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Abstract
Coherent Ising machines (CIMs) have emerged as a hybrid form of quantum computing devices designed to solve NP-
complete problems, offering an exciting opportunity for discovering optimal solutions. Despite challenges such as
susceptibility to noise-induced local minima, we achieved notable advantages in improving the computational
accuracy and stability of CIMs. We conducted a successful experimental demonstration of CIM via femtosecond laser
pumping that integrates optimization strategies across optical and structural dimensions, resulting in significant
performance enhancements. The results are particularly promising. An average success rate of 55% was achieved to
identify optimal solutions within a Möbius Ladder graph comprising 100 vertices. Compared with other alternatives,
the femtosecond pulse results in significantly higher peak power, leading to more pronounced quantum effects and
lower pump power in optical fiber-based CIMs. In addition, we have maintained an impressive success rate for a
continuous period of 8 hours, emphasizing the practical applicability of CIMs in real-world scenarios. Furthermore, our
research extends to the application of these principles in practical applications such as molecular docking and credit
scoring. The results presented substantiate the theoretical promise of CIMs, paving the way for their integration into
large-scale practical applications.

Introduction
Combinatorial optimization problems are problems

seeking the optimal set of parameter values that max-
imize or minimizes a predefined utility function.
Applications of combinatorial optimization are perva-
sive in many real-world scenarios such as scheduling,
routing and resource allocation1,2. As the solution space
increases exponentially with the number of variables,
finding the optimal solution is challenging for most
combinatorial problems. Researchers traditionally rely
on approximation algorithms that provide near-optimal
solutions in polynomial time1,3. Recently, many alter-
native approaches have been proposed to address this
challenge and other similar issuses using physical sys-
tems, including quantum annealers4, neural networks5,6,
ploaritons7, resistive memory devices8, and photo-
nics9–11. Among these, one promising method is

Coherent Ising Machine (CIM)2, which is a hybrid
quantum computing device that simulates the Ising
Model using Degenerate Optical Parametric Oscillator
(DOPO) pulses2,3,12–15. A CIM typically consists of a
network of DOPOs as spins16–18, which are generated
through non-linear optical processes and coupled pair-
wise to encode the Hamiltonian of the target optimi-
zation problem14. By precisely adjusting the pump
power, CIM will transit from the below-threshold state
to the above-threshold state, through which the state
with minimum loss would oscillate, and the ground state
of the encoded Hamiltonian could be identified
accordingly19. It has been demonstrated in multiple
studies20,21 that CIMs can accelerate the computation of
Ising problems by more than two orders of magnitude
compared to classical computers for problems up to
100,000 spins15,16,22.
However, CIM faces challenges from high sensitivity to

cavity length variations and environmental noises
(including temperature fluctuations and mechanical
vibrations), which can lead to suboptimal computing
results17,23,24. Though many theoretical studies on error-
mitigated computations in CIM have been
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presented18,24,25, experimental demonstrations remain
scarce26.
In this study, we investigated various ways to improve

the solution quality for Ising problems solved by CIMs. A
novel approach using femto-second (fs) pulse laser was
developed to achieve high-efficiency non-linearity during
DOPO preparation. In conjunction with our new cavity
stabilization system, this approach allows for DOPO
generation at a lower average pump power with more
pronounced quantum effects, leading to improved solu-
tion quality. We have experimentally demonstrated that
the average probability of achieving the optimal solution
for the 100-vertex Möbius Ladder Max-Cut problem can
be increased to 55%, which represents the highest
reported success rate among CIM or other Noisy
Intermediate-Scale Quantum (NISQ) systems. Moreover,
over 8 hours of continuous operation can be achieved in
our CIM system, on which a cloud platform is set up to
host requests from users of different industries. Lastly,
two example computing tasks are performed to illustrate
the potential of our fs CIM system for practical applica-
tions across different areas.

