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Abstract
Photonics is promising to handle extensive vector multiplications in artificial intelligence (AI) techniques due to natural
bosonic parallelism and high-speed information transmission. However, the dimensionality of current photonic linear
operation is limited and tough to improve due to the complex beam interaction for implementing optical matrix
operation and digital-analog conversions. Here, we propose a programmable and reconfigurable photonic linear
vector machine with extreme scalability formed by a series of emitter-detector pairs as the independent basic
computing units. The elemental values of two high-dimensional vectors are prepared on emitter-detector pairs by bit
encoding and analog detecting method without requiring large-scale analog-to-digital converter or digital-to-analog
converter arrays. Since there is no interaction among light beams inside, extreme scalability could be achieved by
simply multiplicating the independent emitter-detector pair. The proposed architecture is inspired by the traditional
Chinese Suanpan or abacus, and thus is denoted as photonic SUANPAN. Experimentally, the computing fidelities for
vector inner products could achieve >98% in our implementation with an 8 × 8 vertical cavity surface emission laser
(VCSEL) array and an 8 × 8 MoTe2 two-dimensional material photodetector array. Furthermore, such implementation is
applied on two typical AI tasks as 1024-dimensional optimization problem is successfully solved and competitive
classification accuracy of 88% is achieved for handwritten digit dataset. We believe that the photonic SUANPAN could
serve as a fundamental linear vector machine and enhance various future AI applications.

Introduction
Artificial intelligence (AI) is currently an active topic in

both scientific research and commercial applications as
well as daily life1,2. The linear operations of high-
dimensional vectors are fundamental and dominant in
both the artificial neural networks3–5 (ANN) and opti-
mization problem solvers, such as the Ising machine6–8.
As the complexity of problems increases, the dimen-
sionality of the processed vector grows rapidly, resulting
in a huge computational burden. It is known that vector
operations can be readily accelerated by photons due to

the natural parallelism of bosons9. In the past decades,
various photonic computing architectures have been
demonstrated to perform vector matrix multiplication in
the optical domain, i.e., Stanford structure10–12, Reck
scheme13–16, deep diffraction architecture17–20, micro-
ring resonator (MRR) array21–26, etc. All these archi-
tectures perform vector matrix multiplications based on
the interaction between light beams, which refers to
coherent or incoherent superposition between different
light beams through beam splitting, beam combining,
diffracting, scattering, etc. However, as the optical matrix
transformation is adopted, the basic units in the com-
puting architecture, i.e., liquid crystal cells, beam splitters,
meta-atoms, etc., would be tightly interconnected or
highly coupled with each other due to the interaction.
Thus, high-dimensional optical vector-matrix operations
cannot be achieved by simply multiplicating these basic
units, which significantly limits the scalability of the
architecture. Here, instead of optical matrix operations,
we propose the SUANPAN architecture for the optical
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inner product of two vectors. Just like the transistors in an
integrated circuit, the independent basic computing unit
in our scheme contains only one emitter-detector pair and
could be scaled up to form a photonic computing chip.
The elemental values of two vectors are encoded on the
output intensity of the light-emitters and the photo-
responsivity of the photodetectors (PDs), respectively.
Thus, the photocurrent of the PD would be proportional
to the multiplication of the light intensity and photo-
responsivity, and the final result of the inner product can
be obtained by the summation of all the photocurrents.
Since there is no interaction among the propagating light
beams of all emitter-detector pairs and only the output
currents of all PDs are connected, our scheme is scalable
by increasing the number of emitter-detector pairs with
no additional loss or error, as well as flexibly reconfigur-
able and programmable for different computational tasks.
As a proof of principle, the SUANPAN architecture is

implemented by utilizing an 8 × 8 vertical cavity surface
emission laser (VCSEL) array and an 8 × 8 MoTe2 two-
dimensional (2D) material PD array. In the experiment,
the calculation fidelity of the random vector inner product
can be as high as >98% for various bit precisions (2-bit, 4-
bit, and 8-bit), and >95% for various vector dimension-
alities (@4-bit precision). Furthermore, such imple-
mentation has been successfully reconfigured to perform
two typical AI tasks, the Ising machine and the ANN. A
randomly generated 1024-dimensional Ising problem is
successfully solved, which is the highest dimensionality of
optical Ising machine with heuristic algorithm. Mean-
while, a competitive classification accuracy of 88% is
achieved for ANN on the MNIST handwritten digit
dataset. We believe that our proposed photonic SUAN-
PAN is capable to serve as a fundamental linear vector
machine and is potential to enhance the computing power
for future various AI applications.

