power) and high-quality
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confocal LS-LSFM images, as shown in Fig. 1b, were
acquired as input and GT datasets, respectively. During
the training, a multi-loss joint optimization was employed
that fully considers the balance between pixel-level dis-
crepancy (represented by mean absolute error (MAE)®Y)
and perceptual image similarity (represented by percep-
tual loss computation using pre-trained VGG network>?).

3D LSFM Image Denoising and Scattering-alleviating with
Ul-Trans Net
Denoising

In order to train the Ul-Trans network, low-quality
LSEM images of optically cleared zebrafish hearts were
acquired by conventional LSFM using economical acqui-
sitions (i.e. a low exposure time of 10 ms/plane and a low
illumination power of 0.1 mW) with an average SNR of
6.2 dB (ranging from 4.5 -8.1 dB) as input. With the use of
confocal LS-LSFM (using a high illumination power of
10mW and an exposure time of 300 ms/plane), high-
quality 3D images of a whole fixed zebrafish heart at 1 um
resolution with an average SNR of 15.1 dB (ranging from
12.5 - 20.4 dB) were obtained as GT data, but requiring
3000 times the light dosage and 30 times the acquisition
time (the detailed characterization of SNR is in Supple-
mentary Fig. S1). After the Ul-Trans network is trained
with multi-loss joint optimization, a higher SNR, more
structural details and higher structural fidelity have been
achieved in restorations on the validation set compared to
other competitive networks, including CARE and RCAN.
Figure 3a shows 3D visualizations of a whole zebrafish
heart acquired with low-quality LSFM (input), high-quality
LS-LSEM (GT), and the corresponding restored results
using CARE, RCAN and Ul-Trans network via surface
blend method (more representation via maximum inten-
sity projection (MIP) method and details can be found in
Supplementary Fig. S2). Although the restored results
from RCAN and CARE can partially discriminate signals
from noise, they tend to lose some meaningful details and
fail to match the visual quality of the GT (more detailed
slice images in Supplementary Fig. S2). In order to quan-
tify the extent of image improvement, normalized root
mean square error (NRMSE)>*** and Pearson coefficient’”
of the output restored images using different networks
were calculated and the results are shown in Fig. 3e,
exhibiting ~31% /~39% improvement of NRMSE and
~9% /~11% higher performance of Pearson coefficient
over CARE and RCAN respectively. (more comparison
results on each individual data in the validation set can be
found in Supplementary Fig. S3; other two commonly used
evaluation metrics, i.e. peak signal-to-noise ratio (PSNR)
and structural similarity index (SSIM), can also be found
in Supplementary Fig. S4).

Moreover, in contrast to the simple image enhancement
on signal strength from RCAN and CARE, the enhancement
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Fig. 1 The architecture of Ul-Trans network during the training phase in the context of the LSFM setup. a Ul-Trans network is composed of a
dual-branch encoder and decoder structure. The encoder consists of a convolutional encoder and a transformer encoder in parallel, repeatedly
performing feature extraction and down-sampling. The decoder consists of alternating convolutional layers and up-sampling layers. b Low light-
dosage LSFM images (using full-frame exposure) are used as input and the high light-dosage confocal LS-LSFM images (by synchronizing the light
scanning and rolling shutter exposure) are used as the ground truth. ¢ Optical geometry of LSFM system. Cat — concatenation
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of Ul-Trans network relies more on image features rather
than local signal strength. The image restoration results of
UI-Trans, RCAN, and CARE can be evaluated from 2D slice
images. Figures 3b and c show slices of the 3D heart data
represented in Fig. 3a (in the green and blue dashes boxes).

