
Han et al. Light: Science & Applications           (2026) 15:12 www.nature.com/lsa
https://doi.org/10.1038/s41377-025-02051-1

ART ICLE Open Ac ce s s

Bioinspired phototransistor with tunable sensitivity
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Abstract
Accurate recognition of low-contrast targets in complex visual environments is essential for advanced intelligent
machine vision systems. Conventional photodetectors often suffer from a weak photoresponse and a linear
dependence of photocurrent on light intensity, which restricts their ability to capture low-contrast features and makes
them susceptible to noise. Inspired by the adaptive mechanisms of the human visual system, we present a
molybdenum disulfide (MoS2) phototransistor with tunable sensitivity, in which the gate stack incorporates a
heterostructure diode—composed of O-plasma-treated MoS2 and pristine MoS2—that serves as the photosensitive
layer. This configuration enables light-intensity-dependent modulation of the diode’s conductance, which dynamically
in turn alters the voltage distribution across the gate dielectric and transistor channel, leading to a significant
photoresponse. By modulating the gate voltage, the light response range can be finely tuned, maintaining high
sensitivity to low-contrast targets while suppressing noise interference. Compared to conventional photodetectors,
the proposed device achieves a 1000-fold improvement in sensitivity for low-contrast signal detection and exhibits
significantly enhanced noise immunity. The intelligent machine vision system built on this device demonstrates
exceptional performance in detecting low-contrast targets, underscoring its promise for next-generation machine
vision applications.

Introduction
Intelligent machine vision applications, such as preci-

sion guidance, smart surveillance, and early warning sys-
tems, demand sensors that can generate significant and
substantial electrical responses to faint variations in light
intensity under complex lighting conditions1–4. However,
conventional photodetectors based on photodiodes and
phototransistors mainly rely on photogenerated carriers
within junctions or channels to produce photocurrents5.
Due to their weak photoresponse and the linear rela-
tionship between photocurrent and light intensity, these
devices are inherently limited in their ability to capture
the features of targets in low-contrast scenes and are

highly susceptible to optical noise. To address these lim-
itations, neuromorphic vision devices often employ long
exposure times or repetitive imaging to enhance target
contrast and suppress noise6–9. Nevertheless, such stra-
tegies struggle to accommodate rapidly changing scenes.
Dynamic vision sensors (e.g., those proposed by Yang et
al.) leverage combinations of multiple photodetectors and
complex circuit architectures to extract image edge fea-
tures10. However, these approaches unavoidably increase
system complexity. Consequently, designing efficient and
compact photodetectors capable of detecting low-contrast
targets in challenging environments remains a significant
challenge.
In the human visual system, the mechanism of light

adaptation enables visual perception across complex
lighting conditions (Fig. 1a). Specifically, cone cells and
rod cells in the retina are responsible for detecting bright
and dim light, respectively, and their sensitivities are
dynamically tuned according to ambient light inten-
sity11,12. Photoreceptive proteins, such as rhodopsin and
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photopsin, undergo synthesis or decomposition in
response to changes in light intensity (Fig. 1a). This
adaptive mechanism allows the human eye to achieve a
global dynamic range exceeding 160 dB (a light intensity
difference of approximately 108 times) while maintaining
a local dynamic range of 40 dB (a light intensity difference
of approximately 102 times) under specific conditions
(Fig. 1b)13–15. By focusing on relative differences in light
intensity rather than absolute illumination levels, the
retina excels in recognizing low-contrast targets. Fur-
thermore, it suppresses irrelevant noise signals outside
specific intensity ranges, enhancing feature detection in
complex dynamic environments. In contrast, conven-
tional photodetectors lack such adaptive sensitivity, lim-
iting their effectiveness in noise suppression and low-
contrast detection (Fig. 1b).
Mimicking the adaptive sensitivity of the human eye

represents a promising strategy for achieving efficient
low-contrast target detection. Compared to bulk materi-
als, two-dimensional materials possess unique electrical
and optoelectronic properties16–18, enabling the con-
struction of van der Waals heterostructures with high
detection sensitivity19–23.
Here, we report a molybdenum disulfide (MoS2) photo-

transistor with tunable sensitivity, wherein the key inno-
vation lies in the integration of an oxygen plasma treated

