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Abstract
Smart, low-cost and portable gas sensors are highly desired due to the importance of air quality monitoring for
environmental and defense-related applications. Traditionally, electrochemical and nondispersive infrared (IR) gas
sensors are designed to detect a single specific analyte. Although IR spectroscopy-based sensors provide superior
performance, their deployment is limited due to their large size and high cost. In this study, a smart, low-cost, multigas
sensing system is demonstrated consisting of a mid-infrared microspectrometer and a machine learning algorithm.
The microspectrometer is a metasurface filter array integrated with a commercial IR camera that is consumable-free,
compact ( ~ 1 cm3) and lightweight ( ~ 1 g). The machine learning algorithm is trained to analyze the data from the
microspectrometer and predict the gases present. The system detects the greenhouse gases carbon dioxide and
methane at concentrations ranging from 10 to 100% with 100% accuracy. It also detects hazardous gases at low
concentrations with an accuracy of 98.4%. Ammonia can be detected at a concentration of 100 ppm. Additionally,
methyl-ethyl-ketone can be detected at its permissible exposure limit (200 ppm); this concentration is considered low
and nonhazardous. This study demonstrates the viability of using machine learning with IR spectroscopy to provide a
smart and low-cost multigas sensing platform.

Introduction
There is currently considerable demand for gas sensing

technology due to its numerous applications; these
include atmospheric pollution monitoring, the detection
of hazardous gas leaks in industry, and the detection of
harmful volatile organic compounds in indoor loca-
tions1,2. Moreover, in recent years, the emergence of the
Internet of Things (IoT) has spurred interest in develop-
ing smart gas sensor systems. These systems combine
sensors with advanced signal processing techniques and
machine learning algorithms3, enabling the resultant
system to perform real-time analysis of the gases present.
While much progress has been made, low-cost smart gas
sensors that can simultaneously achieve low detection

limits and low cross-sensitivity in situations where mul-
tiple gases need to be detected have yet to be developed.
Current gas sensing techniques can be categorized as
follows: electrochemical gas sensors, optical gas sensors,
acoustic-based sensors, gas chromatography (GC) sensors
and calorimetric-based sensors1. Electrochemical-based
sensors have been attained using materials that include
carbon nanotubes4, semiconductor nanowires5,6, and 2D
materials such as α-MoO3, graphene and MXene7–9.
These sensors have high sensitivity but suffer from limited
lifetimes and cross-response issues10. Acoustic gas sensors
typically detect gases by measuring the ultrasonic wave
velocity, attenuation and acoustic impedance11; however,
these sensors are limited by high power consumption. GC
is commonly used for laboratory chemical analysis and
has excellent chemical separation performance, with high
sensitivity and selectivity12. GC systems generally have
large footprints and are nonportable; thus, they are
unsuitable for use as smart gas sensors. Calorimetric gas
sensors detect gases based on differences in their heat of
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combustion13. However, this approach tends to have low
sensitivity and selectivity for gas sensing. Optical gas
sensing methods include fluorescent chemosensors14,
nondiffractive infrared (NDIR) sensors15, and absorption
spectroscopy-based sensors2. Fluorescent chemosensors
convert chemical stimuli into a detectable fluorescent
response. Although this technique requires low power
consumption, it faces challenges such as poor reusability
and slow response time16. Both NDIR and absorption
spectroscopy-based gas sensing detect gases based on
their mid-infrared (MIR) “fingerprints,” i.e., the unique
absorption spectra of chemicals due to the molecular
vibrational modes excited by infrared radiation. This
approach can provide a fast response, minimal drift, high
specificity, long lifetime and robustness to changes in the
ambient environment10. NDIR is usually implemented by
monitoring the intensity of analyte IR absorption at a
single (or a few) wavelength(s) achieved by filtering the IR
source to match the absorption line(s). The current
workhorse tool for IR spectroscopy is the Fourier trans-
form infrared (FTIR) spectrometer. FTIR effectively per-
forms for gas sensing, but its platform is generally large,
has high power consumption and is expensive. Thus, the
development of gas sensors that use IR spectroscopy as a
sensing mechanism with favorable size, weight, power
consumption and cost is the topic of this paper.
In this study, we construct a smart optical gas sensing