Results
The setup of the CIM
The Hamiltonian of the Ising model without an external

magnetic field can be expressed as:

HðσÞ ¼ �
X
ij

J ijσ iσ j ð1 � i; j � NÞ ð1Þ

where σ i 2 fþ1;�1g denotes the value of the i-th Ising
spin, J ij is the interaction strength between the i-th and j
-th spins, and N is the total number of spins. As shown in
previous works of CIM13, each DOPO pulse represents a
spin, with its phase value (0 or π) corresponding to the
spin state in an Ising model. During computation, the
pump power is gradually lifted from below the DOPO
threshold to above. When the pumping power is below
the threshold, each spin is in a superposition state, where
the phase is in a superposition 0 and π. When the pump
power goes above the threshold, each spin would collapse
into a determined state of 0 or π. The pulses are optically
interfered to realize couplings between different spins as
defined by fJ ijg. According to the minimum gain
principle27, after transition above the threshold, DOPO
pulses would oscillate at the state with the minimum loss,
which corresponds to the ground state of the Ising
Hamiltonian in Eq. (1).
In Fig. 1b, we present the detailed setup of fs CIM

computing architecture. A 1555-nm mode-locked fiber
laser with a repetition frequency of 100MHz and a pulse
width of ~100 fs is used as the source, featuring excellent
timing stability with a timing jitter <2 fs. The laser

provides an average output power exceeding 100mW,
corresponding to a pulse energy >1.0 nJ. This source is
followed by a second harmonic generation (SHG) stage
that produces 777.5-nm pulses using a Periodically Poled
Lithium Niobate (PPLN) crystal inside the fiber-and-space
ring cavity. The crystal has dimensions of
10 mm× 1mm× 1mm, with anti-reflection (AR) coatings
on both facets optimized for 1555 nm and 777.5 nm. It has
a poling length of 0.5 mm and a poling period ranging
from 18.2 μm to 20.9 μm, facilitating efficient quasi-
phase-matching for frequency doubling. The DOPO
relies on a separate PPLN crystal with dimensions of
10 mm× 1mm× 5mm.
The fiber loop includes two couplers, one for injecting

feedback signal pulses and the other for outputting DOPO
signals. Laser pulses generated by the fs laser are divided
into two paths. One path goes through an Erbium-Doped
Fiber Amplifier (EDFA) and an Intensity Modulator (IM)
to serve as a feedback injection laser. The other path
serves as the local signal for Balanced Homodyne Detec-
tion (BHD). Both the injection signal path and the local
signal path use fiber stretchers to ensure the alignment
between the pump signal and the injection signal in the
cavity, and the alignment between the local signal and
DOPO output signal. The total number of DOPO pulses
in our system is 211, 100 of which are used as signal bits
for computation and the rest are used as auxiliary bits to
stabilize the system. With the help of Analog-to-Digital
Converter (ADC), signal bits are fed into the Field Pro-
grammable Gate Array (FPGA), where the feedback
injection strength of each pulse is calculated using the
formula f i ¼ �r

P
j
J ijσ j (r denotes a constant that deter-

mines the coupling strength14). The measurement and
feedback (MFB) scheme is achieved by loading the feed-
back signal f i onto the injection laser pulses through a
push-pull modulator13,16,19. In Fig. 1a cloud service is set
up to host various requests from users of different
industries. An Ising model can be created and submitted
to the cloud using the Kaiwu SDK28, and a cloud platform
delivers sustained, stable, and task-oriented quantum
computing services on CIM machine to users. Figure 1c
illustrates the evolution of the in-phase component of
each OPO pulse as a function of circulation counts when
solving Möbius Ladder graph. In this experiment, we find
that the ground state of the Hamiltonian can be found
within 20 circulations (<50 microseconds).

CIM with femto-second pulses
In previously demonstrated CIMs13,14,16, pico-second