(O-plasma-treated) MoS2/MoS2 heterostructure diode as
the photosensitive layer within the device gate. The
dynamic adjustment of the diode’s electrical conductivity
with light intensity alters the voltage distribution across the
dielectric layer and channel of the transistor, resulting in a
significant change in photoresponse. By modulating the
gate voltage, the phototransistor achieves precise control
over the photoresponse range, enabling high-sensitivity
detection of low-contrast targets. Compared to conven-
tional photodetectors, this device exhibits over 1000-fold
improvement in detection sensitivity and demonstrates
exceptional noise tolerance.

Results
Device design and characteristics
A tunable-sensitivity phototransistor was designed and

fabricated using a layer-transfer method (Methods, Fig.
S1). The device is based on a MoS2 field effect transistor
(FET) with an O-plasma-treated MoS2/MoS2 diode
inserted within the gate stack. Specifically, graphite was
used to form the Ohmic contact24, MoS2 as the channel,
hexagonal boron nitride (h-BN) as the dielectric layer, and
top and bottom protective layers. An O-plasma-treated
MoS2/MoS2 diode25–27was embedded between the h-BN
dielectric layer and the bottom protective layer, serving as
the photosensitive structure (Figs. 2a and S2). To
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elucidate the effects of O-plasma treatment on the com-
position and structure of MoS2, comprehensive char-
acterizations of the MoS2 samples before and after
treatment were performed. Cross-sectional high-resolu-
tion transmission electron microscopy (HRTEM) of the h-
BN/MoS2/h-BN heterostructure reveals a well-defined
layered structure. Mo and S are confined within the MoS2
layer, N aligns with h-BN, and oxygen is uniformly
adsorbed on the cross-section (Fig. 2b). In contrast, the

upper layer of the O-plasma-treated MoS2 becomes
amorphous, confirmed by the presence of Mo, S, and O in
energy dispersive X-ray spectroscopy (EDS) mapping
(Fig. 2c). For pristine MoS2, the S/Mo atomic ratio is
approximately 1.95, consistent with the X-ray photoelec-
tron spectroscopy (XPS) results (Figs. 2d and S3), and the
oxygen content is about 32%, mainly originating from
adsorbed oxygen (Fig. S3). After oxygen plasma treat-
ment, the total oxygen content in the sample increases
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significantly to 68%, with about 36% of the oxygen
incorporated as lattice oxygen. Meanwhile, the Mo and S
contents are around 18% and 14%, respectively, corre-
sponding to an approximate molecular formula of
MoO2S (Fig. 2e). Furthermore, plan-view HRTEM (Fig.
S4), EDS (Fig. S4), and Raman characterizations (Fig. S5)
further confirm the structural and compositional tran-
sition induced by O-plasma treatment.
XPS valence band spectra reveal that the valence

band maximum shifts from ~0.8 eV below the Fermi
level in pristine MoS₂ to ~1.2 eV after plasma treatment
(Fig. S6). Ultraviolet photoelectron spectroscopy mea-
surements further show an increase in work function
from ~4.3 eV for pristine MoS2 to ~4.7 eV O-plasma-
treated MoS2

28. Theoretical calculations indicate that
the bandgap widens with oxygen incorporation,
increasing from 1.56 eV (MoS2) to 1.8 eV (MoO2S)