SUANPAN architecture
The proposed SUANPAN architecture consists of a

light-emitter array and a PD array, as well as some
necessary electronic hardware, as schematically shown in
Fig.1a. To perform a vector inner product, both multiply
and accumulate operations are required. Firstly, for
multiply operation, each PD is well aligned with a cor-
responding light-emitter to form an emitter-detector
pair, therefore, the photocurrent of the PD would be
proportional to the multiplication of the light intensity
and photoresponsivity due to the linear optical
response27. Then, for add operation, all of the PDs are
connected so that the output current would be the sum
of all PDs due to Kirchhoff’s law. In this way, the
multiply-accumulate operation is naturally performed
through the emission and detection. Then the key issue
is how to encode the vectors on the emitter-detector

pairs. A natural way is to directly encode on light
intensity and photoresponsivity. However, it would be
required that each PD and each emitter should be
equipped with a high-precision and high-speed digital-
to-analog converter (DAC), which would introduce large
power and area overhead28 as well as significant latency.
Here, we have proposed the Bit Encoding and Analog
Detecting paradigm to avoid DAC, thus, one emitter-
detector pair is denoted as BEAD.
For deep insight, one BEAD is first considered. As

shown in Fig. 2a, the multiplier a is encoded on the
intensity of the light-emitter by controlling the duty ratio
of driving current, which is done by a digital counter
according to the clock cycles without DAC (the details of
encoding shown in Supplementary Note 1 and Fig. S1).
The bit precision depends on the time-slot numbers
within the period. The multiplier b is encoded on the on-
off state of the BEAD, by turning on (green arrow) or off
(gray arrow) the light-emitter, respectively. Hence, there
are two states to encode b, b= 0 or b= 1, known as 1-bit
quantization, and the photocurrent would be propor-
tional to a × b, for b= 0, 1. For more bit quantization of
b, more BEADs are employed to form a set. Considering
2-bit quantization, two BEADs should be employed in
one set to obtain four combinations of on-off states.
Thus, the two bits in the binary representation of b
would be corresponding to these two BEADs as shown in
Fig. 2b. For example, if b= 2, the binary representation
would be b= 10, which means the first BEAD is at off-
state and the second one is at on-state. This operation is
quite similar to the Chinese traditional Suanpan, which
represents numbers according to the position of beads
and carry out mathematic operations by moving the
beads up and down. Thus, our scheme is named as
photonic SUANPAN. Moreover, different bits represent
different weights in binary representation, which can be
achieved by setting the photoresponsivity of two PDs as
20–21. To properly manipulate the photoresponsivity, 2D
material photoconductive detectors are fabricated. By
combining the photocurrents of two PDs, the output
result is a × b as shown in Fig. 2b. In this way, M-bit
quantization of b can be achieved with a set of M BEADs
as shown in Fig. 2c, so that the SUANPAN can encode
the range of b from 0 to 2M−1 and achieve the multi-
plication of a and b.
Since a is digitally encoded to the duty ratio of light

emission and b is digitally encoded to the on-off states of
the BEADs in one set, while the output result is the total
analog photocurrent from all the PDs, the emitter-
detector pair is actually operated as Bit Encoding and
Analog Detecting. Also, the numbers of a and b are
encoded in time and space domain respectively, there-
fore, the SUANPAN architecture can perform the mul-
tiplication of any desired bit precision theoretically.
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Figure 2d shows an example of the time-space encoding,
where a is between 0 and 100 by controlling the duty
ratio as 0–100%, and b is 4-bit quantization by employing
a set of 4 BEADs.
It should be mentioned that the negative numbers can

also be handled by applying reversed bias voltage of the
PD. Considering both positive and negative numbers,
2 ×M BEADs are required for each set as shown in
Supplementary Note 2 and Fig. S2. Furthermore, the
complex vector inner product can also be handled as
shown in Supplementary Note 3 and Fig. S3. Thus, the
SUANPAN architecture could achieve both reconfi-
gurable and programmable ability, since the number of
BEADs in each set can be reconfigured according to the
bit precision, while the exact encoding of each BEAD
can be flexibly programmed according to the elements
within the vectors. At the output, the photocurrents of
all PDs are connected, so that only one ADC is required