(ps) pulses are used for DOPO generation. Here, we found
that fs pulses would be more efficient for CIM operations.
Compared with CIM with ps pulses, fs pulses result in
much higher peak power than that of ps pulses for the
same average power. This gives rise to two advantages: (1)
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Fig. 1 The computing architecture of fs CIM. a Job execution flow chart of fs CIM computing services. The complete process involves the user
submitting computing jobs, such as molecular docking, financial analysis, neural networks, and material design, to a cloud server. The cloud server
then converts these jobs into an Ising model matrix and transmits it to the local computer of the CIM via Kaiwu SDK (25). The FPGA is connected to
the local computer for calculation using the obtained matrix. b Sketch of the overall architecture of fs CIM. Device description. PPLN periodically
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AOM acoustic optical modulator, BHD balanced homodyne detection. c The evolution of the in-phase components of the N= 100 OPO pulses as a
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more pronounced quantum effects during DOPO gen-
eration and (2) lowered pump power during CIM com-
putation. These improvements influence the computation
process of the Ising machine, thereby indirectly enhancing
the solution quality of combinatorial optimization pro-
blems, as shown in the next section.
The Hamiltonian of a DOPO in the interaction repre-

sentation is shown in Eq.(2)29,30:

Ĥ ¼ Ĥ int þ Ĥirr ð2Þ

Ĥ int ¼ iℏ
κ

2
ðâys âp � âypâ

2
s Þ þ iℏFðâyp � âpÞ ð3Þ

Ĥ irr ¼ iℏ
ffiffiffiffiffi
γs

p ðâys B̂s � âsB̂
y
sÞ þ iℏ

ffiffiffiffiffi
γp

p ðâypB̂p � âpB̂
y
pÞ
ð4Þ

Ĥ is the Hamiltonian of DOPO, which includes two
terms, Ĥ int and Ĥ irr . Ĥ int describes the coherent internal
dynamics of the DOPO. Ĥirr captures the irreversible
processes related to energy dissipation and coupling with
external reservoirs. Ĥ int comprises two distinct terms
(Eq.(3)). The first term represents the non-linear inter-
action between the signal and the pump. The second term
represents the excitation of the pump by an external field,
denoted F . Meanwhile, Ĥ irr indicates the dissipation
processes that affect both the pump and the signal. The
term Bk , where k can be either s(signal) or p(pump),
represents the coupling between these fields and the
reservoir field bj. Bk is given by the sum

P
j
gk;jbje

iðωk�ωjÞτ .
Furthermore, âs and âys serve as the creation and annihi-
lation operators for the signal field, respectively. Similarly,
âp and âyp perform the same functions for the pump field.
The constant κ represents the strength of the non-linear
interaction between the signal and pump fields. This term
is responsible for the parametric amplification process in
DOPO, where the energy from the pump field is trans-
ferred to the signal field. The constants γs and γp repre-
sent the damping rates or dissipation coefficients for the
signal and pump fields, respectively. These terms describe
the loss of energy from the system due to interactions
with the reservoir field (Bk). In other words, they quantify
how quickly the energy in the signal and pump fields is
dissipated into the environment.
As shown in previous work29,30, the quantum master

equation of a DOPO derived from Eq. (2) is

∂ρ̂

∂t
¼ S

2
ây2s � â2s ; ρ̂Þ
� �þ γs âs; ρ̂â

y
s

� �þ B
2

â2s ; ρ̂â
y2
s

� �þ h:c:

� �
ð5Þ

where ½A;B� ¼ AB� BA represents the commutation
relations. S ¼ κF=γp denotes the squeezing or anti-

squeezing rate induced by the parametric interaction
between the pump and the signal. Compared with ps
pulse pumping, fs DOPO results in a larger amplitude S
due to the higher conversion rate of the pump energy to
the signal2,29. Figure 2a shows the Wigner function of
DOPO for S ¼ 1; 1:25; 1:5; 2. When S increases, the
distinction between the spin = −1 and spin=+1
components of DOPO above the threshold becomes
more pronounced. This amplifies the impact of quantum
noise during CIM calculations.
Another advantage of fs pulses in DOPO is reduced