29.
Based on these experimental and theoretical results,
schematic band diagrams for pristine and O-plasma-
treated MoS2 were constructed (Fig. S7). The band
alignment suggests the formation of a MoS2/O-plasma-
treated MoS2 n/n− junction, which we experimentally
validated by constructing both in-plane and vertical
heterojunctions (Figs. S8 and S9). The working prin-
ciple of the phototransistor with tunable sensitivity was
shown in Fig. 2f, g. Under a negative gate bias (VGS),
the O-plasma-treated MoS2/MoS2 heterojunction is
reverse-biased in the dark, causing most of the gate
voltage to drop across the junction and keeping the
MoS2 channel conductive (Figs. 2f and S10). Upon
illumination, photogenerated carriers reduce the junc-
tion resistance, redistributing the gate voltage such that
a larger portion is applied across the h-BN dielectric and
MoS2 channel, thereby depleting the channel and turn-
ing the transistor off (Figs. 2g and S11). As the gate
voltage becomes more negative, the voltage across the
MoS2 channel increases further, enabling the device to
shut off at lower light intensities, thus realizing tunable
detection sensitivity. A new device symbol representing
this structure is proposed (Fig. 2h).
Figure 2i shows the photoresponse behavior of the

phototransistor. When the gate voltage is −2 V, the device
shows only a slight current change at light intensities
below 0.7 mW cm−2. However, within the light intensity
range of 0.7–1.2 mW cm−2, the device exhibits a current
change of nearly 107 times. In contrast, the current
change in the O-plasma-treated MoS2/MoS2 diode is only
1.6 times (Fig. S12). These demonstrate that our transistor
can generate a non-linear relationship between photo-
current and light intensity, mimicking the retina system.
To exclude the contribution of the MoS2 channel to the
photocurrent, we conducted position-dependent illumi-
nation experiments, confirming that the dominant pho-
toresponse originates from the O-plasma-treated MoS2/

MoS2 heterojunction (Fig. S13). In addition, the transistor
behavior under light is different under different VGS,
demonstrating a tunable photosensitivity by varying VGS.

Tunable-sensitivity optoelectronic characteristics
Figure 3 shows the detailed optoelectronic performance

of the tunable-sensitivity phototransistor. When a VGS of
−9 V and a 100ms light pulse are applied simultaneously,
the device shows no obvious photoresponse when the
light intensity is below 77 μWcm−2. However, when the
light intensity further increases, the transistor current
decreases abruptly. Once the light intensity surpasses
454 μWcm−2, the photoresponse of the device reaches
saturation (Fig. 3a, b). This non-linear characteristic
enables the device to effectively filter both strong-light
and weak-light noise. In addition, by adjusting VGS, the
device’s response range to light intensity can be tuned. For
instance, when VGS=−7 V, the device exhibits a light
response range of 392–1061 μWcm−2; whereas, at −5 V,
the response range is adjusted to 748–2122 μWcm−2.
Overall, the device can precisely distinguish light inten-
sities within the range of 77–50000 μWcm−2 by changing
VGS (Figs. 3b and S14).
To further demonstrate the device’s ability to detect

small changes in light intensity, we extracted the rela-
tionship between the current ratio and the light intensity
ratio (Pin/P0) at different VGS (Fig. 3c). When the light
intensity changes by 3–5 times, the current ratio of the
tunable-sensitivity phototransistor exceeds 104. In con-
trast, the current ratio of the conventional MoS2 photo-
transistor is about 5. This indicates that the tunable-
sensitivity phototransistor has more than 1000 times
higher capability in detecting small changes in light
intensity compared to conventional photodetectors, and
also outperforms previously reported gate-tunable pho-
totransistors designed for contrast enhancement8–10,30–35

(Table S1). The tunable-sensitivity phototransistor also
demonstrates a significantly higher responsivity compared
to the conventional MoS2 phototransistor (Fig. 3d).
Notably, as the light intensity increases, the responsivity
of the tunable-sensitivity phototransistor gradually
decreases, which is similar to that of the human retina
(Fig. 3d). In contrast, the conventional MoS2 photo-
transistor lacked this characteristic (Figs. 3d and S15).

