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Abstract

Flexible surface acoustic wave technology has garnered significant attention for wearable electronics and sensing
applications. However, the mechanical strains induced by random deformation of these flexible SAWs during sensing
often significantly alter the specific sensing signals, causing critical issues such as inconsistency of the sensing results
on a curved/flexible surface. To address this challenge, we first developed high-performance AIScN piezoelectric film-
based flexible SAW sensors, investigated their response characteristics both theoretically and experimentally under
various bending strains and UV illumination conditions, and achieved a high UV sensitivity of 1.71 KHz/(mW/cm?). To
ensure reliable and consistent UV detection and eliminate the interference of bending strain on SAW sensors, we
proposed using key features within the response signals of a single flexible SAW device to establish a regression model
based on machine learning algorithms for precise UV detection under dynamic strain disturbances, successfully
decoupling the interference of bending strain from target UV detection. The results indicate that under strain
interferences from 0 to 1160 pe the model based on the extreme gradient boosting algorithm exhibits optimal UV
prediction performance. As a demonstration for practical applications, flexible SAW sensors were adhered to four
different locations on spacecraft model surfaces, including flat and three curved surfaces with radii of curvature of 14.5,
11.5, and 58 cm. These flexible SAW sensors demonstrated high reliability and consistency in terms of UV sensing
performance under random bending conditions, with results consistent with those on a flat surface.

Introduction

Surface acoustic wave (SAW) technology has been
widely applied in fields such as communication systems,
microfluidics, acoustic tweezers, quantum acoustics, and
single-electron control' ™. In particular, because of its
wireless/passive operation and compact design capability,
it is highly suitable for various sensing applications®™”.
Recently, flexible or bendable SAW devices have gained
significant attention because they offer many new appli-
cations compared to rigid and conventional devices'®*?,
These flexible SAW devices possess distinctive char-
acteristics, such as light weight, good biocompatibility,
and adjustable mechanical conformability to object sur-
faces, showing their great potential for signal monitoring
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on curved surfaces. Various types of flexible SAW devices
have been developed over the past decade®'* %, and
significant progress has been made in flexible physical/
biochemical sensors with good sensing perfor-
mance®?"**7?°, Flexibility and bendability are two key
characteristics of flexible SAW sensors. However, a key
challenge for these flexible SAW devices is that they
experience significant frequency shifts or signal inter-
ference when they are subjected to different bending
conditions (or under various mechanical strains), pri-
marily due to changes in the acoustic wave velocities
(acoustic elastic effects) and deformation of the inter-
digital transducers (IDTs)”°. These signal changes are
induced not by the targeted sensing information but by
the applied strains or deformation compared to those in
the planar state. Such strain induced frequency shifts
strongly interfered with the targeted sensing signals (such
as ultraviolet light signals, gas molecules, or biological
species), leading to reduced accuracy or stability of these
flexible SAW sensors (Fig. la). Reference samples are
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Fig. 1 Machine learning-enabled consistent detection on a flexible surface acoustic wave platform under random bending conditions.
a schematic view of the AIScN/glass-based flexible SAW device and detection of target parameters under bending disturbance; b schematic diagram
of the testing configuration of the SAW device; ¢ machine learning model used for eliminating bending interference

typically employed to mitigate the influences of this
deformation and bending strain, yet this approach com-
plicates the entire sensing platform.

In pursuit of a reliable and accurate flexible acoustic
wave sensing system, our research team previously
implemented an off-axis design that minimized the
bending strain effects for AlN/ultrathin glass flexible
SAW devices”’. This device-level design methodology was
employed to mitigate signal variations induced by bending
strains, enabling the extraction of signals solely originat-
ing from the intended monitoring parameter. However,
despite its effectiveness, this approach has certain lim-
itations, such as stringent requirements for the film
deposition quality, wavelength, and film thickness ratio
for the SAW device, thereby impeding its widespread
applicability. Therefore, new methods for eliminating the
signal changes induced by the bending strain of these
flexible SAW devices and obtaining only the monitored
signals of the target parameters are urgently needed.
However, few studies have been conducted to address this
challenge.