UI-Trans network demonstrates an effective restoration of
the slender myocardial layer (as shown in Figs. 3b and c),
preserving intricate details that are lost in the output image
of RCAN and CARE. By analyzing the zoomed-in slices of
the atrial wall (Fig. 3b), it is also evident that Ul-Trans
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network successfully reconstructs microscopic-level details
with high similarity to the GT. In contrast, the images
processed by RCAN and CARE exhibited a significant loss of
weaker signals compared to Ul-Trans, resulting in a dis-
continuous myocardial wall. In addition, when examining
the cross-sectional intensity profiles (as shown in Fig. 3d)
indicated by the dashed lines within the zoomed-in ROIs
depicted in Fig. 3b, it is evident that both the peak position
and curve shape indicate a higher degree of consistency
between the image reconstructed by UI-Trans and the GT
compared with the other networks. These results suggest
that the enhancement of myocardial cells in zebrafish cannot
be solely achieved by relying on the intensity of local signals.
In the restored results, UI-Trans provides a clear visualiza-
tion of myocardial cell distribution, whereas central myo-
cardial cells in the output of RCAN and CARE remain
unidentifiable. This advantage could be explained by the fact
that the Transform block employed in the developed Ul-
Trans network can better leverage global information and
then distinguish structural details from noise, thereby
achieving higher visual quality compared to the other
networks.
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Scattering-alleviating

As aforementioned, the UI-Trans network achieved
superior denoising performance while maintaining more
structural details and higher fidelity, leading to perceptible
differences in texture and accuracy. However, in vivo/
ex vivo imaging of mesoscale organisms involves the
inevitable phenomenon of scattering, which is not only
sample-dependent but also varies with depth and illumi-
nation/detection direction, resulting in variable image
degradation over the 3D image space. Although the SNR
of acquired images can be enhanced by simply increasing
the illumination power and exposure time of conventional
LSFM, the additional imaging background/artefacts due
to the uneven scattering cannot be addressed. In order to
further illustrate the scattering-alleviating ability of the
method developed via confocal LS-LSFM and UI-Trans
network, high-SNR conventional LSFM images were
acquired with an increased laser power of 1 mW and an
extended exposure time of 500 ms/plane for comparison.
Figure 4a depicts slice images of the fixed zebrafish heart
acquired from low-quality conventional LSFM (Input to
Ul-Trans), high-SNR conventional LSFM, confocal
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LS-LSFM (GT), and the restored results from UI-Trans,
CARE and RCAN, respectively. As demonstrated in previous
studies, confocal LS-LSFM could effectively mitigate scat-
tering that cannot be eliminated by simply increasing the
illumination and exposure of conventional LSFM?’, pre-
senting improved contrast and a significant reduction in the
scattered light haze. Importantly, the restored images
enhanced by Ul-Trans network closely resemble the GT
images, and thus achieve superior performance in terms of
scattering-alleviation. From the ROI area of the image (red
boxes Fig. 4a), it is noted that even with 10 times laser power
and 50 times acquisition time, the background caused by
scattering still overwhelms the myocardium signal of high-
SNR conventional LSFM, making it challenging to identify
the edge. However, the ROI of the restored images enhanced
by Ul-Trans network exhibits clear myocardium edges. In
order to further illustrate the differences, the cross-sectional
intensity profiles were derived from dashed lines within the
zoomed-in regions of ROIs (Fig. 4(b)), demonstrating that
the restored results using Ul-Trans (i.e. red line), which
resembles the confocal LS-LSFM data (i.e. dark red line), can
effectively remove the scattered light and restore the narrow
structure of ~ 6 pm width, while the results from high-SNR
LSFM image (i.e. yellow line) displays a clear background
and ~ 11 pm width (ie. 183% wider, showing blurring)
compared to the confocal LS-LSFM ground truth.

In order to obtain an overall performance evaluation,
quantitative analysis based on the calculation of SNR and
contrast enhancement were employed and the comparison
between different metrics is shown in Fig. 4c (more eva-
luation metrics such as Pearson coefficient and NRMSE in
Supplementary Fig. S5). The results illustrate that UI-Trans
network achieves a substantial improvement in SNR
(~7.2 dB) and image contrast (~87%), in comparison with
the limited effects on SNR (~4.5 dB) and image contrast
(~30%) from the high-SNR LSFM acquisition. In addition,
although RCAN- and CARE-restored results show com-
parable improvements in SNR (i.e. ~7.0dB), they exhibit
inferior improvements in contrast enhancement (i.e. ~57%
and 53%, respectively) compared with UlI-Trans. Since
contrast enhancement is a key indicator of the improve-
ment of the visually perceived contrast of images>>>°, these
results suggest there may be some difficulty for these
networks in restoring the complex scattering-noise-
coupled image degradations, even with the same training
datasets. This could be attributed to the ability of UI-Trans
to improve the global comprehension of the entire image
space, thereby enhancing its performance in addressing
complex noise-scattering-coupled degradation.