Performance of the tunable-sensitivity
phototransistor array
Figure 4a, b show a 3 × 3 photo sensor array based on

tunable-sensitivity phototransistors, exhibiting good uni-
formity across all 9 transistors both in dark and under
light conditions (Figs. 4c and S16). To demonstrate the
ability to detect low-contrast targets, we input five sets of
low-contrast signals of pattern “O” into both the con-
ventional phototransistor array and the tunable-sensitivity
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phototransistor array. The light-to-background intensity
ratio of pattern “O” ranges from 1.2 to 2.1. For the con-
ventional phototransistor array, the output current ratio is
only 1.3 when the light-to-background intensity ratio is
1.2, and increases modestly to 1.7 at a ratio of 2.1, which is
insufficient to produce a clear image. In contrast, the
tunable-sensitivity phototransistor array achieves a sig-
nificantly higher current ratio of 3.4 under the same low-
contrast condition (intensity ratio of 1.2), and up to 470 at
an intensity ratio of 2.1, successfully enabling the recog-
nition of a distinct “O” pattern. This demonstrates the
superior performance of the tunable-sensitivity photo-
transistor in low-contrast target detection (Fig. 4d).
Additionally, the developed array exhibited outstanding
noise filtering capability. When an image “L” with

increasing surrounding noise is input to the conventional
phototransistor array, the output image “L” gradually
becomes blurred as the noise intensity increases, due to
the wide response range of the conventional detector. In
contrast, under a gate voltage of −5 V, the tunable-
sensitivity phototransistor array is selectively responsive
to light intensities in the range of 748–2122 μWcm−2,
making it immune to out-of-range light noise and
allowing it to consistently produce a clear image (Fig. 4e).

Highly robust target recognition
The developed tunable-sensitivity phototransistor

enables highly robust target recognition, demonstrated by
integrating phototransistor arrays with an artificial neural
network (ANN)-based intelligent machine vision system

10–1 100 101 102

10–1

100

101

102

103

104

105

C
ur

re
nt

 r
at

io
 

Pin/P0

–9 V

–7 V

–5 V

–3 V

–1 V

MoS2
phototransistor

Tunable-sensitivity  phototransistor

Time (s)

10–12

10–10

10–8

10–6

10–12

10–10

10–8

10–6

I D
S
 (

A
)

0 10 10 10 10 10 1 0 10 10 10 1

–9

0

V
G

S
 (

V
)

P
in

(�
W

 c
m

–2
)

a
0 5 77 123 173 224 277 305 392 454 519 1790

b

0 10 1

c d

101 102 103 104 105

Pin (�W cm–2)

–9 V

–7 V

–5 V

–3 V

–1 V

>104

~5

101 102 103 104 105

10–3

10–2

10–1

100

101

102

103

104

R
 (

A
 W

–1
)

Tunable-sensitivity  
phototransistor

I D
S
 (

A
)

Pin (�W cm–2)

MoS2
phototransistor

–9 V

–7 V

–5 V

–3 V

–1 V

Fig. 3 Optoelectronic performance of the tunable-sensitivity phototransistor. a Photo-response behavior of the device under 516-nm light
pulses (pulse width: 100 ms) at varying light intensity (Pin) and gate voltage (VGS) pulse from 0 to −9 V (pulse width: 100 ms). VDS= 0.1 V.
b Dependence of IDS on Pin under 516-nm light at different VGS. c Variation of the current ratio (tunable-sensitivity phototransistor: I0/Ilight;
conventional phototransistor: Ilight/I0) as a function of the light intensity ratio (Pin/P0) at different VGS, where P0 represents the minimum detectable
light intensity, and I0 is the corresponding current. d Comparison of responsivity (R= |ILight−IDark|/Pin) of the tunable-sensitivity phototransistor and
conventional phototransistor under different Pin