In this paper, we developed a flexible SAW sensor based
on AlScN thin films deposited on an ultrathin flexible
glass substrate and then investigated the effects of strain
and ultraviolet (UV) light on the sensing characteristics of
flexible SAW devices (Fig. 1b). Additionally, the influence

of bending strain on the performance of the SAW device
was analyzed through theoretical calculations. We intro-
duced machine learning algorithms to establish a regres-
sion model that correlates the response signal features of
the SAW device with the targeted sensitive parameter
(e.g., UV intensity as an example in this study) under
dynamic strain perturbations (Fig. 1c). A flexible SAW
sensing platform was implemented based on this model to
eliminate strain interference. We also compared the
comprehensive predictive performance of models con-
structed using various machine learning algorithms,
including multiple linear regression (MLR), polynomial
regression (PR), ridge regression (Ridge), robust regres-
sion (Robust), elastic net regression (ENR), decision trees
(DTR), random forests (RFR), and extreme gradient
boosting (XGBoost). Furthermore, SHapley Additive
exPlanations (SHAP) values were utilized to interpret and
investigate the influences of patterns of input feature
variables on UV intensity prediction under various
dynamic straining conditions. Finally, we validated the
generalizability of the model using a randomly selected
validation set, conducted a conceptual demonstration on
a scaled spacecraft model, and proved the consistency of
the UV detection results for different curved surfaces and
planes. Our developed flexible UV SAW sensors with
machine learning algorithms open new avenues for
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various innovative applications. For example, in aerospace
applications, these UV sensors can be strategically placed
on the curved surfaces of aircraft or satellites to monitor
UV radiation, which is essential for understanding space
weather effects and ensuring the longevity of spacecraft
materials.

Methods
Fabrication of flexible SAWs

AlScN films (with a Sc concentration of ~40%) were
deposited onto ultrathin and flexible glass substrates
(100 um thick) using magnetron sputtering techniques.
The interlayers were not employed in this film fabrication
process. Before the sputtering process, the substrate sur-
face was cleaned and activated by nitrogen ion bom-
bardment to ensure that the high-energy surface was
ready for the growth of the AIScN thin films. A 99.99%
purity aluminum-scandium (AlSc) alloy target with a
mass ratio of Al:Sc (0.6:0.4) and oxygen impurities below
500 ppmw was used for reactive magnetron sputtering.
During the deposition, a gas mixture of nitrogen
(99.999%) and argon (99.999%) was introduced at a flow
rate of 30/20 sccm, with a gas pressure of 0.15Pa. The
substrate temperature was controlled at 450 °C, and the
substrate was rotated at a speed of 20 revolutions per
minute to ensure uniform film deposition. A pulsed direct
current power of 10kW was used, along with a radio
frequency bias power of 160 W, with a power supply
frequency ranging from 100-250kHz to enhance the
film’s crystallinity and adhesion to the substrate.

Characterization of the crystal orientations of the AIScN
films was performed using an X-ray diffractometer
(PANalytical Empyrean) equipped with a Cu-Ka radiation
source and a scanning angle range of 26 =5° -90°. The
surface morphology and roughness of the films were
characterized using an atomic force microscope (AFM,
Dimension Icon, Bruker). The cross-sectional morpholo-
gies of the prepared films were determined using scanning
electron microscopy (SEM, ZEISS Sigma300). The ele-
mental composition and mapping analysis of the AIScN
thin films were characterized using an energy dispersive
spectroscopy (EDS) analyzer (Aztec X-MaxN 20, Oxford
Instruments). The elemental composition, chemical state,
and molecular structure of the AIScN films were analyzed
using X-ray photoelectron spectroscopy (XPS, Shimadzu
AXIS Supra + Japan).

Interdigital transducers (IDTs) were fabricated on
AlScN film-coated glass with 10 nm of Cr and 60 nm of
Au using standard photolithography and subsequent lift-
off processes, and the wavelength was set at 20 um. The
flexible SAW devices were designed with 50 pairs of IDTs
with a metallized ratio of 0.5 and an aperture of 200 \. The
center distance between the two IDTs was 200\, the
SAW devices had 100 pairs of reflectors, and the distance
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between the reflectors and IDTs was % A. The scattering
(S) parameters were obtained using a network analyzer
(3656D, Ceyear). A SAW device was attached to 0.5 mm
thick polyethylene terephthalate (PET) using a UV-
curable GGJ-1 adhesive, and its resultant good flexibility
is demonstrated in Fig. 1a.