In vivo Zebrafish Heartbeats Movie Restoration using pre-
trained Ul-Trans Net

In vivo 3D mesoscopic imaging of zebrafish heart beat
often requires extreme experimental conditions such as
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low illumination power and short exposure time for long-
term live imaging considering the effects of phototoxicity
and photobleaching, and thus results in low-quality ima-
ges where cellular details and weak expression patterns
are difficult to identify. In this section, in vivo imaging of
zebrafish heartbeats was carried out using a low laser
power of 0.1 mW and an extremely short exposure time of
3 ms/plane. This short exposure time was specifically
required to suppress motion blur. We further character-
ized the generalization capability of the pre-trained UI-
Trans network (i.e. exclusively on datasets from ex vivo
acquisitions of fixed and optically cleared samples) for
in vivo observations without using any additional ground
truth data. It is noted that the simplest way to increase
SNR is to increase laser power but this can temporarily
stop the heart or even be detrimental to the sample
(details in Movie S1).

In vivo zebrafish heart imaging enhancement with pre-
trained networks

The heartbeat in a live 48 hours post fertilization (h.p.f.)
transgenic zebrafish (Tg (myl7: GFP)) embryo was
acquired and then image restoration was performed by
the pre-trained network model including UI-Trans, CARE
and RCAN. As the 3D visualizations of volumetric data
via MIP rendering shown in Fig. 5a and b, it is difficult to
identify myocardial cells in the raw data (Input) due to the
spatiotemporally varying noise and uneven scattering.
After restoration, it is noted that pre-trained UI-Trans
network can better recover the details (e.g. atrium con-
tour and myocardial cells as shown by green arrow)
compared with CARE and RCAN, indicating better per-
formance of UI-Trans. Figure 5¢ shows the 2D slice and
the zoomed-in ROI images, exhibiting that UI-Trans-
restored results can easily identify myocardial wall with
more details and expression patterns (more 2D slice
images at different spatial locations from the restored data
and the elaborations in Supplementary Fig. S6 and
Fig. S7).

In order to further quantify the enhancement results,
the SNR and the contrast enhancement were calculated
(Fig. 5d), showing a significant improvement of ~6.9 dB in
SNR (i.e. increased from 9.71 dB to 16.63 dB) and a ~ 2.82
times contrast enhancement. It is also evident that the
pre-trained UlI-Trans network substantially outperforms
the pre-trained CARE and RCAN, which achieve
a~1.6dB/~3.2dB improvement in SNR and a~1.57
times/~1.49 times contrast enhancement, respectively.
This performance of the pre-trained UI-Trans network is
comparable to that achieved with the validation set,
demonstrating the robustness and generalization ability of
the developed method via confocal LS-LSFM and UI-
Trans network model, despite the model having been
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trained on an ex vivo transparent heart dataset (more
discussion in Supplementary Fig. S8).

In vivo cardiac dynamics movie enhancement by Ul-Trans
In order to further illustrate the 4D in vivo imaging
capability of the developed method via conventional
LSFM and pre-trained Ul-trans model, we extended the
demonstration to study the morphology of a beating
heart at video rate. Figure 6a and b show 3D visualiza-
tions via MIP rendering and 2D slice images of a heart
enhanced by the pre-trained UI-Trans network at mul-
tiple time points within the same heartbeat cycle,
demonstrating that the UI-Trans-restored images show
comparable improvements in image quality to the vali-
dation set, including improved visibility of structural
details compared to the input image (e.g. the ventricular

characteristic trabeculae as shown in Fig. 6¢). We note
that applications of deep learning to fluorescence
microscopy typically make time-independent predictions
and do not capture temporal variations very well. The
whole restored cardiac dynamics movie is shown in
Movie S2, visually showing that the pre-trained UI-Trans
network can provide high temporal consistency. The
quantitative metrics (i.e. SNR and contrast enhance-
ment) are shown over the duration of a single heartbeat
cycle in Fig. 6d, demonstrating the temporally consistent
enhancement results and further validating the robust-
ness and stability of UI-Trans.

