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Abstract

Tribotronics, a new field that involves the coupling of triboelectricity and semiconductors, has attracted great interest
in the nanoenergy and nanoelectronics domains. This paper proposes a tribotronic bipolar junction transistor (TBJT)
that incorporates a bipolar junction transistor and a triboelectric nanogenerator (TENG) in the single-electrode mode.
When the mobile triboelectric layer slides on the device surface for electrification, a bias voltage is created and applied
to the emitter junction, and then the base current from the TENG is amplified. Based on the fabricated TBJT, a
mechanical frequency monitoring sensor with high sensitivity and excellent stability and a finger-triggered touch
switch were developed. This work demonstrated for the first time a tribotronic device with simultaneously controlled
voltage and current voltage/current simultaneously controlled tribotronic device, which has promising potential
applications in micro/nano-sensors, human-machine interactions, intelligent instrumentation, wearable electronics,

and other applications.

Introduction

In the last few decades, transistor scaling has followed
the well-known Moore’s law, resulting in an increase of
two times in the transistor density every 2 years"? which
is approaching the limitations of physical size and
power™*, Therefore, information technology (IT) in the
post-Moore’s law period will develop toward new direc-
tions including diversification, improved sensors, multi-
functionality, and self-powering capacities®'°. As one of
the basic transistors, the bipolar junction transistor (BJT)
still plays an important role in the design of discrete and
very-high-frequency circuits and is used as an amplifier or
switch because of its high transconductance and output
resistance compared to MOSFETs'"'2, However, the
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traditional BJT is modulated by internal electrical signals
and lacks the direct interaction mechanism between the
external environment and electronics.

Recently, the invention of a triboelectric nanogenerator
(TENG) has successfully provided an effective approach
to convert ambient mechanical energy into electricity'®.
The working principle of the TENG is based on contact
electrification and electrostatic induction, which have
been widely used in micro/nano-energy'*"’, self-
powered systems'®™?°, and blue energy”’>’. Further-
more, by coupling the triboelectricity with semi-
conductors, a new field of tribotronics has been
proposed®*~?, which concerns research regarding the
interaction between triboelectricity and semiconductors®>
using triboelectric potential controlling electrical trans-
port and transformation in semiconductors for informa-
tion sensing and active control**~%, To date, various
tribotronic devices have been developed including
contact-gated LEDs”’, touch memory®®, adjustable pho-
totransistors®>*’, sensing arrays*', tribotronic tuning
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Fig. 1 Basic structure of the tribotronic bipolar junction transistor (TBJT). a Schematic illustration of the TBJT. Inset: cross-section configuration
of the TBJT, showing an electrical connection between the TENG in the single-electrode mode and an n-p-n bipolar junction by via hole; SEM image
of nanostructures on the surface of the mobile triboelectric layer made of FEP film. b Optical photograph of the TBJT. ¢ Equivalent circuit of the TBJT
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diodes*?, and flexible organic tribotronic transistor*>. All
these applications demonstrate the potential of tribo-
tronics in active interaction electronics, offering a pro-
spective strategy to design smart sensors with the
advantages of low cost, simple mechanism, and excellent
sensitivity.

In this study, we developed a tribotronic BJT (TBJT) by
combining a triode with a TENG in the single-electrode
mode. The collector current of the TBJT can be amplified
and tuned by the base current from the TENG with the
sliding motion of the mobile triboelectric layer. Based on
the fabricated TBJT, a mechanical frequency monitoring
sensor and a finger-triggered active smart touch switch
have been developed. In contrast, from previous tribo-
tronic transistors, the TBJT is controlled by the voltage
and current created by the TENG simultaneously, which
has potential applications in micro/nano-sensors, human-
machine interaction (HMI), intelligent instrumentation,
and remote controls.