Sensing setup and experiment

To collect UV response data from flexible SAW devices
under different strains, SAW devices were subjected to
various bending conditions and UV intensities. The SAW
device was first bound onto a flexible printed circuit board
(PCB) and then to a 0.5 mm thick using an adhesive of
UV-curable GGJ-1. A tensile testing machine was used to
bend the PET, and different bending strains were applied.
This procedure (Fig. S1) is explained as follows. We uti-
lized a pulse controller to regulate the speed of the servo
motor. Once the motor was activated, it rotated and drove
two blocks (mounted on a lead screw), thus causing them
to move uniformly. These blocks were connected to the
ends of the PET plate, with the flexible SAW device
affixed to the surface of the PET plate. By altering the
distance between the two blocks, we induced bending in
the flexible SAW devices, which effectively introduced a
continuous variation in stress, known as the dynamic
strain. Additionally, one standard strain gauge (BF1K-3EB
with a full bridge foil strain gauge) was affixed near the
SAW sensor to collect the local strain values and calibrate
the strain changes. For UV sensing tests (with a wave-
length of 365nm), a 2mg/mL ZnO nanowire (NW)
solution (Xianfeng Company, China) was prepared by
adding ZnO-NW powder to deionized water and then
drop-cast onto the surface of the SAW device to form a
UV-enhanced sensing layer. The coated ZnO-NW-
sensitive layer was used because it exhibited a significant
improvement in UV sensing performance (approximately
tenfold enhancement in both sensitivity and response
speed) compared to that of the uncoated devices (Fig. S2).
The changes in the S,; spectra of the devices in different
states were recorded using a network analyzer, and the
LabVIEW program was used to determine the time-
domain signal changes of the SAW sensors.

Results and discussion
AIScN film characterization and flexible SAW devices

The AlScN thin film exhibits a strong (002) crystal
orientation, as evidenced by the presence of a diffraction
peak at a 20 angle of 35.78° in its XRD spectrum(Fig. 2a).
Additionally, there is another peak corresponding to the
AlScN (102) crystal plane at 48.4°, which is possibly
formed due to crystal formation due to the amorphous
properties of the flexible glass substrate during the sput-
tering process. The surface characteristics of the film, as
illustrated in Fig. 2b, exhibit a smooth root-mean-square
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roughness (RMS) of ~1.91 nm across a 10 x 10 um? area.
The SEM image of the AlScN film is presented in Fig. 2c,
illustrating the columnar structures of the AIScN nano-
crystals, which are oriented perpendicularly to the sub-
strate, with an average thickness of 2 pum. The EDS
analysis results, as shown in Fig. 2d, indicate that the Al,
Sc, and N in the AlScN thin films are uniformly dis-
tributed. The weight percentages of N, Al, and Sc are
31.13 wt.%, 31.80 wt.%, and 37.07 wt.%, respectively. The
N1s spectrum shown in Fig. 2f displays two distinct
binding energy components after peak deconvolution
with a curve-fitting program. These peaks are located at
binding energies of 399.04eV and 402.40 eV, signifying
the presence of Al-N and Sc-N bonds, respectively.
Figure 2g shows the reflectance (S;;) and transmittance
(S21) spectra of the AlScN/ultrathin glass flexible SAW
device. A pronounced Rayleigh resonance peak was
identified, corresponding to a resonance frequency of
161.2 MHz, with an S,; signal amplitude up to 25dB.
Compared to the previously reported AIN/ultrathin glass

flexible SAW devices at a similar range of wavelengths®*, a
slight decrease in the resonance frequency was observed
in the AlScN/ultrathin glass flexible SAW device. This
decrease is attributed to the softening of the piezoelectric
film caused by the doping of scandium, leading to a
decrease in the acoustic wave velocity. The measured
electromechanical coupling coefficient of the fabricated
flexible SAW device was 1.22%, approximately three times
greater than that of the AIN/ultrathin glass flexible SAW
device (which was measured as ~ 0.4%)"°.