pump threshold power during CIM computation. Under
the same average power and repetition frequency, fs
pulses possess higher peak power than ps pulses. This
gives rise to higher non-linear conversion efficiency31.
Figure 2b shows the comparison of SHG efficiency
between fs and ps pulses across various pump powers,
revealing that the SHG efficiency for fs laser is 2.5 times
that of ps laser at the pump power of 120 mW. Therefore,
when employing fs pump pulses, the DOPO with higher
non-linear conversion efficiency and shorter pulse dura-
tion will operate at lower pump power13,32. Figure. 2c
further examines the output spectra of the OPO at various
pump powers. A noticeable spectral broadening can be
observed as the pump power increases from 201 to
346mW. For pump power over 226mW, the OPO tran-
sits from a degenerate state to a non-degenerate state.
Therefore, DOPO operation at low pump power is
essential to ensure that CIM operates in the degenerate
state. Besides, precise control of pump power is key to the
success of CIM calculations. Thanks to the reduced
threshold for the fs CIM system, we can better maintain
DOPO degeneracy at the lowered pump power.
The stability of CIM is a critical aspect that determines

its performance in solving optimization problems. Due to
the narrower pulse width with fs pulses, the fs CIM is
more sensitive to the length variation in the fiber-and-
space ring cavity for DOPOs. Temperature fluctuations
cause expansions in optical fibers, which affect the sta-
bility of cavity length and coupling between different
DOPO pulses. Such instability could result in inferior
computational results.
To address this issue, we developed a new cavity sta-

bilization system that integrates temperature control,
vibration isolation, and active feedback. To resist tem-
perature fluctuations, we place the fiber in an incubator to
isolate it from environmental temperature changes and
use an active temperature control system to maintain the
temperature inside the incubator. For vibration isolation,
acoustic foam is utilized to shield optical components
from external vibrations. The effect of this new cavity
stabilization system is shown in Fig. 3d. For a total testing
period of 4 hours, the average 30-minute temperature
fluctuation measurements at the optical space cavity and
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fiber cavity can be reduced to 0.111 °C and 0.010 °C, while
the environment temperature fluctuates ~1.188 °C. This is
critical for maintaining the stability of fs CIM system and
improving the computation accuracy. In addition, an
active feedback mechanism is deployed to make the sys-
tem adaptive to short-term external noise through a
dither-and-lock scheme using auxiliary bits. The auxiliary
bits are used to detect the degree of misalignment
between DOPO pulses from different circulations at the
sub-micrometer scale. The misalignment information is
then given to an FPGA system that would adjust the

cavity length through fiber stretchers according to offset
changes induced by external noises. Based on these sta-
bilization measures, our fs CIM system can sustain stable
operations for a period of over 8 hours, as discussed in the
next section.

Benchmark on Max-Cut problems
The Max-Cut problem aims to partition the vertices of

an arbitrary graph into two sets such that the number of
edges between the two sets is maximized. Due to its
complexity (NP complete), the Max-Cut problem is
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widely used in many literatures to benchmark the per-
formance of CIMs12–14,16. In this work, we tested Möbius
Ladder graphs and random graphs of various sizes on our
fs CIM.

Möbius Ladder graphs of various sizes
Due to its symmetric nature, Möbius graphs of different

sizes all have deterministic optimal solutions, as shown in
Figs. 4a, b. To benchmark the performance of fs CIM,
multiple sets of 100 runs were performed for each graph
(V= 20, 40, 60, 80, 100) and the success rates (which are

defined as the probability of achieving the optimal solu-
tion) are shown in Fig. 4c. The optimal solution can be
found consistently for each graph, as the success rate
remains positive for all graphs. In particular, for the
number of vertices less than or equal to 80, the average
success rate remains above 60%. The error bars denote
the variability in the success rate, typically ranging from
0% to 10%.
As shown in Table 1, compared with previously repor-

ted success rates13 and the simulated annealing (SA)
algorithm, our fs CIM achieves the highest average
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success rate (55% vs 20%, 2%) for solving the 100-vertex
Möbius Ladder graph, while consuming the shortest
computation time (464 μs vs 480 μs, 120 ms per run). The
details of the experiment can be found in the supple-
mentary material.