to transform the total photocurrent into a digital signal.
Also, since only 1-bit information would be encoded on
a single BEAD, the properly settled but fixed bias voltage
would be applied. Thus, there is no requirement for
DAC in the SUANPAN. Last but not least, since there is
no interaction among the propagating light beams of all
BEADs, the SUANPAN architecture is scalable by
increasing the number of independent BEADs with no
additional loss or error. On one hand, the number of
utilized BEADs can be increased by integrating more
light-emitters and PDs on one chip. On the other hand,
distributed computing can also be achieved by simply
connecting multiple chips together to scale up the
computing power more. Therefore, the SUANPAN is a
programmable, reconfigurable, and scalable archi-
tecture, which can serve as a general vector inner pro-
duct accelerator for the existing electronic computing
system.

a

b c

Fig. 1 Architecture of the SUANPAN. a The schematic diagram of the SUANPAN architecture, consisting of a light-emitter array, a PD array, and
some necessary electronic hardware. Left insets show the schematic and microscope photograph of a single VCSEL. Scale bar is 20 μm. The right
insets show the schematic and microscope photograph of a single MoTe2 PD. Scale bar is 100 μm. b The optical image of the VCSEL array. c The
optical image of the MoTe2 PD array
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Results
To implement the prototype of the SUANPAN, a pair

of VCSEL and MoTe2 PD is employed to form the BEAD.
The schematic diagram and microscope photographs of a
single VCSEL and MoTe2 PD are shown in the insets of
Fig. 1a. As a light-emitter, VCSEL can readily achieve
high-speed modulation as well as a large-scale array.
Recently, researchers have already demonstrated a neural
network based on VCSEL29. While, in such architecture,
each VCSEL requires injection to achieve a stable phase
lock. In comparison, for the SUANPAN architecture, all
VCSELs are independent. Thus, the phase locking, as
well as other additional operations are not required. For
PD, 2D material is utilized for three reasons: (1) The
photoresponsivity of 2D material PD can be flexibly
controlled by the bias voltage. (2) The high carrier
mobility in 2D material30 can support high-speed
detection, which is an important issue for high-speed
computing. (3) 2D material can be heterogeneously
integrated with other material platform31, therefore, 2D
material PD is potentially integrated with a light-emitter
in the future. Specifically, according to the wavelength of
VCSEL (850 nm), MoTe2 is utilized as the PD material.
Thus, we have fabricated both the VCSEL and MoTe2 PD
array chip with 8 × 8 components as shown in Fig. 1b and
Fig. 1c, respectively. The fabrication process, experi-
mental setup, and performance of VCSEL and PD are
shown in Figs. S4–S12 and discussed in Methods.
Actually, the BEAD can be achieved with various emitter
and detector combinations. Both laser and light emitter
diode (LED) could serve as the emitter, while different
2D materials, i.e., graphene32, MoS2

33,34, WSe2
35–37, etc.

could be applied for PD according to the proper opera-
tion wavelength.
To verify the functionality of the SUANPAN, random

vector inner products are firstly performed with bit pre-
cision of 2-bit, 4-bit, and 8-bit. For a 2-bit precision signed
vector, 4 BEADs are required in each set so that a 16-
dimensional vector inner product can be done at one
time. Similarly, for 4-bit and 8-bit quantization, the cor-
responding dimensionality would be 8 and 4, respectively.
To achieve higher-dimensional vector inner product,
time-division multiplexing can also be employed. For each
bit precision, the configuration of the SUANPAN would
be properly settled and the corresponding bias voltage of
each PD is shown in Fig. 3a–c, respectively. Also, 1000
rounds of signed vector inner products are randomly
generated and performed by the SUANPAN. To evaluate
the accuracy, the normalized results of 1000 rounds for
each bit precision calculated by the SUANPAN and
computer are shown in Fig. 3d–f, respectively. The
achieved fidelities are all higher than 98% (details pro-
vided in Supplementary Note 5), which indicates that the
SUANPAN can perform accurate calculation.