system employing an MIR metasurface micro-
spectrometer (MIMM) to detect multiple hazardous gases
down to hundreds of parts per million (ppm) levels.
Previous studies have demonstrated infrared micro-
spectrometers using spectral filtering elements; these
include voltage-tunable Fabry‒Pérot (FP) filters17–20;
compact FTIR interferometer-based systems such as
Michelson interferometers21,22; lamellar gratings23;
Mach‒Zehnder interferometers24; and other approaches
such as single-pixel Hadamard transform spectrometers25

and arrayed waveguide gratings26. While these methods
have been effective, they require complicated fabrication
methods and/or experimental setups and have limited
operating wavelength ranges, which hinders the devel-
opment of IoT sensor networks using these techniques. IR
microspectrometers can be alternatively constructed
using the filter-array-detector-array (FADA) archi-
tecture27. In this configuration, a spectral filter array is
placed on top of a detector array. By performing com-
putational analysis of the detector array output, the input
spectrum can be reconstructed28,29. For some applica-
tions, this step is not necessary; for example, the FADA
device can be used for IR-based chemical identification by
directly analyzing the detector array output without per-
forming spectral reconstruction. This approach is used in
our study. An advantage of the FADA architecture is its
simplicity; specifically, the data can be attained by adding

a spectral filter array to a detector array such as a
microbolometer camera. Furthermore, the resultant sys-
tems are generally highly robust because they contain no
moving parts. In recent years, there has been much
interest in the use of metasurfaces as filters, in part
because fabrication usually requires only a single litho-
graphy step. Previous studies have demonstrated meta-
surface spectral filtering using plasmonic gratings and
waveguides30–33, metal-insulator-metal structures34–37,
quasi bound-state-in-the-continuum (BIC) reso-
nances38,39, and guided mode resonances (GMRs)40.
Among these methods, gas detection was demonstrated in
Refs. 30,34–36. Unlike our work, Ref. 30 did not demonstrate
an integrated system. Refs. 34,35 demonstrated an inte-
grated system for gas detection but was limited to the
detection of one species (CO2). Ref. 36 demonstrated
multiple gas detection methods with an integrated system
comprising pyroelectric detectors with plasmonic meta-
material absorbers. A classical approach was used, where
each detector/absorber was tailored to detect a particular
gas. Eight different gases could be detected by the eight
detectors of the device. This is different from our
approach. Our MIMM is a lightweight ( ~ 1 g) and small
( ~ 1 cm3) device that consists of a metal nanoantenna
metasurface filter array integrated with a compact thermal
camera. The filter array has twenty spectral channels that
span the broad wavelength range of 6–14 μm. Our device
does not target specific gases but is highly versatile. In our
previous study27, we showed that the same device could
be used for liquid chemical detection, ranging from
common laboratory chemicals (acetone, methanol, iso-
propanol, and ethanol) to medications (ibuprofen, aspirin,
and acetaminophen) and even foodstuffs (olive oil, vege-
table oil, and peanut oil). Unlike Ref. 36, our device also
does not require specialized fabrication methods and can
be readily added to a thermal camera. The gas sensing
performed here is much more challenging than in our
previous liquid detection study27 because the analyte
absorption is much weaker. Here, we show that by sta-
bilizing the temperature of the MIMM, we drastically
reduce its drift, thereby enabling it to be used for gas
sensing. We build a gas sensing system centered around
the MIMM and subject the system to various gases.
Machine learning classifiers (MLCs) are trained using the
data collected for four gas species: carbon dioxide (CO2),
methane (CH4), ammonia (NH3) and 2-butanone
(methyl-ethyl-ketone, MEK). These gases are diluted
with nitrogen at various concentrations to represent dif-
ferent hazardous gas detection scenarios. We show that
the trained MLC can identify these gases with very high
accuracy. We demonstrate MEK detection at the per-
missible exposure limit (PEL), which refers to the max-
imum level of exposure to a hazardous substance that a
worker can be exposed to over a given time period
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(usually 8 h per day) without suffering adverse health
effects. Specifically, we show that our system can detect a
hazardous gas at a concentration considered to be low and
nonhazardous. To the best of our knowledge, this study is
the first demonstration of a smart mid-IR multigas sensor
based on optical metasurfaces and a machine learning
classification model.
This paper is organized as follows. We first provide a

detailed description of the design and working principle of
the metasurface gas sensor; the sensor consists of the
MIMM, a custom-made gas cell, and a temperature
controller. Next, we discuss the experimental setup, data
acquisition, and training of a machine learning classifier
for multigas detection. Finally, we conclude by summar-
izing our findings and discussing future work on gas
sensors with enhanced metasurface designs.