Random graphs with different edge densities
Compared with Möbius Ladder graphs, random graphs

are generally difficult to compute, and the optimal solu-
tion is unknown for most of the problems. In real-world
situations, the edge density distribution of optimization
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problems is relatively broad. To better approximate the
edge density distribution of real-world problems, we
sampled random graphs in a uniform manner with edge
densities d (d ¼ 2jEj=V ðV � 1Þ) ranging from 1% to 99%
(the actual edge densities of the generated problems
might deviate from target values due to the inherent
randomness in the sampling program). As shown in Fig.
5a, a series of 100-vertex random graphs with edge

densities of 1.7%, 19.6%, 39.8%, 60.5%, 78.5%, and 98.9%
are experimented on our fs CIM to show the capability of
the system to solve complex issues (the algorithm for
generating random graphs can be found on GitHub33).
The Ground State (GS) solutions were computed via Biq
Mac Solver34 and the max-cut values at GS are shown in
Fig. 5b. To better assess our fs CIM’s performance, we
further define 98% GS and 95% GS as cut values that are

Table 1 Success rate of Möbius Ladder graphs of various sizes for this CIM (464 μs), the CIM 10 (480 μs), and SA
(~120ms)

Instances Success rate of this work (464 μs) Success rate of CIM10 (480 μs) Success rate of SA (~120ms)

Möbius Ladder graph with 20 vertices 100% 95% 100%

Möbius Ladder graph with 40 vertices 94% 62% 69%

Möbius Ladder graph with 60 vertices 80% 32% 23%

Möbius Ladder graph with 80 vertices 64% 21% 8%

Möbius Ladder graph with 100 vertices 55% 20% 2%
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98% and 95% of GS cut values or higher. Fig. 5c shows the
success rate of fs CIM achieving GS, 98% GS, and 95% GS
for various random graphs.
For GS computation, the success rate gradually

decreases as the edge density increases. The success rate
is over 80% for sparse graph (edge density= 1.7%), and
remains above 40%, as the edge density goes to ~40%.
As edge density increases, the number of possible
configurations grows exponentially, making it harder
for CIMs to navigate the solution space and guarantee
an exact optimal cut. This combinatorial explosion
reduces the success rate monotonically. As a result, the
success rate decreases as the edge density increases
from 10% to 80%.
For approximate solutions like 98% GS and 95% GS,

similar trends can be observed, except for edge density
over 80%. When edge density is over 80%, the success
rates for 98% GS and 95% GS increase gradually, unlike
the monotonic decrease for GS computation. In sparse
graphs (low density <40%), optimal cuts could rely on
exploiting specific structures, which may allow for
significant improvements over random partitions.
However, these structures become less pronounced as
density increases. At medium densities (~40–80%), the
solution space would increase dramatically, and the
energy landscape for optimization becomes rugged
with more local minima, causing CIMs to struggle even
for near-optimal solutions. The gap between average
and optimal cut values is large, making approximations
challenging. However, in very dense graphs (density
>80%), the structure becomes uniform, resembling a
complete graph. Here, the max-cut value stabilizes near
n2=4 (for n vertices), and even random partitions
achieve ~50% of edges cut. This uniformity reduces
variability in cut values. Therefore, the optimal cut in
dense graphs is only marginally better than typical cuts,
so achieving a 98% approximation becomes easier.
Compared to GS, the success rate for 98% GS and 95%
GS is higher, and can stay above 70% and 80%
respectively. These results are also higher than the
previously reported data13, demonstrating the
improved performance for our fs CIM with stabiliza-
tion measures. For solving random graphs at 60% edge
density, the best success rates in prior work13 reached
only ~10% (with worst-case at 0%), whereas our fs CIM
consistently achieves success rates above 10% even in
its worst cases.

Long-term stability of the CIM
The stability of CIM is crucial for its deployment for

large-scale computing applications. To evaluate system’s
performance over an extended period, a random graph
with 100 vertices and 700 edges is employed as a testing
problem (shown in Fig. 3a). This testing problem is being

calculated on our fs CIM continuously for 8 hours. The
results are shown in Fig. 3b, out of 18,000 calculations
conducted during the 8-hour period, there is a 50.58%
probability of finding the optimal solution with the max-
cut value of 475 and a 98.58% probability of finding a
solution that has a cut value not less than 471 (99% of the
optimal cut value). In only a few instances (7 out of
18,000), the system returned a solution whose cut value is
>90% of the optimal cut value (428). Toward the end of
the 8-hour period, the results did not show any degra-
dation in solution quality. This suggests that our system is
likely to maintain stable operation over the test period of
8 hours.