Specifically, for 4-bit precision, the experimental pho-
tocurrent for a × b is shown in Fig. 3g, where a remains
unchanged and b takes 0, ±1,…, ±15. The recorded on-off
states of the utilized 8 BEADs are also shown in the
bottom inset of Fig. 3g, which is corresponding to the first
column of Fig. 3b. Moreover, the fidelities of 4-bit pre-
cision with various dimensionalities are shown in Fig. 3h.
As the dimensionality increases, the computational fide-
lity remains above 95%. Due to the high fidelity in
executing random signed vector inner products, the
SUANPAN architecture can be flexibly utilized to further
demonstrate more specific computing tasks. Here, two
typical AI tasks are considered, the Ising problem38 and
ANN, in which the vector multiplication is the core
computing operation as shown in Fig. 4a.
An N-dimensional Ising problem is defined by a sym-

metric interaction matrix J (N ×N dimensionality with
diagonal elements of zero), and the Hamiltonian of Ising
problem is defined as follows:

H ¼ STJS ð1Þ

Solving Ising problem is to find the specific vector S
that minimizes the Hamiltonian, which is denoted as the
ground state. Here, the simulated annealing (SA) algo-
rithm39 is employed, which searches for the ground state
through multiple iterations. In each iteration of SA, the
variation of Hamiltonian ΔH is calculated, which can be
transformed into an N-dimensional vector inner pro-
duct and can be readily performed by the SUANPAN
(details in Supplementary Note 6). According to the
previous reports40, a programmable photonic Ising
machine with heuristic algorithms has successfully
solved the highest dimensionality of 30-dimensional
arbitrarily connected Ising problem (detailed discussion
and comparison can be found in our previous work40).
For convenient comparison, a randomly generated 30-
dimensional Ising problem is solved experimentally by
the SUANPAN. The solving process is repeated with
100 rounds, and the 100 annealing curves are shown in
Fig. 4b. It can be seen that 99 curves eventually con-
verged to the ground state (dashed line shown in Fig.
4b), therefore, an accuracy of 99% is achieved by the
SUANPAN, which is much higher than the existing 30-
dimensional Ising machine based on SA40. Further, a
randomly generated 1024-dimensional Ising problem is
considered. As common practices, an approximate
solution with 87.8% of the ground state is set as a cri-
terion for successful solution41–43, as dashed line shown
in Fig. 4c. Such 1024-dimensional Ising problem is
successfully solved by the SUANPAN as the annealing
curve fall below the criterion line after ~4000 iterations.
The high convergence rate and high dimensionality
for solving various Ising problems can validate the
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programmability, reconfigurability and computational
stability of the SUANPAN architecture. Recently, an on-
chip Ising machine44 is demonstrated with both linear
and nonlinear operations in optical domain. Of course,
it is beyond the scope of this work. But it is an inter-
esting topic to combine the SUANPAN architecture
with nonlinearity, and we are still undergoing it.
For ANN, various physical neural networks (PNNs),

including optical neural networks (ONNs), have been
applied to accelerate the calculation. In such PNNs,
silico training is usually required to avoid errors caused
by differences between simulation and practical devices.
Unlike that, the SUANPAN can directly map a pre-
trained ANN, in which the vector matrix multiplication
can be considered as a set of vector inner products and
performed in the optical domain, while the nonlinear
activation function would be executed by an electronic
processor. Therefore, through time-division multi-
plexing, the SUANPAN can execute ANNs of varied
depth and number of nodes in theory. It should be
mentioned that it depends on both reconfigurable and
programmable abilities of the SUANPAN since the
dimensionality cannot be extended with time-division
multiplexing for a fixed computing architecture. Here,
both single and double layer ANNs are performed as
shown in Figs. 4d and g, respectively. MNIST hand-
written digit dataset is utilized as dataset, and stochastic
gradient descent45 (SGD) is utilized as training method.
The weights of the single-layer ANN and double-layer
ANN are 4-bit precision and 6-bit precision according to
simulations, respectively (the details are shown in Sup-
plementary Note 7 and Fig. S13). For single-layer ANN,
the confusion matrix of 10,000 pictures in the test
dataset calculated by computer and the SUANPAN are
shown in Fig. 4e, f, respectively. The approaching clas-
sification accuracies are 88.08% and 90.12% for the
SUANPAN and computer, respectively. It can be seen
that the experimental accuracy is 98% of the simulation
accuracy, which is comparable with the previous work29.
This result indicates that only a little deterioration is
introduced by the SUANPAN. While for double-layer,
only the first 100 pictures in MNIST test dataset are
performed as a preliminary verification. The confusion
matrix and accuracy calculated by computer and the
SUANPAN are shown in Fig. 4h, i, respectively. It can be
noticed that the classification accuracy calculated by the
computer is much higher than one-layer, while that
calculated by the SUANPAN is lower than one-layer.
The reason might be the performance of MoTe2 PD
array has deteriorated after three months of testing (the
details are shown in Supplementary Note 12 and Fig.
S16). Anyway, we believe that the above results of ANNs
can still validate the feasibility of the SUANPAN
architecture.