Han et al. Light: Science & Applications           (2026) 15:12 Page 5 of 10



(Fig. 5a). An ANN model was employed to perform clas-
sification and recognition based on the image data gen-
erated by the phototransistor array. The ANN architecture
consisted of an input layer, two hidden layers (the first
with 128 neurons and the second with 64 neurons), and an
output layer. The rectified linear unit (ReLU) was used as
the activation function, and the cross-entropy function
was used as the loss function. Conventional photo-
detectors capture all optical signals in the scene, making it
challenging to distinguish low-contrast vehicle targets. On
the other hand, by adjusting the gate voltage, our tunable-
sensitivity phototransistor responds only to light signals
within specific intensity ranges (Table S2). This capability
allows accurate recognition of low-contrast vehicle targets
in complex lighting conditions, whether under dim or
bright lighting conditions, while effectively filtering out
noise signals that interfere with target recognition.

For the low-contrast object recognition task, we selected
500 “bus” images from the CIFAR-100 dataset as positive
samples, which were not included in the testing set. An
additional 1000 images of other vehicles (e.g., motor-
cycles, bicycles, etc.) were selected as negative samples to
establish a binary classification task (Methods). To eval-
uate the system’s ability to recognize low-contrast targets,
we used 500 images of buses, each with a resolution of
32 × 32 pixels, that were not included in the training set as
the test dataset. The test dataset consists of five sub-
datasets, each containing 100 images, with the average
image contrast gradually decreasing across the datasets
(Figs. 5b and S17). Figure 5c shows the recognition
accuracy after 100 training epochs for each dataset.
The machine vision system based on the tunable-
sensitivity phototransistor achieved an accuracy
exceeding 90%. In contrast, the system based on
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conventional photodetectors achieved an accuracy
close to zero (Fig. 5c).
To evaluate the reliability of the tunable-sensitivity

phototransistor-based machine vision system under
complex lighting conditions, we introduced salt-and-
pepper noise with densities of 5%, 10%, 20% and 30% to
500 test images (Figs. 5b and S18). These 2000 noisy

images were then input into the system for recognition.
Even with a noise density of 30%, the system’s image
recognition accuracy remained around 80% (Fig. 5d).
These results highlight the superior robustness of our
tunable-sensitivity phototransistor in low-contrast ima-
ging, making it highly suitable for imaging tasks in com-
plex lighting conditions.
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Discussion
Inspired by the adaptive mechanism of the human

retina, we developed a tunable-sensitivity MoS2 photo-
transistor by integrating an O-plasma-treated MoS2/
MoS2 diode as the photosensitive layer within the gate
stack. The device leverages the diode’s resistance varia-
tion with light intensity to adaptively adjust the voltage
distribution across the channel, achieving a significant
photoresponse. By tuning the gate voltage, the photo-
response range can be precisely controlled while main-
taining high sensitivity to low-contrast targets within
specific light intensity ranges. Compared to conventional
photodetectors, the device demonstrates more than
1000-fold improvement in detecting low-contrast signals
and significantly enhanced noise immunity. This inno-
vation paves the way for the development of robust low-
contrast target detection technologies in complex
environments.

Materials and methods
Device fabrication
Step 1: Material preparation. Graphene, MoS2, and