Solving QUBO problems for practical applications
Quadratic Unconstrained Binary Optimization (QUBO)

is used in a variety of applications, such as scheduling,
routing, and machine learning15,21,35–38. QUBO problems
can also be effectively transformed into the Ising models
(using the method described in Supplementary Materials),
which then can be solved using our fs CIM. Here, we
demonstrate two application areas exploiting the perfor-
mance benefits of fs CIM.

Molecular docking
As a fundamental and essential technology, molecular

docking is widely used in drug discovery and biological
research and aims to identify an optimal binding pose
based on a minimum global energy in ligand-protein
complexes (Fig. 6a)36,39. Docking involves two main pro-
cesses: sampling and scoring, where the sampling process
is a classic NP-hard problem, and traditional algorithms
are unable to calculate accurate results in a vast search
space. Our previous studies encoded the sampling process
into a QUBO problem and demonstrated its performance
on benchmark datasets through simulators35. In this
paper, we used our fs CIM to solve the molecular docking
problems. As shown in Fig. 6c, the data are acquired from
the PDB database37 and are preprocessed to protein and
ligand files using prepare receptor and prepare ligand
tools in AutoDockFR 1.037,38. Then, we use Kaiwu SDK28

to construct QUBO models first and convert them into
the Ising Hamiltonian according to Eq. (6) in the methods
part.
Three systems, named 1N2J, 1LRH, and 1JD0, are

constructed with QUBO models and solved via our fs
CIM. Together, these three systems cover a wide spec-
trum of biological functions and organism types (see the
supplementary information for details), enabling multiple
validations of the proposed computational approach.
Figure. 6B illustrates the evolution of the Hamiltonian in
the solution process, demonstrating that the CIM
machine can rapidly acquire docking results in 300
microseconds. Figure. 6C and Table 2 show calculated

Wei et al. Light: Science & Applications           (2026) 15:74 Page 9 of 13



mRMSD results using fs CIM. mRMSD values for 1N2J,
1LRH, and 1JD0 are 0.8 Å, 1.4 Å, and 0.6 Å respectively.
All these are high-quality (mRMSD < 2 Å) docking poses,
which leave very small differences between the sampling
poses and crystal structures. This demonstrates that our fs
CIM can effectively solve the molecular docking problem,
and our quantum docking method can obtain good
sampling poses in a sub-ms scheme.
This demonstrates that our fs CIM can effectively solve

the molecular docking problem, and our quantum dock-
ing method can obtain good sampling poses in a sub-ms
scheme. Our platform integrates advanced computational
algorithms with optimized workflows, resulting in
improved computational efficiency without compromis-
ing accuracy. This balance enables rapid screening and
analysis of molecular systems at scales that are often

challenging for other platforms. Moreover, the platform
demonstrates enhanced flexibility and scalability, allowing
it to accommodate a diverse range of molecular targets
and binding scenarios. Through multiple benchmarks on
representative test systems, our platform consistently
achieves comparable or superior predictive performance,
as evidenced by standard metrics such as RMSD and
binding affinity correlations.

Credit scoring and classification
Credit scoring and classification play an important role

in computational finance40. The primary objective is to
predict the credit worthiness of new applicants, lever-
aging data from historical credit applications41. This
process encompasses several steps, such as feature
selection, data cleaning, and classification42. Among
these, feature selection is a crucial step that aims to
reduce the number of variables for a classification model
(which will be trained using algorithms like XGBoost43),
and further improve scoring accuracy. In this work, we
utilize our fs CIM to select proper features for credit
scoring. And the detailed discussion about the model of
credit scoring is presented in the methods part. As
shown in Eq.(7), the absolute value jρjk j is used to ensure
that the correlation strength is considered regardless of
its direction (positive or negative). Minimizing this term
helps reduce redundancy and promote feature