Results and discussion
Our metasurface gas sensing system (Fig. 1a) consists of

four main parts, i.e., the MIMM, a thermoelectric tem-
perature stabilizer (TTS), a gas cell and a thermal infrared
emitter. The MIMM and the thermal emitter are placed
on the two sides of the custom-made gas cell. The gas cell
is then loaded with the analyte gas to be sensed, and the
gas interacts with the infrared radiation. The light trans-
mitted through the cell illuminates the MIMM, striking
the twenty-channel metasurface filter array (MFA, Fig. 1d)

and the underlying thermal camera. Figure 1c is a sche-
matic illustration of the device. The readout from the
MIMM is based on a microbolometer and susceptible to
temperature fluctuations that originate from the varia-
tions in the ambient temperature in the laboratory and/or
from the heat produced by on-board electronics. This
susceptibility shows up as a signal drift. Therefore, we
introduce a TTS to stabilize the temperature of the
MIMM. We characterize the transmission of the MFA
using an FTIR microscope (Perkin Elmer Spotlight 200i)
before filter bonding. Figure 2a shows that dips and peaks
are present in the wavelength range of 6–14 µm for the
BSFs and BPFs, respectively, as expected. More details of
the MIMM, gas cell and TTS fabrication are provided in
the Methods section.
We select four gases to demonstrate multianalyte

detection using our metasurface gas sensing system: CO2,
CH4, NH3, and MEK. Figure 2b shows the absorption
cross section spectra of the four gases41–43 at room tem-
perature and a pressure of one atmosphere in the wave-
length (wavenumber) range 5–14.3 µm (2000–700 cm−1).
CH4, NH3 and MEK have prominent absorption cross
section peaks in the operating wavenumber range of the
MIMM. The absorption of CO2 is much weaker than that
of the other gases, but CO2 can still be detected by our
system. To acquire data for each gas at different con-
centrations, we use a gas mixing setup to dilute the gas
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Fig. 1 Components and Layout of the Metasurface Gas Sensing System. a Schematic of metasurface gas sensing system. The MIMM and infrared
emitter are placed on two sides of a custom-made gas cell. The MIMM is mounted on a thermoelectric temperature stabilizer. The gas cell is filled
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array, with transmitted light being absorbed by the pixels of the microbolometer camera. d Schematic illustration of a metallic metasurface filter array
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with a nitrogen (N2) carrier gas; N2 does not absorb MIR
and is chemically inert. For CO2 and CH4, with gas
cylinder concentrations of 100%, their concentration steps
are 10, 25, 50, 75 and 100%. NH3 and MEK have lower gas
cylinder concentrations; the concentration steps for NH3

are 100, 500, and 1000 ppm, and the concentration steps
for MEK are 200 and 400 ppm. MEK has a recognized PEL
of 200 ppm44. While the lowest available possible con-
centrations for CO2, CH4 and NH3 are above the PELs and
are thus inapplicable to hazardous gas detection in
breathable air, numerous other applications require gas
sensing at these concentrations; some examples included
for industrial process monitoring and fuel leak monitoring.
More details on the data acquisition and processing can be
found in the Methods section. All data are acquired
beginning with a baseline recording using N2 as a refer-
ence. The acquired data is normalized to the mean of the
baseline values of each MFA channel, as shown in Fig. 3a.
For visualization purposes, the twenty-channel readout
values are offset by steps of 0.05, 0.1, 0.005 and 0.005 per
channel for CO2, CH4, NH3 and MEK, respectively. The
MIMM temperature recorded during data collection is
also plotted in Fig. 3b. The temperature stabilizes to
28 ± 0.05 °C during the data collection. The line plots show
the data as 10-point moving averages; this enables the
underlying trend in the channel readouts as the con-
centration is varied to be observed more clearly. We plot
the gas concentration vs. time as a bar graph in Fig. 3a
(right-hand axis). For CO2 and CH4, the readout values
decrease as the concentration increases due to IR
absorption by these gases. For NH3 and MEK, the changes
are more subtle, but they are still detectable.