The improvements in clarity and contrast enable a more
detailed observation of dynamic processes during the
zebrafish heartbeat cycle. The start time of atrial diastole
was defined as the initial time point, and the atrium
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reached its maximum dilation with the blood pumped
into atrium (yellow arrow in Fig. 6b) at 40 ms and con-
currently, the ventricle initiated its dilation. At 80 ms, the
ventricle reached its maximum dilation while the atrium
underwent compression, actively pumping blood from the
atrium to the ventricle. Subsequently, the ventricle con-
tracted, propelling blood into the bulbus arteriosus, while
the atrium began to recover and expanded again, facil-
itating the influx of venous blood into the atrium. The
overall duration of a heartbeat cycle was approximately
300ms, and the observation of the dynamic heartbeat
cycle was consistent with previous studies in terms of
morphology and cardiac dynamics®”>®,

In vivo cardiac dynamics movie enhancement at different
developmental stages

The morphology of zebrafish hearts varies significantly at
different developmental stages. In order to further evaluate
the general applicability of UI-Trans for different samples,
we extended the demonstration of in vivo 4D imaging of
zebrafish heartbeats to some different developmental
stages. Specifically, the in vivo cardiac dynamics movie at
the embryonic stage (i.e. 30h.pf) and at late cardiac
development (i.e. 120 h.p.f.) were acquired and enhanced as
described previously. Figure 7 shows the 3D visualizations
via MIP rendering and 2D images of the heart captured at
different timepoints during the heartbeat cycle and their
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Fig. 7 In vivo cardiac dynamics investigation at different developmental stages using Ul-Trans-enhanced LSFM imaging. The enhanced
cardiac dynamics 3D visualizations via MIP rendering of (a) embryonic stage (30 h.pf) and (b) late cardiac development (120 h.pf) with white and
yellow arrows showing the contraction and relaxation of ventricles and atria while cyan arrowheads indicating the path of blood flow. ¢, d The
corresponding 2D slice images of (a) and (b) in x-y plane. Scale bars: 50 um
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corresponding restored results, exhibiting the robustness of
pre-trained UI-Trans network in processing LSFM images
of varying cardiac shapes in different developmental stages.
After Ul-Trans enhancement was applied, the ventricle can
be clearly separated from the background, which was dif-
ficult to discern in the input image. The SNR of the image
has been significantly improved, i.e. increasing from
9.27dB to 14.30dB and from 9.58dB to 13.69dB for
30hpf and 120h.p.f zebrafish respectively, providing
visually-pleasing heartbeat movies (Movie S3 and Movie
S4) to follow the characteristic structures of the heart
throughout the cardiac cycle at various developmental
stages. For example, it is observed that the heartbeat pro-
cess manifests as contractile waves in 30 h.p.f. embryos
(Fig. 7a and c), while the zebrafish heart in late cardiac
development (i.e. 120 h.p.f.), with complete differentiation
of the atrium and ventricle, exhibits a more intricate
heartbeat process (Fig. 7b and d). Moreover, it is noted that
zebrafish embryos of 30 h.p.f. have not yet hatched, and
there is no such early heart imaging data in the training set.
This further demonstrates the powerful generalization
applicability of the developed UIl-Trans network. These
results demonstrate that the developed method can

provide high-speed high-quality 4D imaging of intact
beating zebrafish hearts at different developmental stages,
facilitating new insights into cardiac studies without fixa-
tion artifacts.