Results
Structure of the TBJT

The basic structure of the TBJT comprises a flexible
polyimide substrate, a Cu pad (25 mm x 25 mm), a free-
standing fluorinated ethylene propylene (FEP) film, and
an NPN type triode, as schematically illustrated in Fig. 1a.
The Cu pad is deposited on the top surface of the flexible
polyimide substrate, and the triode made of a silicon-
based n-p-n junction is constructed on the bottom layer.
The emitter, base and collector are electrically connected
with the n + -type, the p-type, and the n-type region of
the triode, respectively. Through the designed via hole,
the Cu pad is also electrically connected to the base

electrode, as shown in the inset of the cross-section. The
mobile layer is assembled next to the Cu pad, which
experiences vertical contact and separation from the Cu
pad by the external force. The other inset shows the SEM
image of the nanostructures on the surface of the mobile
triboelectric layer made of FEP film, which is modified via
inductive coupling plasma (ICP) to enhance the
surface triboelectric charge density. A well-designed
TBJT is presented in Fig. 1b (the detailed fabrication
process is introduced in the Methods section). Figure 1c
presents the equivalent circuit of the TBJT, which intui-
tively shows the interaction between the external force
and the electronics.

Working mechanism of the TBJT

The working mechanism of the TBJT is elaborated in
Fig. 2, which demonstrates a working principle different
from that of the conventional B]JT configuration, based on
the coupling of the NPN-BJT, triboelectrification and
electrostatic induction. As demonstrated in Fig. 2a, the
FEP film is purposely chosen as the mobile triboelectric
layer owing to its high electronegativity according to the
triboelectric series®®. The collector of the TBJT is con-
nected with a voltage source, whereas the emitter is
grounded.

In the initial position, when the FEP film fully contacts
the Cu pad, equal negative and positive charges are
induced on the surfaces of the FEP film and the Cu pad,
respectively, owing to their difference in triboelectric
polarity. Because the positive triboelectric charges com-
pletely balance out the negative counterpart in this cir-
cumstance, there is no electrical potential difference
applied to the base region and no charge transfer occurs
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Fig. 2 Proposed working mechanism of the TBJT and band structures of the TBJT at four positions. a When the FEP film comes in contact
with the Cu pad, the TBJT and band diagram are in the cut-off mode. b The TBJT and band diagram are in the active mode when the FEP film moves
the surface slightly away from the Cu pad. ¢ When the FEP film is moved sequentially, the TBJT and band diagram are in the saturation mode. d The
TBJT and band diagram return to the cut-off mode when the FEP electrification film slides backwards
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from the TENG. The emitter—base junction is zero offset
and the collector—base junction is reverse biased; there-
fore, the TBJT stays in the cut-off mode, which corre-
sponds to a logical “off” state. Meanwhile, the depletion
regions are generated in both the junctions where the
electrons and holes recombine. Moreover, the Fermi
levels of the base and emitter region in Fig. 2a are hor-
izontally aligned, and are higher than those of the col-
lector in its band diagram.

Once the FEP film is gradually separated from the Cu
surface as the external force is vertically applied, the
equilibrium potential is disturbed, resulting in a positive
electrical potential being applied to the triode (Fig. 2b).
Meanwhile, the emitter—base junction is forward biased
(the depletion layer width decreases) and the
collector—base junction is reverse biased (the depletion
layer width increases); thus, the TBJT shifts into the active
mode. In the active mode, the electrons are injected from
the forward biased n + -type emitter region into the p-
type base where they diffuse as minority carriers to the
reverse-biased n-type collector and are swept away by the
electric field in the reverse-biased collector—base junction.
Then, based on the law of charge conservation, the

current from the TENG is amplified dramatically in the
collector by the triode. The Fermi level of the base region
in Fig. 2b decreases owing to the positive potential in the
base. Next, as shown in Fig. 2c, when the movement of the
FEP film continues, the inner electric field gradually
increases as well. Therefore, with both junctions being
forward-biased (widths of both depletion layers decrease),
the TBJT enters the saturation mode, and the Fermi level
of the base region decreases between the emitter and
collector. This mode corresponds to a logical “on,” or a
closed switch, which means that the collector current has
a high magnitude and is stable. Finally, the TBJT and its
band diagram return to the cut-off mode when the FEP
film slides backwards (Fig. 2d). However, in this process,
the Fermi level of the base region increases because of the
negative potential in the base.