We plot the data from the gas sensing experiments in
Fig. 4a. The data are presented as 3-D bar plots that show
the mean acquired readout value for each gas at each
concentration under steady-state conditions. This is done
by taking data every 5 min after the start of the analyte gas
cycle. Each gas has a distinctive pattern; specifically, the
different channels of the MIMM discriminate between the
different gas analytes. This capability is necessary for the
MLC to be able to perform pattern recognition of the
readout data and to identify different gases. To further
study the distinctiveness of the readout patterns of dif-
ferent gases, we perform principal component analysis
(PCA) to reduce the data dimensionality. The visualiza-
tion of PCA results is shown in Fig. 4b, c, and notably,
only principal components (PCs) 1–3 are plotted because
they represent most of the explained variance in the data
( > 95%). From Fig. 4b, for CO2 and CH4, the data from
the different species and different concentrations form
clusters. For the same type of gas, the datapoints follow a
trajectory leading toward the cluster of the “Reference
(N2)” class as the concentration varies from high to low.
Additionally, the paths of these datapoint trajectories are
distinctly different for the two gases, which indicates that
the trained MLC will exhibit high classification accuracy.
We also notice that the data separation in PC3 is not
prominent and only accounts for the randomness, i.e.,
noise, during data acquisition. For the low-concentration
gases (NH3 and MEK), the PCA results (Fig. 4c) show that
the datapoints are clustered much less distinctively due to
the much lower signal-to-noise ratio. Nonetheless, as we
describe later, the separation of clusters and the con-
centration trajectories in PC space are sufficient for the
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MLC to perform accurately. We next describe the training
of the MLC for multianalyte detection.
The MLC algorithms enable the gas sensing system to

become “smart,” i.e., to determine the gas present directly
from the readout data from the MIMM without per-
forming any spectral reconstruction. We use a support
vector machine (SVM) algorithm with quadratic kernels
to train the MLC. This method has proven to be very
effective in previous studies27,45. The trained SVM clas-
sifier is first cross-validated within the training dataset to
prevent overfitting. The result is presented as a confusion
matrix, as shown in Fig. 5a. The overall classification
accuracy is 99.75%. All misclassifications are among those
of low-concentration gases and the “Reference N2” class.
To further validate the efficacy of the model, we acquire
another dataset two days later for hold-out validation;
specifically, we use the trained SVM classifier to perform
classification on unseen data. The confusion matrix of the
classification results confirms that our model can still
identify data points with very high accuracy, and the “2-
butanone (MEK, 200–400 ppm)” class is the only classi-
fication error and was misclassified as “Reference N2.”
Based on the cross-validation results, we might have
anticipated a higher misclassification rate for the
“Ammonia (NH3, 100–1000 ppm)” class than for the “2-
Butanone (MEK, 200–400 ppm)” class for hold-out

validation. We attribute this to drift in the system between
the training and validation steps, and this can be under-
stood as follows. First, the baseline of the readout values
drifts in the acquired hold-out validation dataset. This
drift occurs mainly because the source emission spectrum
is dependent on the ambient temperature and because the
IR emitter temperature is not controlled. Second, even
though the use of TTS assists in maintaining a relatively
consistent readout stream, the system remains vulnerable
to sudden temperature variations that the temperature
stabilizer may not always be able to counteract promptly.
These abrupt temperature changes can also lead to
undesired data drift. We anticipate that obtaining addi-
tional data under a variety of environmental conditions
can help to address this problem. These data would
provide a more precise understanding of the fluctuation in
readout values for all analyte gases. Despite the presence
of the drift, the overall classification accuracy is 98.40%.
All misclassifications appear between MEK and reference
classes, i.e., 94.40% classification accuracy for MEK at
concentrations down to 200 ppm, i.e., the PEL level of
MEK. These results confirm that the MIMM can be used
for hazardous gas detection. Although the demonstrated
detection of NH3, CO2 and CH4 do not occur at their
respective PELs, good performance will likely be obtained
even at lower concentrations because at the current tested
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concentrations, the performance is near perfect. In addi-
tion, there are many other applications (e.g., industrial
process monitoring and mining safety46) which require
gas detection at higher concentrations.

Conclusion
Smart gas sensors have attracted much research interest

in recent years to meet the growing demand for applications

in industrial manufacturing, agriculture, smart homes, and
environmental monitoring. In addition, with the rise of IoT
technology, there is a trend toward the deployment of a
network of lightweight, small footprint and low-cost sen-
sors. In this study, we design and develop a smart gas
sensing system using a mid-infrared metasurface micro-
spectrometer (MIMM) and a machine learning classifier for
the detection of multiple hazardous gas compositions. The

b High concentration gas (PCA) Low concentration gas (PCA)