Discussion
In this work, we have proposed and demonstrated the

photonic SUANPAN architecture to perform the vector
inner product operations. As a proof of principle, a
SUANPAN with 64 pairs of VCSEL and MoTe2 PD is
implemented. According to the experimental results, the
SUANPAN is capable of achieving high computing fide-
lities for randomly generated vector inner products, and
can be applied on two typical AI tasks of the Ising
machine and ANN. There are two main contributions in
this work.
Firstly, for the SUANPAN architecture, it breaks

through the traditional mindset of obtaining optical
matrix transformations through the interaction of light
beams. Instead, there is no interaction among those
propagating light beams of all BEADs. Therefore, the
SUANPAN can be decomposed into BEADs as indepen-
dent computing units. The scalability, reconfigurability,
and programmability of the SUANPAN architecture are
only based on the multiplication, recombination and
modulation of BEAD without any additional cost. Com-
pared with optical matrix transformations through inter-
action between light beams, the SUANPAN possesses the
following advantages: (1) With massive and industrial
multiplication of BEADs, the SUANPAN can theoretically
be infinitely scalable. (2) The SUANPAN can be flexibly
reconfigured and programmed to perform various specific
computing tasks. (3) Only correcting the intensity of light
beam is required (details are provided in Supplementary
Note 8), and there is no requirement to correct the phase
term. (4) Even if one BEAD is broken during fabrication
or operation, other BEADs would not be affected, and
only the operating dimensionality would be decreased.
Although 64 BEADs are operating well in our experi-
mental demonstration, the anti-failure ability of the
SUANPAN architecture would be of great significance for
future large-scale computing since the yield of massive
production cannot be always as 100%.
Secondly, the SUANPAN provides a promising solution

for optoelectronic analog-digital hybrid computing.
Large-scale DAC and ADC arrays are usually required in
optoelectronic computing. However, with Bit Encoding
and Analog Detecting paradigm, M-bit digital electronic
signal is converted to analog within a set of M BEADs,
while each BEAD only represents 1-bit information. Thus,
no DAC is required. At the same time, only one ADC is
required to convert the total photocurrent into electronic
digital signal. Therefore, the Bit Encoding and Analog
Detecting computing paradigm greatly reduces the heavy
burden introduced by ADC and DAC. Actually, it is also
an important issue for the scalability of the SUANPAN
architecture.
Thirdly, we would provide a detailed analysis about

the energy consumption. The energy consumption of the
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SUANPAN would be approximately proportional to the
number of bit precision, since each BEAD only encoding
1-bit information, and M BEADs are required for M-bit
quantization. The energy consumption of a single BEAD
consists of two parts: the energy consumption of VCSEL
and that of the MoTe2 PD. At 8-bit precision, the average
energy consumption of a single VCSEL is ~2.5 mW, and
the average energy consumption of a single PD is ~273.4
nW (the details are shown in Supplementary Note 11).
Therefore, the total energy consumption of a BEAD is
~2.5 mW. It can be seen that the main energy con-
sumption comes from the VCSEL. The reason might be
due to the beam spreading during propagation, the
channel of the PD only received a small part of the light
beam, and the rest would be wasted (the radius of the light
spot is ~200 μm, while the length of the channel is only
10 μm). If the PD and the light-emitter are integrated into
a single chip in the future, the efficiency of the light power
can be significantly improved.
Finally, we would provide a detailed analysis about the