PDB ID: 1N2J

CIM sampled Docking PoseCrystal Structure

RMSD = 0.8 Å

a

c

b

grid points atom of ligand

target protein ligand

PDB ID: 1JD0

0 100 200 300 400

RMSD = 0.6 Å

PDB ID: 1LRH

0,atom i does not match point j
xij

RMSD = 1.4 Å

1,atom i matches point j

H

H = -1018030

–0.95 1e61e6

–1.00

Is
in

g 
en

er
gy

 H

–1.05
200 300250

Computation time (�s)

Computation time (�s)

–0.1

–0.6

Is
in

g 
en

er
gy

 H

–1.1

stable complex

=

= –��wijxij +��Kijpqxipxjq

Fig. 6 Molecular docking by CIM. a Encoding the sampling process of molecular docking into a QUBO model. b Ising energy evolution of the CIM
single solution. c 1N2J, 1LRH, and 1JD0 of the sampled docking poses (yellow) compared with the poses in the crystal structures (pink). The mRMSD
values for these three molecules are 0.8 Å, 1.4 Å, and 0.6 Å, respectively, all of which are below 2 Å, indicating the effectiveness of CIM in molecular
docking calculations

Table 2 mRMSD of three molecules calculated using fs
CIM

PDB ID mRMSD (Å) If mRMSD < 2 Å

1N2J 0.8 Yes

1LRH 1.4 Yes

1JD0 0.6 Yes

PDB ID is identity of the molecule in PDB database. All three mRMSD values are
below 2 Å, indicating that CIM is effective in solving molecular docking problem
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independence44. This formulation guides the CIM in
selecting an optimal subset of features, which can then
be used effectively in training models for credit scoring
and classification tasks.
We construct the QUBO model based on Kaggle

dataset45 using the aforementioned approach. The
QUBO formulation was then converted into an Ising
problem using Kaiwu SDK, yielding the J ij matrix for
calculation.
To demonstrate the advantage of fs CIM over classical

optimizers, we compared the performance of XGBoost
with feature selection (CIM + XGBoost model) to that
of XGBoost without CIM-assisted feature selection
(XGBoost only model). Figure 7a illustrates the scoring
process that aims to separate the overdue cases from
normal repayments. For a given scoring model, dis-
tributions of normal and overdue repayments can be
plotted (Fig. 7a), and the non-overlapping areas between
these two distributions indicate the effectiveness of a
scoring method. Kolmogorov–Smirnov (KS) value is
used to quantify the effectiveness for different scoring
methods by measuring the maximum difference between
the cumulative distributions of normal and overdue
repayments (as illustrated in Fig. 7b)46. A higher KS
value indicates a greater discriminatory power of the
model47.
In Fig. 7c, experimental results of CIM + XGBoost

model are shown and compared to the traditional method
of using XGBoost only model. For our CIM + XGBoost

model, the weighting factor α is used to fine tune the
model and the resulting KS values are shown in Fig. 7c. As
α increases, the KS statistic of the CIM + XGBoost
mothed rises almost monotonically. CIM + XGBoost
approach achieves the maximum KS value of 0.3817 at
α ¼ 0:9975, outperforming XGBoost only model, which
only attains a KS value of 0.3767. By facilitating feature
selection, fs CIM enables the removal of invalid or
potentially detrimental features, thereby enhancing the
generalizability of the scoring model.
To sum up, our platform leverages a quantum feature

selection approach that fundamentally differs from clas-
sical methods (e.g., embedded, wrapper, or filter techni-
ques). By formulating feature selection as a QUBO
(Quadratic Unconstrained Binary Optimization) problem,
the method inherently captures complex inter-
dependencies among features. This allows the platform to
evaluate high-order feature correlations in parallel, sig-
nificantly accelerating the identification of the most
informative and non-redundant feature subsets. As a
result, the quantum-enhanced workflow not only
improves selection efficiency but also enhances model
interpretability and predictive performance compared to
conventional approaches.