Analysis of flexible SAW bending and UV sensing

For sensing applications, SAW devices are frequently
required for application on curved surfaces for sensing or
under various strains. Therefore, we first investigated the
influences of different strains caused by the bending of the
SAW device on the resonance frequencies. Figure 3a
illustrates the responses of the flexible SAW device
(A =20 um) to the applied strain, which increased from 0
to 1553.8 pe and then returned to the initial state. The
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Fig. 3 Characterization of bending deformation and UV sensing in an AIScN/glass flexible SAW device. bending deformation and UV sensing
characteristics of the AlScN/glass-based flexible SAW device: (a) response curves of the flexible SAW device during a strain loading—unloading cycle;
(b) experimental and theoretical calculated frequency shifts under different strain states; (¢, d) the frequency and phase characteristics of the flexible
SAW sensor change with the UV intensity

frequency changes show a highly linear relationship
between the frequency shift and the applied strain (R is
~0.99). Moreover, within a single cycle of frequency-strain
recovery, the maximum value of hysteresis in the flexible
SAW device is <0.5%. These findings highlight the good
performance and stability of the developed flexible SAW
device, making it a promising candidate for strain sensing
applications. Furthermore, it is important to highlight that
the resonant frequency of such AlScN/ultrathin glass
flexible SAW devices increases with increasing bending
strain, which is quite different from the responses
observed in previous studies using flexible SAW devices
based on polymers (such as polyethylene terephthalate
and polyethylene naphthalate) or aluminum foil
substrates'”*%%,

To unravel the underlying mechanisms, such as the
bending responses of AIScN/glass flexible SAW devices,
we performed theoretical calculations to discern the
relationship between frequency and strain in the AIScN/
glass flexible device (1 of 20 um). The shifts in resonant
frequencies observed in the SAW devices under various
bending strains are predominantly driven by alterations in
wave velocity, induced by fluctuations in the initial stress,
elastic constants, and medium density. Additionally,
changes in the device wavelength, mainly caused by the
deformation of the IDTs, play a significant role. We
considered the collective influences of the above factors
and computed the frequency-strain responses of the SAW

devices. The theoretical values calculated from the fit
closely match the experimental results (Fig. 3b). Further
information on the analysis details and methods can be
found in our previous study**?’.

Figure 3b illustrates the calculated frequency shifts
resulting from the changes in initial stress, density, elastic
constant, device wavelength, and the combined effects of
all these factors as a function of bending strain. IDT
deformation induces a negative frequency shift, whereas
the combined effect of IDT deformation and SAW velo-
city changes causes a positive frequency shift, clearly
indicating that the frequency shift is primarily driven by
variations in SAW velocity. Moreover, initial stress and
density variations are associated with positive frequency
shifts, whereas changes in elastic constants can induce
negative frequency shifts. Evidently, modifications in
acoustic velocities are contingent upon the combined
effects of these three variables, namely, the initial stress,
density, and elastic constants. These interactions poten-
tially cause either positive or negative shifts in fre-
quencies. For AlScN/glass flexible SAW devices, the
initial stress is the dominant factor governing the
frequency-strain shift.

When designing a flexible sensing platform that is
resilient to strain interference, a target sensitive parameter
must be chosen. In this study, we selected UV intensity as
an example and explored the responses of flexible SAW
sensors in relation to UV intensity. Figure 3¢, d and Figure
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S3 illustrate the changes in the resonance frequency,
phase angle, and insertion loss of the SAW device
(A =20 um) under various UV intensities. The trends
clearly demonstrate that as the ultraviolet (UV) intensity
increases, the resonance frequency shift and phase angle
deviation of the resonant mode increase. The UV
responses of SAW devices are primarily attributed to the
acoustoelectric effect. When exposed to UV irradiation,
numerous electron-hole pairs, or free carriers, are gen-
erated. These carriers then interact with the acoustic wave
field, resulting in alterations in the transmission char-
acteristics. These changes encompass shifts in the
acoustic wave velocity, variations in the wave amplitude
attenuation, and phase angle adjustments®*°, The fabri-
cated flexible SAW devices exhibit excellent UV sensing
characteristics, with a calculated UV sensitivity of 1.71
KHz/(mW/cm?), a coefficient of determination of 0.997
and hysteresis under 5%.