Figure S1 shows the theoretically calculated results
(performed by the software Comsol Multiphysics) of the
potential difference generated from the contact-
separating and sliding mode TENG with the FEP and
copper films, indicating that this triboelectric potential
varies with the separation distance of the mobile tribo-
electric layer.
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Fig. 3 Electrical characterization of the TBJT. a Output characteristic curves of Vee—Ic with different frequencies. b Relationship between the /g and
the frequency. ¢ Amplification curve of collector current and base current at the frequency of 4 Hz and Ve = 0.5 V. d Stability test of the sensor. Vg
remains at 0.5V during the entire experiment. A small hysteresis and good repeatability are attained even after tests of ~2000 cycles
|

Electrical characterization of the TBJT

To better evaluate the performance of the TBJT, its
electrical characterizations were systematically studied,
as depicted in Fig. 3. The measured results demon-
strated satisfactory performance of the BJT. Figure 3a
plots the output characteristic of the TBJT, and the
separation frequency of the FEP film can be accurately
controlled using a linear motor. As shown in the graph,
the Ic rises as the separation frequency increases from 2
Hz to 12 Hz within a Vg of 0-10V. The curves of Iy
and frequency were also studied, and are shown in
Fig. 3b. When the separation frequency of the FEP film
varies from 0 to 10 Hz, the I increases from 50 to 153
nA. In addition, the curve of the collector current and
base current at the frequency of 4 Hz and Vg =05V
are shown in Fig. 3¢, and the amplification factor of the
peak current (Ic=9.7469 pA and Itgng = 0.0974 pA)
can be reached at 100 x . Moreover, measurements for
~2000 cycles are carried out to validate the stability and
repeatability of the device, as described in Fig. 3d. Even
after 2000 test cycles, the changes in the peak collector
current Ic are <5%, showing its small hysteresis and
excellent reproducibility. The above experimental
results indicate that the collector current increases with
the increasing frequency, which corresponds to good

electrical characterization. Owing to the direct interac-
tion mechanism between the external environment and
electric device, the TBJT is likely to have excellent
applications in sensors and HMI.

Discussion
Application of the TBJT for mechanical frequency
monitoring

First, the TB]JT was applied to mechanical frequency
monitoring (Fig. 4). Based on the electrical characteriza-
tion of the TBJT, the I can be tuned by the separation
frequency of the FEP film. Based on this principle, we
have designed a mechanical frequency monitoring sensor
based on the TBJT. The structures of the TBJT with
contact-separating and sliding single electrode modes,
which are developed for vibrational and sliding frequency
monitoring, are shown in Fig. 4a, b, respectively.
Figure 4c—f show the characteristics of the mechanical
frequency monitoring sensors. When the FEP film
undergoes vertically reciprocating motion with the Cu
film at a frequency from 1 to 5 Hz with a collector voltage
of 0.5V, the I increases with the increase in the vibra-
tional frequency, as shown in Fig. 4c. The sensor exhibits
good sensing performance with an exceptional sensitivity
of 1.00 A Hz ', Similarly, as demonstrated in Fig. 4d, f,
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Fig. 4 TBJT for signal frequency monitoring. a, b Schematic illustration of the device structure with contact-separating mode and sliding mode,
respectively. ¢ The collector current, when the FEP film vertically contacts and separates from the copper film with a frequency ranging between 1-5
Hz with collector voltage 0.5V. d The collector current, when the FEP film and the copper film slide against each other with a frequency ranging
between 1-5 Hz with collector voltage 0.5 V. e Relationship between the collector current and the vibration frequency; the sensitivity is 1.00 pA Hz ™.
f Relationship between the collector current and sliding frequency; the sensitivity is 0.98 uA Hz ™'

when the FEP film and the copper film slide against each
other, there is a positive correlation between the I and
the sliding frequency, and the sensitivity is 0.98 uA Hz .
By exploiting the excellent sensitivity, the TBJT as a
mechanical frequency monitoring sensor shows promis-
ing prospects in HMI and intelligent sensing.