Discussion
The narrower width of fs pulses results in higher peak

power density, which may enhance the non-linear con-
version efficiency during the down-conversion process. As
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a light source with high power, it also exhibits more
pronounced quantum effects. This improvement influ-
ences the process of computation of the Ising machine,
thereby indirectly enhancing the solution quality of
combinatorial optimization problems. The fs pulsed laser
used in our experiment has a pulse width of <300 fs, ~1/
50 of the 15 ps pulse width reported in previous studies13.
Phase locking of the pulses is required during system
operation; consequently, such a narrow pulse width is
highly sensitive to DOPO cavity length variations and
environmental noise in the time domain. To address this
issue, we developed a novel cavity stabilization system to
shield it from environmental temperature fluctuations,
adopted an active temperature control system to maintain
the incubator’s internal temperature, and used vibration-
damping foam for vibration isolation to protect optical
components from external vibrations.
To scale the system to a larger size, two approaches

can be adopted: (1) increasing the repetition rate of the
fs laser; (2) extending the fiber length. However, the
repetition rate of the fs laser cannot be increased arbi-
trarily, and longer fiber length incurs higher cavity loss
and makes the system more sensitive to environmental
noise. While many key components have been inte-
grated into chips to improve system’s stability48, kilo-
meter scale on-chip fiber fabrication has not yet been
achieved.
In summary, CIM provides a promising platform for

solving QUBO and Ising problems across various
domains, offering advantages in speed, efficiency, and the
ability to address large-scale optimization tasks. We
achieved the 100-spin CIM with optimized performance
by utilizing fs DOPOs. Furthermore, our fs CIM system
can perform stable calculations for over 8 hours and
opens a new path to improve the performance of CIM.
Through the test runs of problems from molecular
docking and credit scoring, fs CIM further demonstrates
its potential in many optimization areas. This encourages
us to consider the large-scale deployment of fs CIM as a
potential alternative technology to tackle complex opti-
mization issues in the future.

Materials and methods
Molecular docking
In this model, we transform the molecular docking into

a problem of matching individual atoms in the molecule
to discretized protein lattice points. xij in this QUBO
model is defined as the binary decision variable to indicate
whether the atom ai and the grid point gj are matched.
wai;gj denotes the energy coefficient for this matching case,
and Kdist and Kmemo represent the penalty coefficient. uijkl
and vijkl are two hard constraints that limit the distance
between an atom and a lattice point match to be legal and
limit the existence of at most one match for a lattice point

and an atom, respectively.

H ¼
Xn
i¼1

XN
j¼1

wai;gjx
2
ij þ Kdist

Xn
i¼1

XN
j¼1

Xn
k¼1

XN
l¼jþ1

uijklxijxkl

þKmono

Xn
i¼1

XN
j¼1

Xn
k¼1

XN
l¼jþ1

vijklxijxkl

ð6Þ

The quality of poses sampled by CIM is then evaluated
by the Root Mean Square Deviation (RMSD) between
sampling poses and crystal structures. We choose the
minimum RMSD (mRMSD) in one computation as the
CIM solution. In molecular docking, it is generally
accepted that an mRMSD less than 2 Å is an acceptable
docking result.

Credit scoring and classification
The QUBO expression for feature selection can be

expressed as follows:

f ðxÞ ¼ � α
Xn
j¼1

xjjρV jj � ð1� αÞ
Xn
j¼1

Xn
k¼1;k≠j

xjxk jρjk j
 !

ð7Þ

xj is a binary decision variable that indicates whether the
j-th feature is selected (xj ¼ 1) or not (xj ¼ 0). It directly
influences whether a particular feature will be included in
subsequent analysis or model training. α is a weighting
factor that balances the trade-off between individual fea-
tures and the inter-feature correlations. It ranges between
0 and 1. A higher value of α emphasizes the importance of
individual features’ contributions to the label category,
while a lower value gives more weight to minimizing the
correlations among different features, promoting feature
independence. n represents the total number of features
considered for selection. The summation indices j and k
range from 1 to n, ensuring that all features are evaluated
within the QUBO framework. ρV j captures the influence
or relevance of the j-th feature in the label category (e.g.,
credit reliability). It could be a measure such as the fea-
ture’s correlation with the target variable, mutual infor-
mation, or any other metric that quantifies the feature’s
importance. The absolute value jρV jj ensures that the
impact is measured in absolute terms. ρjk represents the
correlation between the j-th and k-th features. It measures
the degree of linear dependency or similarity between two
features.
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