Discussion

The results demonstrate that the combination of con-
focal LS-LSFM and the Ul-Trans network not only
achieves superior denoising performance while main-
taining structural details/fidelity, but also alleviates
uneven scattering, both of which are extremely useful for
in vivo mesoscopic imaging over extended periods of
time. The functionality of key components of the UI-
Trans network was analyzed through ablation experi-
ments, demonstrating the efficacy of combining both
vision transformer and basic U-type CNN architectures to
provide a comprehensive view of both local and global
image features as well as an enhanced feature extraction
capability (ablation results and detailed explanation in
Supplementary Fig. S9 and Table S2). This combination
also brings challenges, including the balance between
denoising performance and fidelity maintaining, and the
increased model complexity. To achieve a satisfied trade-
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off between noise reduction and detail preservation, a
multi-loss joint optimization was employed to consider
the balance between pixel-level discrepancy and percep-
tual image similarity, and the effects of this optimization
strategy were also analyzed through ablation experiments
(results in Supplementary Fig. S9 and Table S2). In
addition, the effects of the amount of training data on
denoising and detail preservation performance were
analyzed, and the results demonstrate that a significant
enhancement in image quality can be achieved with a
modest dataset of 20 and 50 samples. However, further
increases in the training data can lead to even higher
performance (more details in Supplementary Fig. S10).
While the developed UI-Trans demonstrates the excellent
capabilities in addressing the complex image degradation
problem of miscellaneous varying noise and uneven
scattering, this success critically depends on proper
adaptation to the task specifics, efficient handling of the
model complexity, a sufficient amount of high-quality
training data, and ensuring that the model do not overfit
to particular noise types or training scenarios. It should
also be noted that Ul-Trans is not appropriate for
intensity-based quantification applications considering
the nonlinear nature of its predictions and its training
process.

Moreover, classical algorithms (including BM4D and
non-local means (NLM)) were used for the enhancement
of low-quality LSFM images and the results were also
compared with deep learning methods (Fig. S11), showing
that deep learning models significantly outperformed
classical algorithms in both visualization and quantitative
metrics on the datasets in this study. However, classical
algorithms retain a number of advantages, including
consistency between input and output and adaptability
across diverse categories of images. Furthermore, we
evaluate experimental settings in terms of imaging per-
formance for different methods (i.e. low-quality conven-
tional LSFM, high-SNR conventional LSFM, confocal LS-
LSFM and three deep-learning-enhanced LSFM mod-
alities) in terms of illumination power, acquisition time,
total light exposure, SNR and contrast enhancement. As
shown in Fig. S12, Ul-Trans-enhanced LSFM achieves
competitive high-quality images with confocal LS-LSFM
but requiring less than 0.03% of the light exposure and
3.3% of the acquisition time. This reduction in light
exposure and acquisition time is particularly crucial for
long-term live imaging of fast processes, since it not only
effectively minimizes the adverse effects of prolonged
light exposure on the subject organisms but also facilitates
rapid imaging with low-intensity light.

Another key feature of our approach is the rapid and
straightforward generation of appropriate training data via
the flexible switching between conventional LSFM and
confocal LS-LSFM on the same imaging system. It not
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only provides high-quality, scattering-suppressed ground
truth data rather than the conventional high-SNR data by
simply increasing light dosage, but also enables pixel-to-
pixel aligned image pair acquisition which reduces addi-
tional labors for image registration and reduces the
training difficulty. Via the developed UI-Trans network
and confocal LS-LSFM, this approach successfully
addresses the complex image degradation problem of
miscellaneous varying noise and uneven scattering,
allowing the photon budget savings during imaging to
improve the acquisition parameters for different applica-
tion scenarios, e.g. imaging speed, experimental duration,
light power, phototoxicity and photobleaching. The gen-
eralization capability of the pre-trained UI-Trans network
shows three- to five-fold SNR improvement in multiple
live samples, facilitating in vivo 4D high-quality imaging
of zebrafish heartbeat dynamics at different develop-
mental stages with economical acquisitions in terms of
light dosage and acquisition time (more exploration on
further analysis in Supplementary Fig. S13). While the UI-
Trans network is trained for a specific organism and
fluorescent markers, it is indeed one of supervised deep-
learning models that can automatically learn the mapping
between input data and desired output when given ample
and appropriate training data. To explore the applicability
of the developed Ul-Trans for other organisms, the
microscopy recordings of developing Tribolium casta-
neum embryos, S. mediterranea flatworm and D. mela-
nogaster drosophila wing (i.e. online accessible from
CARE datasets®®) were used as extra samples, and the
restored results demonstrate that UI-Trans can perform
well on a wide range of applications with proper adapta-
tion, especially for more complex degradation tasks
(details in Supplementary Fig. S14 and Fig. S15). Future
explorations of joint-training with different microscopy
techniques on various organisms will further broaden the
applicability of UI-Trans to address more complex bio-
logical imaging tasks. We believe that the method devel-
oped here can be also adapted to a wider range of image
types and will open new paths for high-quality time-
resolved volumetric imaging to investigate spatial-
temporal dynamics of organism systems.