–0.4 –0.2 0 0.2

Principal
component 1

–0.04

–0.02

0

0.02

0.04

0.06

P
rin

ci
pa

l c
om

po
ne

nt
 2

–0.02 0.02

Principal 
component 3

Methane 
(CH4 10–100%)

Ammonia
(NH3100–1000 ppm)

Carbon dioxide 
(CO2 10–100%)

Reference
(N2)

2-Butanone 
(MEK 200–400 ppm)

–0.04 –0.02 0 0.02 0.04
–0.01

–0.005

0

0.005

0.01

–0.005 0 0.005
P

rin
ci

ap
l c

om
po

ne
nt

 2

Principal
component 1

Principal 
component 3

c

Reference
(N2)

1.0

0.9

0.8

ii) Methane (CH
4
)

1.00

0.98

0.96

0.94

i) Carbon dioxide (CO
2
)

2
4

6
8

10
12

14
16

18
20

iii) Ammonia (NH
3
) iv) 2-Butanone (MEK)

2
4

6
8

10
12

14
16

18
20

1.000

0.998

0.996

0.994

1.000

0.998

0.996

0.994

2
4

6
8

10
12

14
16

18
20

2
4

6
8

10
12

14
16

18
20

MIMM channel no.

MIMM channel no.

MIMM channel no.

MIMM channel no.

Conce
ntra

tio
n (p

pm)

Conce
ntra

tio
n (%

)

Conce
ntra

tio
n (%

)

Con
ce

ntr
ati

on
 (p

pm
)

0
100

500
1000

200
400

0

10
25

50
75

100

10
25

50
75

100

R
ea

do
ut

 (
a.

u.
)

R
ea

do
ut

 (
a.

u.
)

R
ea

do
ut

 (
a.

u.
)

R
ea

do
ut

 (
a.

u.
)

a

Fig. 4 Analysis of MIMM readout data and PCA results for gas detection. a 3-D bar plots of the MIMM mean readout values versus concentration
and channel number. This shows the discrimination of MFA channels on different gas analytes. b Data dimension reduction using PCA on the data of
b high-concentration gases and c low-concentration gases. Only PCs 1–3 are plotted

Meng et al. Microsystems & Nanoengineering           (2024) 10:74 Page 6 of 9



MIMM consists of a metasurface spectral filter array inte-
grated with a microbolometer camera that is attached to a
temperature stabilizer to reduce the readout drift. Its
operating wavelength is 7–14 μm (1428–714 cm−1), which
falls within the MIR “fingerprint” region. We use a gas
mixing setup to subject the sensing system to a combina-
tion of various gases and acquire a dataset for the machine
learning classifier training. The validation results show high
accuracy in identifying analytes from a group of gases,
including MEK, diluted with N2 to its PEL. We anticipate
that spectral filters with narrower linewidths will enable
higher sensing performance and mixture sensing. Candi-
dates for future work include quasi-BIC structures38,47,
GMR filters40, and FP cavities48.

Methods
MIMM fabrication
The MIMM is a modified compact thermal camera

(FLIR Lepton v2.5) with an integrated metasurface infra-
red filter chip. The thermal camera has a microbolometer
array containing 80 × 60 pixels that are responsive in the
wavelength range of 7–14 µm49. We have provided a
detailed report of the process used to produce the MIMM
in our previous work23 and thus describe it only briefly
here. The spectral response of the filters is determined by
the geometry (i.e., dimensions) of the metasurface pat-
terns. The latter are square rings of gold for bandstop
filters (BSFs) and square ring-shaped openings in a gold
film for bandpass filters (BPFs), as shown in Fig. 1d. The
metasurface filters are designed to exhibit spectral features
spanning 7–14 µm (1429–714 cm−1). Optical microscope
photographs and scanning electron micrographs of the
fabricated MFA can be found in the Supplementary
Information (Figure S2). After its nanofabrication, the

MFA chip is glued to the microbolometer array using a die
bonder (Finetech Fineplacer Lambda).

