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Abstract
Current trends in artificial intelligence toward larger models demand a rethinking of both hardware and algorithms.
Photonics-based systems offer high-speed, energy-efficient computing units, provided algorithms are designed to
exploit photonics’ unique strengths. The recent implementation of cellular automata in photonics demonstrates how a
few local interactions can achieve high throughput and precision.

Current artificial intelligence (AI) models based on
neural networks are gaining previously inaccessible cog-
nitive and creative abilities with the continuous increase
in their scale. State-of-the-art models now tend to double
their sizes every year, as shown in Fig. 1a, reaching tril-
lions of parameters today. In addition to better perfor-
mances in their training tasks, as the models are scaled up,
they have also been observed to start performing new
tasks that they were not trained for1. Fig. 1 illustrates this
phenomenon, showing language models obtain cap-
abilities outside of their training after reaching a certain
level of complexity. This expanded skill set, coupled with
wider adoption across various sectors, is driving a rapid
increase in global computing resource and energy
demands for AI, currently doubling every 100 days2. The
corresponding environmental impact of this energy-
hungry technology necessitates the development of
more compact AI models and more efficient hardware,
while maintaining high performance.
Different machine learning methods address the goal of

achieving competitive accuracies with smaller and lighter
models. As one of the earlier techniques, pruning reduces
the size of neural networks by determining less important
connections after training and eliminating them3.
Knowledge distillation trains a smaller model with the
intermediate activations of a larger model, achieving
similar performance with fewer parameters4. The method
called quantization, which is simply decreasing the bit

depth of model parameters and/or activations during
inference, for instance from 16 bits to 8 bits, also resulted
in larger throughput with the same computational
resources5. Relying on randomly initialized, fixed hidden
layers that do not require gradient-based training,
Extreme Learning Machines (ELM)6 and reservoir com-
puting7 decrease the number of trainable parameters.
Another advantage of these architectures is the possibility
of low-power, high-dimensional and parametric physical
events to perform their fixed layers with high efficiency.
Alongside advances in AI algorithms, the use of alter-

native modalities for hardware holds the potential to
reduce the environmental impact of this technology.
Photonics is one of the promising candidates since it can
sustain larger bandwidths and lower losses compared to
digital electronics. Mature photonic technologies, such as
integrated and spatial light modulators, enable the
implementation of various AI models, including fully
programmable architectures8,9 and configurations with
fixed layers, whose functionality comes from physical
interactions such as multimode lasing10, nonlinear fre-
quency conversion11 or random scattering12. Besides
power efficiency, another advantage of high-dimensional
nonlinear physical events is their suitability for computing
complex tasks with a minimal number of parameters13.
This advantage has been demonstrated with spatio-
temporal nonlinearities in multimode fibers, the selection
from a large set of readily available connectivities achieved
the accuracy of artificial neural networks with over two
orders of magnitude more parameters than the optical
implementation14.
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Compared to global connections in layers such as fully
connected and attention, processing information with
local connections in an AI model results in more compact
architectures, one very popular and influential example
being convolutional layers. Neural cellular automata
(NCA), inspired by traditional cellular automata in which
each cell of the system evolves according to local rules
that depend on neighboring cell states, use differentiable,
continuous-valued functions to define these interac-
tions15. This design allows NCA to perform complex tasks
through simple update rules. The “neural” or differenti-
able nature of NCA enables the definition of a down-
stream task for the local interactions and subsequent
training of interaction weights accordingly.
In the study by Li et. al. from the California Institute of

Technology, the downstream task was defined as the
classification of the overall pattern formed by pixels (or
“cells”, in the context of cellular automata), and a pho-
tonic system has achieved the implementation of the
NCA16. The computational model depending on the

recurrent updates to the individual cell values according
to the interaction rules was proved to be a convenient
match with the capabilities of photonics. As shown in Fig.
2, the various computational functionalities required by
the algorithm were realized by different optical compo-
nents. During inference, the fixed interactions between
cells were implemented with a variable optical attenuator,
while second harmonic generation in the periodically
poled lithium niobate acts as the nonlinear activation
function. The updated cell values were then detected and
returned to the optical domain through a high-speed
electro-optic modulator.
Leveraging the immense data rate of the modulator, the

optoelectronic system achieved predictions at a state-of-
the-art rate of 1.3 μs per frame. This high throughput was
further enabled by the simplicity of the local interaction
model, that was defined by only 3 parameters, allowing each
cell to compute its next state based on its current state and
the states of its two neighbors. For the final binary classi-
fication, a majority “vote” was conducted across all cells,
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Fig. 1 The trend and impact of the scale of artificial intelligence (AI) models. a The trend of the total number of parameters of the state-of-the-
art AI models over time, each data point refers to such a model (Epoch (2024) – with major processing by Our World in Data). b–d Different examples
of emergent capabilities in large-scale language models. As the scale of these models trained on generic language datasets increases, they become
able to perform tasks beyond those for which they are explicitly trained. b Accuracy on arithmetic operations task17. c Translation accuracy between
International Phonetic Alphabet and English17 d Accuracy on multitask language understanding, a benchmark containing 57 tasks, ranging from
computer science to law18
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with classification as “1” if the majority of cells exceeded a
threshold value and “0” otherwise. The classification pre-
cision reached 98.0%, closely matching the ideal simulation
accuracy of 99.4%, due to the proposed mixture of experts
approach’s resilience to experimental nonidealities, such as
noise and device imperfections.
A remarkable finding of the paper by Li, et al., is that good

accuracy can be obtained in the classification of images for
the MNIST fashion database with 2 classes, In order to
understand whether this is due to the specifics of the NCA
architecture used, we implemented on the same database a
more familiar multilayer network consisting of a single
convolutional layer with a 2-by-2 kernel followed by a similar
output classification layer. With a total of 7 parameters, this
network achieved a similar 98.3% test accuracy while pro-
cessing an image in 18.6 μs (instead of 1.3 μs) with a batch
size of 1024, on an NVIDIA T4 GPU. We conclude, there-
fore, a strength of the photonic approach is that even com-
pared to the highly optimized and parallelized GPU
hardware, it was able to operate at a higher speed.
This photonic implementation of neural cellular auto-

mata (NCA) illustrates how photonics could address the
explosion of model sizes and the environmental footprint
of AI by utilizing high-speed hardware and physical

interactions as computing units. Given the development
of algorithms tailored to these platforms—considering the
unique advantages and limitations of photonics rather
than those of general-purpose digital hardware—photo-
nics may offer a compelling solution. As demonstrated
here, aligning the algorithm’s requirements with photonic
capabilities enables implementations with high precision
and throughput that could contribute to the scaling of AI
sustainably.
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