Materials and Methods
LSFM Setup

Figure 1c illustrates the optical geometry of the LSFM
system. In the excitation path, the laser beam was gen-
erated by a semiconductor laser (Colbolt, 473 nm) and
then magnified 5x by two lenses (AC254-150-A-ML,
AC254-30-A-ML, Thorlabs). Subsequently, the beam was
scanned using a digital scanning system (i.e. a galvan-
ometer (GVS212, Thorlabs) with associated scan lens
(GAS0121, Thorlabs)) and then focused by an illumina-
tion objective lens (LMPlanFLN 10x, NA 0.25, Olympus)
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on the center of the sample from one side. In the detec-
tion path (orthogonal to the illumination path), the
fluorescence distribution of the sample was captured by
using a SCMOS camera (Prime BSI, Photometric) coupled
with a detection objective lens (LUCPlanFLN 20x, NA
0.45, Olympus) and a corresponding tube lens (TTL180-
A, Thorlabs). The sample was moved by a PZT motor
(Coretomorror, P73Z) along the z-axis, enabling full-
depth imaging. In order to operate under conventional
LSEM mode, the galvanometer in the illumination path
swept quickly at 106 Hz and generated a digital virtual
light sheet, providing a lateral/axial resolution of 0.98 pm/
4 pm at an acquisition time of 10 ms for each plane. In
contrast, for the confocal LS-LSFM mode (i.e. to generate
a scattering-alleviating dataset), the rolling shutter expo-
sure of the camera was synchronized with the scanning of
the excitation beam in the y-direction, thereby improving
rejection of scattered light and providing higher-contrast
images with the same resolution but at an acquisition time
~300ms for each plane. All the acquisition settings and
hardware control used an in-house developed LabVIEW
program.

Ul-Trans Net Model

We developed the Ul-Trans network by employing a
hierarchical encoder-decoder architecture as shown in
Fig. 2. To enhance both long-range attention and the
restoration of details, a novel encoder architecture was
proposed based on self-attention transformer and con-
volution collaborative feature extraction. Each branch is
composed of 3 alternating feature extraction modules
(Transformer block or double convolution block) and
down-sampling layers. Within the transformer block, two
Multiheaded Self-Attention (MSA) modules are employed
and their outputs are concatenated to align with the
channel dimensions of the output produced by the double
convolution block. The output of each transformer block,
following down-sampling, is concatenated with the down-
sampled output of the corresponding convolutional layer
as supplementary features. The decoder pathway is sym-
metrical to the convolutional branches in the encoder
pathway, employing a combination of double convolu-
tional layers and up-sampling alternately to restore the
image size and details. Here, skip connections are estab-
lished at the corresponding level of encoder pathway to
transfer fine-grained information. (More ablation experi-
ment results in Fig. S9 and Table. S2).

The MSA module is used to capture global features.
Firstly, the embedding layer transforms the input three-
dimensional image into a sequence. Given that the
transformer module is primarily designed to concentrate
on the global features of the image, an interval extraction
method is adopted in the embedding layer to obtain
patches®. Subsequently, the sequence is processed
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through layer normalization, self-attention, another layer
normalization and a multilayer perceptron (MLP), pro-
viding 3D image output with the same size of the original
input. Two residual connections are included to prevent
gradient vanishing.

Sample Preparation

Optically cleared transgenic zebrafish (Tg (myl7:
GFP), China Zebrafish Resource Center) were used as
examples to acquire input-GT datasets. A total of 100
embryos aged 24-120hours post-fertilization (h.p.f.)
were euthanized by immersing in a 2500 mg/L MS-222
(tricaine, Sigma A5040) solution for 20 minutes®.
Then, they were immersed in paraformaldehyde (PFA)
for approximately 30 minutes and washed 3-5 times
with phosphate-buffered saline (PBS). Afterwards, they
were optically cleared using the UbasM method®' by
immersing the samples in UbasM1 solution for
30 minutes, washing with PBS, and then embedding in a
cylinder of 1.5% w/w agar (Agar, Sigma A1296) and
were then immersed in UbasM2 solution for 3 days. The
embedded zebrafish embryos were finally mounted on
the motor stage and subsequently imaged in UbasM?2
solution.