computing speed for both the current and predictable
implementations of the photonic SUANPAN. Since all
BEADs operate in parallel, the computing speed would
not degrade as the bit precision increases. Considering
one BEAD, the computing latency contains encoding
time of the emitter (te), propagating time of light (tp), and
detecting time of the PD (td). The rise time and fall time
of the VCSEL are 0.46 ns and 0.54 ns, respectively (as
shown in Supplementary Note 9 and Fig. S14). In the
current implementation, each VCSEL is operating at
100MHz. Thus, the encoding time is te= 1 μs for mul-
tiplier a= 0, 1, …, 100. The distance between VCSEL and
PD is about 1.5 m, then the propagating time is about
tp= 5 ns. The rise time and fall time of the PD are 4.72 μs
and 6.59 μs, respectively (as shown in Supplementary
Note 10 and Fig. S15). Thus, the detecting time of the PD
is td= 6.59 μs, which is the larger one between rise time
and fall time. Then, the total computing latency would be
te+ tp+ td= 7.59 μs, and the computing speed for one
BEAD would be 132 KOPS (operation per second). Since
our implementation consists of 64 BEADs, considering
8-bit quantization of multiplier b, the computing speed of
current SUANPAN would be 1.05 MOPS. Actually, the
current implementation is only a prototype of the
SUANPAN architecture, and there is still a lot of room to
improve the performance. Obviously, both the light-
emitter and the PD can be integrated into a single chip
with the heterogeneous integration of 2D materials.
Then, the imaging system in current setup is not
required, and the propagating time would be greatly
reduced. For example, if the distance between the emitter
and PD is reduced to <1 mm, the propagating time would
be tp < 3.3 ps. Thus, the computing speed is mainly
determined by two factors, the BEAD number and

bandwidth. Similar to the development of integrated
circuit, the BEAD number could be increased through
continuously reducing the size of light-emitter and PD.
Also, 3D multilayer stacking integration can be utilized to
further expand the dimensionality. Meanwhile, due to the
research on various high-speed nano-lasers46–48 and
nano-detectors49,50, the bandwidth of a single BEAD,
which is actually determined by the lower one between
the emitter and PD, could be readily increased to several
tens of gigahertz. As a concrete example, the computing
speed could achieve >1 POPS/cm2 (for 1-bit quantiza-
tion) in a single chip for BEAD size <10 μm and BEAD
bandwidth >1 GHz. It should be noticed that the afore-
mentioned BEAD size and bandwidth are not very diffi-
cult to achieve. For example, the operation bandwidth of
50 GHz is achieved on MoTe2 PD51. Furthermore, both
the VCSEL and PD utilized in each BEAD are
polarization-insensitive. If the polarization dimension
encoding is also introduced into the SUANPAN archi-
tecture through properly manipulating the polarization
state of both the emitter and the detector52, the com-
puting power could be boosted more. Therefore, we
believe that the photonic SUANPAN architecture is very
promising as an attractive and practicable linear vector
machine in the visible future.

Materials and methods
Device fabrication of VCSEL
The 850 nm VCSEL epitaxy structure consists of around

35 pairs of AlGaAs bottom distributed Bragg reflector
(DBR) and 25 pairs of AlGaAs top DBR. AlGaAs/InGaAs
quantum well is used as the active region. 98% AlGaAs
layer is used to form oxide aperture. After epitaxy, the
wafer goes through P-metal deposition, inductively couple
plasma trench and wet oxidation. The N-metal is depos-
ited on the backside of the N-type substrate to form a
common cathode. While the individual emitter in the
array is connected to separate anode pads on the edge of
the VCSEL array chip by electroplated traces (Fig. S11a).

Device fabrication of MoTe2 PD
The PDs are fabricated on a SiO2/Si substrate directly

grown with a 10 nm 2H MoTe2 layer (detailed fabrication
process in refs.53,54). First, the patterns are defined by
ultraviolet lithography and transferred to the MoTe2/SiO2

layer by reactive ion etching (SF6 acts as the etching gas).
Then, the Cr/Au electrodes (10 nm/50 nm) are fabricated
using ultraviolet lithography, deposition and lift-off. The
schematic diagram of the preparation process is shown in
Fig. S4. To prevent degradation, the PDs are packaged
with a 10 nm Al2O3 layer grown by atomic layer deposi-
tion. For subsequent testing, the MoTe2 PDs are con-
nected to a self-designed printed circuit board using wire-
bonding technology (Fig. S11b).
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Experimental setup
Schematics of the experimental setup are illustrated in

Figs.1a and S12. Light from the VCSEL array with a
wavelength of 850 nm is focused by a zoom lens onto the
MoTe2 PD array. The 8 × 8 VCSEL array and the PD array
are aligned by the illumination optical path. Electrical and
optoelectronic measurements of the fabricated MoTe2
PDs are carried out with a semiconductor parameter
analyzer (PDA FS380) at room temperature in ambient
conditions. The time-resolved photoresponse of the PD is
measured by the semiconductor parameter analyzer, and
the modulation of the laser (S1FC635PM, 635 nm, Thor-
labs) is realized through a function waveform generator
(DG4062, RIGOL), which creates square wave pulses.
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