h-BN were exfoliated from bulk crystals using Scotch®
tape and placed on a SiO2/Si substrate. Step 2: Hetero-
structure stacking. The h-BN as the top protective layer
was picked up using a piece of propylene-carbonate
(PPC), and the graphite as the source/drain electrodes,
MoS2 as the channel, h-BN as the dielectric, MoS2 as the
photosensitive layer, and h-BN as the bottom protective
layer were then picked up in sequence. Step 3: Removing
PPC. The stack was released at 130 °C on a surface of a
300-nm-thick SiO2 layer, which was grown on an n-doped
silicon wafer (0.05-0.2Ω·cm−1), followed by heating at
350 °C for 120min in vacuum to remove the PPC. Step 4:
Metal deposition. A polymethyl methacrylate (PMMA)
layer (495k MW, A4, MicroChem) was spin-coated at
2000 rpm on the substrate and baked at 190 °C for 5 min,
and another PMMA layer (950k MW, A2, MicroChem)
was then spin-coated at 4000 rpm and baked at 190 °C for
2 min. An undercut structure was created during the
electron-beam lithography and developing processes.
Subsequently, the h-BN on the graphite source/drain
electrodes and MoS2 control group gate electrodes were
removed using a reactive ion etching (CHF3 with a flux
rate of 20 sccm; O2 with a flux rate of 4 sccm; pressure,
2.0 Pa; power, 100W; etching time, 1 min). Then, metal
contacts for source/drain (Ti/Au: 5/50 nm) and the con-
trol group gate were formed using electron-beam eva-
poration and lift-off processes. Step 5: O-plasma
treatment of MoS2. The O-plasma-treated MoS2 was
formed using an oxygen plasma treatment (O2 with a flux
rate of 180 sccm; power, 200W; time, 15 min) on the
MoS2 gate without h-BN protection. Step 6: Gate

formation. Polydimethylsiloxane (PDMS) was used as the
medium to transfer the graphite layer onto the O-plasma-
treated MoS2 to form the gate.

Characterization
Material and device characterizations were performed

using an optical microscope (Nikon ECLIPSE LV100ND)
and an AFM (Bruker Dimension Icon). Electrical and
optoelectronic performance was measured using semi-
conductor analyzers (Agilent B1500A, Fs Pro, 100 kHz
bandwidth), a probe station (Cascade M150), and a laser
diode controller (Thorlabs ITC4001, with laser excitations
of 516 nm) in a dark room at room temperature. The
response time was measured using a semiconductor
analyzer (Fs Pro, 100 kHz bandwidth).

Calculation of image contrast
Image contrast of grayscale images was calculated as36:

Contrast ¼ f zð Þ ¼
X

θ

θ i; jð Þ2 ´Pθði; jÞ

where θ(i,j) represents the grayscale difference between
two neighboring pixels, and Pθ(i,j) denotes the probability
distribution of the grayscale difference θ(i,j) across the
image. In practical applications, the image is first
expanded by adding a border of zero-grayscale pixels.
Then, the grayscale differences between each pixel and its
neighboring pixels (above, below, left, and right) are
calculated.

Simulation of image recognition
An ANN was used to demonstrate the robustness of our

sensor in detecting low-contrast targets. The optimal
parameters were determined through multiple tests, as
outlined below. The Flatten layer converts the input
32 × 32 image into a one-dimensional array, allowing it to
be passed to the fully connected layers. The Dense layers
consist of two layers: the first with 128 neurons and the
second with 64 neurons, both employing the ReLU acti-
vation function. The output layer is a Dense layer with a
sigmoid activation function. The validation split is set to
0.2, and the batch size is 25. Python was used to imple-
ment the ANN for recognition tasks. The CIFAR-100
database, shown in Fig. 5b, is an open-source dataset
obtained from the website (https://www.cs.toronto.edu/
~kriz/cifar.html). The image pixels are 32 × 32, which
meets the requirements of our hardware experimental
measurements (Fig. 5b). Noise density = Nnoise/Ntotal,
where Nnoise is the number of pixels randomly assigned to
0 or 255 (i.e., noisy pixels), and Ntotal is the total number
of pixels in the image (32 × 32= 1024 pixels).
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Training process of ANN
Step 1: Forward propagation. Input images were passed

through the network to generate predicted outputs. Step
2: Loss calculation. The predicted outputs were compared
with ground-truth labels to compute the error. Step 3:
Backpropagation. The network weights were updated
based on the calculated error. Step 4: Optimization. The
Adam optimizer was applied to perform gradient descent
and iteratively minimize the loss.
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