Gas cell
The custom-made gas cell comprises three lens tubes

(Ø1” diameter). An inlet and an outlet to the gas cell are
fabricated by plugging two polyurethane tubes into holes
(Ø6 mm) drilled on the middle lens tube. The IR source is a
high-power infrared emitter that generates an optical power
of 320mW and has an aperture of Ø1/2”. The emission is
from nanostructured metal rods and has a spectrum close
to that of an ideal blackbody50. The emitter package con-
sists of a BaF2 window soldered to a gold reflective colli-
mator and is filled with nitrogen gas by the manufacturer to
lengthen its lifespan. The IR emitter is threaded to a heat-
sink and mounted onto the lens tube. The same lens tube is
also equipped with a zinc selenide (ZnSe) IR window via
internal threading. We used an additional lens tube that
houses a ZnSe lens (Thorlabs AL72512-E3) to loosely focus
the transmitted IR light onto the active region of the
MIMM. ZnSe optical elements have antireflection coatings
that enable higher transmission in the wavelength band of
interest, i.e., the spectral range over which the micro-
bolometer is responsive (7–14 µm or 1428–714 cm−1). The
gas cell has an optical path length of approximately 12.5 cm.
The assembly is hermetically sealed, as shown in Fig. 1a
(apart from the gas inlet and outlet), using retaining rings,
rubber O-ring gaskets and polytetrafluoroethylene thread
seal tape (for the IR optics and the junctions between the
lens tubes, not shown in Fig. 1a).

TTS
The TTS is a Peltier heat pump driven by an electronic

circuit (H-bridge) that can provide a load current of
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Fig. 5 Confusion matrices for MLC validation. MLC a training cross-validation results and b hold-out validation results, shown as confusion
matrices
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alternating polarity, enabling switching between cooling
and heating modes. A heatsink is mounted on one side of
the Peltier heat pump, while the other side is thermally
coupled to the MIMM. The H-bridge circuit is controlled
by a microcontroller (Arduino Micro), which generates
pulse width modulation (PWM) signals to either cool or
heat the MIMM device. We use a proportional-integral-
derivative (PID) feedback loop in MATLAB (R2022b)
interfaced with both the microcontroller and the internal
MIMM temperature sensor. The PID coefficients are
heuristically tuned to improve the control stability and
minimize the steady-state error, as shown in the control
loop diagram of Fig. 1b. The set point is the desired “bias”
temperature for the MIMM, and the controller constantly
monitors the measured temperature (TMIMM) and per-
forms correction. By doing so, we achieve a stabilized
temperature of 28 °C with a temperature swing of ±0.1 °C
and a standard deviation of the temperature error of
~0.03 °C. A photograph of the complete system is pro-
vided in the Supplementary Information (Figure S1).

Data acquisition and MLC training
The mixing setup consists of source gas cylinders,

pressure regulators and mass flow controllers (MFCs).
The use of MFCs is critical because they are calibrated to
accurately control the volumetric (and mass) flow of gas
species, regardless of any pressure and temperature fluc-
tuations. The cylinder concentrations for the analyte gases
are as follows: 100% for CO2, 100% for CH4, 1000 ppm for
NH3 in N2 and 400 ppm for MEK in N2. These values
represent the upper limits for concentration in our
experiments. The lower limit of the diluted concentration
is determined by both the mass flow rate resolution and
the maximum allowable mass flow rate of the MFCs. In
our case, the maximum mixing ratio (flow rate in mL/
min) between N2 and the analyte gas is 180:20, i.e., the
lowest possible concentration limits are 10% CO2, 10%
CH4, 100 ppm NH3 and 40 ppm MEK. The output of
MFCs produces a constant 200 sccm flow of blended gas
mixture that passes through the gas cell via the inlet and
outlet. The outlet exhausts to the fume hood in which the
system is located. The training of the MLC is performed
as follows. For each analyte gas, we sample the readout
data from the MIMM every five seconds at different
concentrations, including in the case of no analyte gas
(i.e., only N2 is present). Each readout entry (provided to
the MLC) is a 1×20 vector labeled with the corresponding
analyte name, concentration, timestamp, and TMIMM. The
setpoint of the TMIMM is 28 °C and the TMIMM is stabi-
lized by the TTS. We change the mixing ratio between the
two MFC channels to increase the concentration step by
step. Each step is followed by purging with N2 to remove
the residual analyte gas in the cell. In addition, before we
start the acquisition of the next analyte gas, we

precondition the analyte gas MFC by flowing 200 stan-
dard cubic centimeters per minute (sccm) of new target
gas through it. During this phase, the output gas flow
from this MFC is not mixed with any N2 and is directed to
the fume hood vent. In addition, the gas cell is purged
with N2 to restore the baseline readout values. All data
acquisition, processing, classifier training and validation
steps are performed using MATLAB (R2022b) with the
image acquisition toolbox with the support package for
the OS generic video interface and the statistics and
machine learning toolbox. More details of the data pro-
cessing and statistics are available in the Supplementary
Information (Figure S3–6).
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