Application of the TBJT as a finger-triggered touch switch
in smart home

In addition to being a mechanical signal sensor, another
intriguing application of the TBJT is as a finger-triggered
active tactile touch switch for smart home control sys-
tems. Traditional transistors cannot be touched by

human fingers directly owing to the presence of elec-
trostatic charges. However, on the basis of the strong
advantages of the TBJT, we designed a finger-triggered
active tactile switch with a high sensitivity that can be
used in the fields of HMI and remote control. In this
configuration, the human skin (finger) can also act as a
mobile triboelectric layer, replacing the FEP film
according to the triboelectric series. The equivalent
electrical circuits of the TBJT and TENG used for con-
trolling the light-emitting diode (LED) are demonstrated
in Fig. 5a. The demo optical graph in the inset shows that
an LED is controlled directly by the finger touching or
releasing the mobile triboelectric layer (FEP film) of the
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signal can be converted into a trigger signal to control the appliances. d Demonstration of the control of a table lamp, an electric fan, and a

TBJT. As depicted in Fig. 5b, the LED brightness can be
tuned by the switch, and the driving energy of TENG is
greatly improved. The LED is turned on/off when the
finger presses or releases the switch, and the dynamic
demonstrations are shown in Video S1.

Moreover, as shown in Fig. 5c, the smart home control
system includes a person; a touch switch based on the
TBJT; a simple signal processing circuit; and household
appliances, such as a table lamp, an electric fan, and a
household security bell. The signal processing module is
made up of a delayer and a relay based on a single-chip
microcomputer, and the detailed circuit board is
demonstrated in Figure S2. When a user touches the Cu
pad of the TBJT, the signal is detected and converted into
a switching signal by the signal processing circuit for the
household appliances (Fig. 3d and Video S2 to S4).

Materials and methods
Fabrication of the tribotronic bipolar junction transistor
First, a 100 um polyimide (PI) substrate (28 mm x 28
mm) was prepared and cleaned in an ultrasonic cleaner
with deionized water, ethanol, and acetone, sequentially,
and then it was blow-dried in a drying oven at 100 °C for
1 h. Subsequently, three localized via holes were drilled on
the substrate and 10 um Cu used as electrical wires were
deposited onto the selective area of back side of the
substrate according to the designed circuit configuration.
Next, layers of 3 pm Ni and 25 pm Cu were electroplated
onto the substrate to form the pad (25 mm x 25 mm).
Finally, a chip of the NPN-triode was adhered to the
bottom of the PI substrate, in which the base was con-
nected to the Cu pad through via the hole, and the col-
lector and emitter could be electrically connected to the
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external circuitry by the electrical wires. The mobile layer
vertically controlled by the external force was fabricated
based on a piece of FEP film, which was also used as a
mechanical frequency monitoring sensor.

Surface modification of the FEP film

First, a 30 pm FEP film (25 mm x 25 mm) was prepared
and cleaned. Before etching, a layer of Cu was RF sput-
tered onto the surface of the FEP surface, and then O,, Ar,
and CF, gases were fed into the inductively coupled
plasma (ICP) chamber to etch the surface with flow rates
of 10.0, 15.0, and 30.0 standard cubic centimeter per
minute. Then, a 400 W power source was used to generate
the plasma, while another 100 W power source was used
to accelerate the plasma ions moving to the FEP surface.
After 5 min, the desired nanostructures were obtained on
the Cu coated FEP surface.

Characterization and electrical measurements of the TBJT

The current and voltage was quantitatively determined
by a linear motor (Akribis-DGL-SH417), a Low Noise
Current Preamplifier (SRS-SR570) and a programmable
electrometer (Keithley 6514) under ambient conditions at
room temperature. A DC power supply (RIGOL-DP-832)
was used to supply an electrically applied voltage to the
TBJT and the external circuits.

Conclusion

In summary, we have demonstrated a tribotronic BJT
(TBJT) based on a bipolar junction and a TENG in the
single-electrode mode. With the sliding of the mobile
triboelectric layer, a bias voltage is created, and the base
current is amplified. The fabricated TBJT is used as a
mechanical frequency monitoring sensor with a high
sensitivity (1 uA Hz ') and excellent stability. Moreover,
the device can also be used as a finger-triggered active
tactile switch. This work has extended emerging tribo-
tronics to a device with simultaneously controlled voltage
and current and has demonstrated that the new field may
have innovative and promising potential applications in
micro/nano-sensors, HMIs, wearable electronics, and
other applications.
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