UV sensing of flexible SAWs under strain-bending states
UV sensing tests were performed to collect response
data of the flexible SAW devices under various applied
strains. Our testing procedure involved applying random
bending conditions to flexible SAW sensors to mimic
the unpredictable application conditions encountered in
real-world scenarios. Figure 4b—d show the changes in

the resonance frequency, phase angle and insertion loss
of the flexible SAW device under different strain states
(0-1,162 pe), demonstrating that both the UV and
bending strain affect the characteristics of the SAW
devices and interfere with each other. By applying
wavelet denoising to the collected data®', we extracted a
set of features, as shown in Fig. 4b—d and Fig. S4, which
are composed of the center frequency (Fc), insertion loss
(IL), bandwidth (BW), minimum cutoff frequency
(Fmin), minimum amplitude (Amin), phase (P), and
quality factor (Q). These features, along with their
respective labels, constituted the sample dataset for the
machine learning program. Subsequently, a random
sampling approach was employed, with 70% of the
dataset allocated for model training and the remaining
30% utilized for testing purposes. All machine learning
regression, statistical analysis, and data mining opera-
tions were conducted using open-source Python librar-
ies (i.e., scikit-learn). Prior to training the machine
learning models, the input (i.e., seven features extracted
from scattering parameters) and output parameters (i.e.,
ultraviolet intensity) were well defined. The training and
validation datasets were composed of 494 distinct input-
output feature pairs, with a total of 20,190 data points.
More details of the regression algorithms used are pro-
vided in the supplementary materials.
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To predict the UV intensity under dynamic strains, 8
models were established based on two classes of machine
learning algorithms, including linear regression classes
(e.g., MLR, PR, Ridge, Robust, and ENR) and tree model-
based regression algorithms (e.g, DTR, RFR, and
XGBoost), using 7 features, along with their two corre-
sponding state labels (i.e., the strain and UV intensity).

Three evaluation criteria were established to compare
the predictive abilities of various models. The first is the
normalized root mean square error (NRMSE), which is
normally applied to monitor deviations between model-
predicted values and experimentally obtained values. A
smaller NRMSE indicates a better prediction perfor-
mance, which is defined as:

2
it < VA0 s — o) 1)
Xobs,max - Xobs,min

where X,..; and X, are the predicted value and true
value (i.e., obtained outputs) of the ith sample, respec-
tively, and # is the total number of datasets. The second is
the determination coefficient (R%), which is related to the
accuracy of the predicted values relative to the observed
values.

R2 —-1— Z?:l (Xpre,i - Xobs,i>2 (2)
Z:l:1 (Xobs,i - )_(obs)Z

where X, is the mean value of the observed outputs.
When R® is near 1, the model has the best prediction
capability. The model running time is another evaluation
indicator, and the smaller its value is, the greater the
efficiency of model operation.

Figure 5a-h illustrate the prediction results for the
ultraviolet (UV) intensities under dynamic bending strains,
which were obtained by employing the model trained using
different machine learning algorithms (including MLR, PR,
Ridge, Robust, ENR, DTR, RFR, and XGBoost). For the test
data shown in the graph, the x-axis represents the actual
calibrated UV intensity values, and the y-axis represents the
model’s output values. The closer the test result points are
to the diagonal line (y =x), the better the predictive per-
formance of the model. Figure 5a—h shows that tree-based
models, especially ensemble models such as random forest
or extreme gradient boosting, significantly outperform
linear regression models.

To quantitatively compare the overall predictive per-
formance of the different models, we calculated the three
evaluation metrics mentioned above, and all the results
are displayed in Fig. 5i. Although the ensemble models
require longer runtime than the linear regression models,
the longest runtime required for training and testing all
the samples is <0.5 s. The time consumed by these models
is negligible for practical sensing applications. Therefore,
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the runtimes of the models built using the eight machine
learning algorithms meet the requirements of practical
applications.