For in vivo LSFM imaging of zebrafish heartbeats, the
zebrafish embryos were anesthetized with 150 mg/L of
tricaine for 20 minutes and then embedded in 1.5% agar
cylinders. The agar block was then fixed on the motor
stage and immersed in water for imaging.

Zebrafish Heart Datasets Acquisition and Preprocessing

In order to train the UI-Trans network, low-quality
LSFM images (with a laser power of 0.1 mW and an
exposure time of 10ms for a plane) and high-quality
confocal LS-LSFM images of optically cleared zebrafish
hearts (with a laser power of 10 mW and an exposure time
of 1 ms for each line, i.e. resulting an exposure time of
300 ms per plane) were acquired as input and GT data-
sets. In order to confirm alignment between input and GT
images at pixel level, the images were aligned through
rigid translation by calculating the Pearson correlation
coefficient in all 3 directions. Subsequently, the images
were cropped to a size of 256 x 256 x 256 for training
(0.325 um per voxel).

In vivo Zebrafish Heartbeat Imaging and Reconstruction

In vivo 4D (i.e. 3D spatial + time) zebrafish heartbeat
imaging was acquired using conventional LSFM with an
exposure time of 3 ms/plane and a laser power of
0.1 mW/plane. For each slice, 1000 consecutive time
series images were collected, and the heartbeat 4D image
was reconstructed by applying a synchronization method
to the movie stacks post-acquisition® (more details in
Fig. S16).
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Training

The UI-Trans network was optimized using the ADAM
optimizer®® with the deep learning framework PyTorch
2.00 on a Dell T7920 workstation with two NVIDIA
A6000 GPUs, two Intel Xeon Gold 6240 CPUs of
2.60 GHz and 384 GB RAM. A multi-loss joint optimi-
zation strategy was employed that fully considers the
balance between pixel-level discrepancy and perceptual
image similarity. The mixing training loss was formulated
as a weighted sum of L4z and L4, as

Liotal = Lymae + Angg = m ZD,H,W| VD.H,W
- VD,H,W| + A" Lige—24(Sx, Gx)

where L4 represents the pixel-level mean absolute error
(MAE)*!, L, represents the perception loss of the output
and the GT*?, V is the restored image output and V is the
GT image. D, H and W represent the depth, the height and
the width of the image respectively. By appropriately setting
the weighting parameter A, the joint loss could balance the
preservation of pixel-level similarity and the extraction of
global structure similarity. Considering the order of each
loss and the required balance in this study, A was set to 0.01.
Given that the pre-trained VGG network used for
perceptual loss computation was originally designed for
2D images, 3D acquired images were divided into 2D slices
and the average perceptual loss was calculated subsequently
on a per-volume basis. A total of 400 pairs of ‘input-GT’
images of zebrafish hearts were acquired. The validation set
and training set were randomly sampled from the isolated
cardiac dataset in the ratio of 9:1.

Evaluation

In order to implement an overall evaluation, both direct
visualization of the UI-Trans enhanced images and six
quantitative metrics were employed in this study, including
normalized root mean square error (NRMSE)>*** (small
values indicating better performance), Pearson coefficient™,
peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM)®3, SNR*, and contrast enhancement®°°
(large values indicating better performance). UI-Trans is
compared with two competitive deep learning methods, i.e.
CARE using the popular U-net neural network architecture
with minor modifications at the output layer®* and RCAN
employing multiple skip connections between network
layers as well as a channel attention mechanism®’. Both
methods were trained by the use of open-source code using
the parameters recommended in the corresponding studies.

Image processing was performed using MATLAB 2022b
and 3D reconstruction/renderings performed using
Imaris 9.0.1 software. For direct visualization comparison,
the display intensity of the images presented have been
individually adjusted for the individual optical contrast.
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