In terms of the normalized root mean square error
(NRMSE) and determination coefficient (R?), the three
models, particularly the XGBoost ensemble model, demon-
strate higher prediction accuracy, with the smallest error
(NRMSE = 0.019) and the highest R” value of 0.996, com-
pared to those of the linear models, as illustrated in Fig. 5i.

While achieving accurate predictions is important for
sensor applications, it is equally crucial to understand the
rationale behind a model’s predictions. However, attaining
the highest accuracy often requires the use of complex
models (such as the XGBoost ensemble model, which has
demonstrated superior performance in predicting UV
intensity). To address this issue, we employed the Shapley
additive explanation (SHAP) values proposed by Lund-
berg and Lee, which is a widely applicable method for
explaining predictions®”. The primary advantage of SHAP
values, compared to previous feature importance methods
used in the literature®, is their ability to reflect the
influence of each feature within every sample and indicate
which direction it will influence. In Fig. 5j, the x-axis
represents the SHAP value, and each row represents a
feature, where each point represents a sample with the
sample’s color ranging from red (indicating a larger fea-
ture value) to blue (indicating a smaller feature value). We
can visually observe that the center frequency (Fc) and
insertion loss (IL) are two important features. The center
frequency is negatively correlated with ultraviolet inten-
sity, whereas the magnitude (or the amplitude) shows the
opposite relationship. The interactions among multiple
variables are depicted in Fig. 5k, and Figure S5 illustrates
the impact of the interaction between the two most
important features (i.e., center frequency Fc and insertion
loss IL) on the prediction of ultraviolet intensity under
dynamic strain. The results demonstrate an approxi-
mately linear and negative correlation between the center
frequency Fc and the target variable. In contrast, the
relationship between the insertion loss (IL) and the target
variable exhibits pronounced nonlinearity. Furthermore,
since the modes of strain impacting these two features
differ from those influenced by ultraviolet radiation, the
interaction between these features in the model enhances
the accuracy of predicting ultraviolet intensity under
dynamic strain conditions. Overall, these results clearly
indicate that the existing single feature-based identifica-
tion strategy is insufficient for accurately predicting
ultraviolet intensities under dynamic strains.

Proof-of-concept for sensing applications

To validate the generalizability of the developed model,
we carried out a UV intensity test under dynamic
straining conditions using the fabricated flexible SAW
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device. We compared the prediction results of frequency
changes under various UV intensities using the traditional
linear regression approach (based solely on resonance
frequency identification), and eight models were trained
with different types of machine learning algorithms.
Moreover, the results were compared with the actual test
results, and the results are shown in Fig. 6a. There are
significant deviations in the prediction of the target
parameter (i.e., UV intensity) using the traditional linear
regression approach, which relies on fitting a linear
function based on the relationship between frequency and
UV intensity. This discrepancy is attributed to the inter-
ference caused by the dynamic strain, as illustrated in Fig.
6b. In contrast, the training models based on different
machine learning algorithms demonstrated dramatically

improved predictive performance. Among them, the tree-
based ensemble model, specifically the XGBoost model,
demonstrates the best predictive performance, which is
consistent with the evaluation results presented in the
previous section. This finding further proves the effec-
tiveness of the XGBoost model in accurately predicting
the target parameter under dynamic strain disturbance in
flexible SAW devices.

Additionally, reverse analysis can be achieved, and our
model is also capable of predicting strains under UV inter-
ference. To demonstrate this capability, we conducted strain
predictions using the same test dataset. The predictions are
presented in Fig. S6, where they are compared with the
actual test values. Similar to the UV intensity predictions,
models trained with machine learning algorithms showed
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significant improvement in strain prediction performance.
In particular, the proposed XGBoost algorithm model
achieved a normalized root-mean-square error of ~1.54%
between the predicted and actual strain values, further
validating its robustness and reliability.

Furthermore, we demonstrated the potential aerospace
applications of this flexible SAW device with integrated
machine learning algorithms for UV sensing. We attached
the flexible SAW on the curved surface of a spacecraft
model, as shown in Fig. 7a. The flexible SAW sensors
were attached at four different and random positions on
the surface of the scaled spacecraft model with different
bending curvatures, including flat position 1 (i.e., onto the
solar wing) and three curved surfaces with different cur-
vatures (with curvature radii of 14.5, 11.5, and 5.8 cm,
respectively), as shown in Fig. 7a.

Figure 7b—d show the changes in the output signals
(including frequency, amplitude, and phase) of flexible SAW
sensors under different UV intensities in four different states
on the surface of the spacecraft model. The results reveal
that different deformation states lead to entirely different
UV-frequency, UV-amplitude, and UV-phase responses for
the same flexible SAW device. The linear fitting functions
based on these three features (i.e., using prediction models
1-3) and the XGBoost machine learning model were used to
predict the UV intensity of flexible SAWs under different

states. The obtained results are shown in Fig. 7e, f. These
output results indicate that the conventional single feature-
based prediction method produced significant deviations on
curved and flat surfaces. In contrast, the XGBoost machine
learning model produced results that showed much better
consistency in the UV prediction of flexible SAW devices
under four different bending states.

To quantify the relative errors using these four models
in predicting the UV values of flexible SAWs on flat
surfaces or under different bending states, the calibrated
values at the maximum UV intensity were compared, and
the output values of the four models correspond to dif-
ferent curvature states of the flexible SAW device. The
results, summarized in Table 1, indicate that the tradi-
tional models based on single features have maximum
relative errors exceeding 100%, whereas the model
incorporating the XGBoost algorithm had a maximum
relative error of 3.1% compared to the calibration value.
These experimental results and model output results
show good agreement, suggesting the substantial potential
of integrated machine learning algorithms for accurately
monitoring surface UV intensity using flexible SAW
sensors in applications involving curved mechanical
equipment or aerospace scenarios.

We compared the performance of our developed SAW
UV sensors with those from the literature, as listed in
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of UV testing using flexible SAW devices, which are arranged on a scaled-

Table S1. The UV sensing performance of our flexible
SAW device is comparable to the sensing capabilities of
most existing SAW UV sensors. However, our flexible
SAW devices have a significant advantage over many of
the previously developed rigid SAW UV sensors due to
their adaptability to curved surfaces. Moreover, our flex-
ible UV sensor can address critical issues such as
unreliability and inconsistency of sensing outputs under
random bending conditions.

Conclusions

In conclusion, this study fabricated AIScN thin films
with a c-axis preferred orientation on ultrathin flexible
glass substrates and fabricated flexible SAW devices. The

strain and ultraviolet sensing characteristics of flexible
SAW devices were investigated, and the influences of
bending or deformation on the frequency shift during UV
sensing were theoretically analyzed. Additionally, we
proposed a new strategy for predicting target parameters
such as UV intensity by establishing a regression model
between response signal features and parameters using
machine learning algorithms. This strategy effectively
minimizes the influence of dynamic bending strain on the
sensing performance of flexible SAW devices, enabling
accurate prediction of ultraviolet intensity under dynamic
strain. Our results showed that the model based on the
XGBoost algorithm presented the best UV (target) pre-
dictive performance under a strain interference of
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Table 1 Comparison of UV output values based on
different models

Models UV Model 1 Model 2 Model 3 Integrated

(mW/cm?) (Frequency (Amplitude (Phase  XGBoost
fitting) fitting) fitting)  Model

Calibration  13.00 13.00 13.00 13.00

Value

State 1 (flat) 1268 1323 1044 13.05

State 2 10.05 22.77 2.36 13.07

State 3 7.5 23.14 -1.24 1341

State 4 -0.5 27.60 -6.35 13.07

Maximum 103.8% 112.3% 148% 3.1%

relative error

0-1160 pe, with a coefficient of determination of 0.996
and a normalized root mean square error of 0.019. To
demonstrate the potential influence of our technology,
flexible SAW sensors were adhered at four different and
random positions on the curved surface of the spacecraft
model, including a flat state and three curved surfaces
with curvature radii of 14.5, 11.5, and 5.8 cm. The flexible
SAW sensors showed highly reliable and consistent UV
sensing performance under randomly curved conditions,
with a maximum relative error of only 3.1% compared
with those obtained on a flat surface. This study provides
an effective solution for achieving reliable, consistent, and
high-precision sensing by flexible SAW sensors, avoiding
strain or deformation interference.
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