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Coupling the thermal acoustic modes of a bubble
to an optomechanical sensor
K. G. Scheuer 1, F. B. Romero2 and R. G. DeCorby2✉

Abstract
Optomechanical sensors provide a platform for probing acoustic/vibrational properties at the micro-scale. Here, we
used cavity optomechanical sensors to interrogate the acoustic environment of adjacent air bubbles in water. We
report experimental observations of the volume acoustic modes of these bubbles, including both the fundamental
Minnaert breathing mode and a family of higher-order modes extending into the megahertz frequency range. Bubbles
were placed on or near optomechanical sensors having a noise floor substantially determined by ambient medium
fluctuations, and which are thus able to detect thermal motions of proximate objects. Bubble motions could be
coupled to the sensor through both air (i.e., with the sensor inside the bubble) and water, verifying that sound is
radiated by the high-order modes. We also present evidence for elastic-Purcell-effect modifications of the sensor’s
vibrational spectrum when encapsulated by a bubble, in the form of cavity-modified linewidths and line shifts. Our
results could increase the understanding of bubble acoustics relevant to a variety of fields such as lab-on-a-chip
microfluidics and biosensing, and could also inform future efforts to optimize the properties of micro-mechanical
oscillators.

Introduction
Any ‘coherent’ source of energy, such as an electric

dipole or mechanical harmonic oscillator, is in a two-way
communication with its environment. For example,
according to the Fluctuation-Dissipation (FD) theorem1,
any damping or ‘dissipation’ mechanism in a system at
thermal equilibrium must be accompanied (i.e., in a sta-
tistical sense) by an equal and opposite forcing or ‘fluc-
tuation’ mechanism. Mechanical oscillators2,3, of
particular interest here, are typically coupled to several
thermal baths4, and each of these baths must then also be
viewed as a source of random thermal agitation reducing
the coherence (i.e., the quality factor, Q) of the oscillator.
If the environment is not homogeneous, its structure is

imprinted on the fluctuating noise forces driving the
oscillator. For example, the random pressure fluctuations
in a gas are modified next to a hard boundary1. Related to
this, it has been shown5 that detailed information about
an inhomogeneous environment can be extracted from

correlations of the noise signals generated by one or more
acoustic sensors. While this principle has primarily been
applied to studies of the earth’s crust using networks of
low-frequency seismic detectors6, it has also been verified
at high ultrasonic frequencies using piezo-electric5 or
capacitive7 sensors.
The FD theorem requires a thermodynamic (statistical)

balance between the energy flowing to and from an
oscillator; however, the coupling between an oscillator
and its environment goes beyond that. Specifically, as first
shown by Purcell8, a structured environment modifies the
behavior of a source by altering the spatial/spectral
properties of the available radiation modes. As widely
studied in the electromagnetics domain9,10, both
enhancement and suppression of spontaneous emission
rates and changes to the peak emission frequency11 are
possible by placing a source (e.g., an oscillating electric
dipole) in a suitably engineered environment. Only
recently, acoustic/elastic analogues of these effects have
been demonstrated12,13.
Here, we study the interactions between an opto-

mechanical oscillator and an adjacent air bubble in water.
Strong signatures of their interaction, driven only by
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room-temperature thermal energy, are passively recorded
in the noise floor of the sensor. This reveals a family of
bubble acoustic modes extending into the MHz range,
anticipated theoretically but not previously observed.
Moreover, we provide strong evidence for Purcell-effect
modification of the sensor’s own vibrational spectrum due
to altered acoustic density of states (DOS) within the
bubble environment. To our knowledge, this is the first
experimental demonstration of elastic Purcell effects at
ultrasonic frequencies.

Experimental setup and sensor overview
Our sensors are buckled-dome, Fabry–Perot optomecha-

nical cavities, described in detail elsewhere14,15 and shown
schematically in Fig. 1. The devices used here have a base
diameter of 100 μm, a cavity length ~2.4 μm, and support a
family of high-quality (Q~ 104) Laguerre–Gaussian optical
modes in the 1550 nm range. The buckled upper mirror
functions as the mechanical oscillator, with its two lowest-
order, radially symmetric vibrational modes in air centered at

~2.5MHz and ~6MHz, respectively (see Fig. 4 below).
Numerically predicted (COMSOL) mode-field profiles for
these are shown in panel (iv) of Fig. 1 and are analogous to
those of a Chinese gong12, only at ~5 orders of magnitude
higher frequency. Additional details on the optical and
mechanical properties of the sensors are provided in the
supplementary information (SI) file.
Operation in a thermomechanical-noise-limited

regime16 is achieved for laser interrogation powers as
low as ~10–100 μW. Moreover, ambient medium fluc-
tuations make a significant contribution to the noise floor
of these and other optomechanical ultrasound sensors17,
such that they are ideally suited to passive, noise-based5

sensing of their environments. For the measurements
described below, the reflected laser light was delivered to a
high-speed photodetector and power spectral density
(PSD) plots were generated from sampled noise signals.
The laser power is sufficiently low (<50 μW) such that it
simply acts as a passive probe of the vibrational motion of
the mirror while back-action effects are negligible15.
Further details are provided in the supplementary infor-
mation file.

Bubble acoustics
Bubbles host rich physics with important technological

implications18, especially regarding their interactions with
acoustic waves19. Natural oscillations of entrained gas
bubbles produce audible signals, such as the familiar
sound of running water19,20. When they are actively dri-
ven by an external pressure wave, the cyclic collapse of
bubbles can result in extremely energetic processes such
as the cavitation-induced damage of solid objects19. Other
phenomena associated with bubble cavitation include the
emission of light, (sonoluminescence21) and the catalysis
of reactions (sonochemistry22). Moreover, there is a
growing interest in bubble-mediated nonlinear interac-
tions between phonons and photons23.
Many acoustic properties of bubbles can be explained

in terms of the well-known Minnaert ‘breathing
mode’18,20,24. For a spherical air bubble in water at
atmospheric pressure, the resonant frequency (fM) of
this mode can be approximated from fM·R ~ 3.3 m s−1

(see ref. 25), where R is the radius of the bubble. It fol-
lows that the associated acoustic wavelength (in both air
and water) is much larger than the bubble dimensions
(i.e., λM >> R)20. In fact, the Minnaert breathing mode
can be obtained by linearizing the so-called Rayleigh-
Plesset (RP) equation20,25, which (a priori) assumes that
the pressure inside the bubble (i.e., in the air) is a spa-
tially uniform function of time only.
Minnaert24 used an energy balance argument to explain

the origin of the audible-range sound produced by
millimeter-scale bubbles. This phenomenon was not
predicted by the earlier ‘rigid acoustic sphere’ model
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Fig. 1 Experimental schematic and alternate viewpoints. A
schematic sketch of a tethered bubble aligned overtop of a
Fabry–Perot sensor. The mechanical element in our sensor is a curved,
buckled mirror, and its displacement is read out using a laser. In a
simplistic view (i), acoustic energy confined in the bubble is detected
as an external force on the sensor. A more holistic view (ii) treats the
bubble and sensor as coupled oscillators. An alternative point of view
(iii) treats the sensor as an oscillating ‘dipole’ source and the bubble as
a cavity which modifies the acoustic density of states in the vicinity of
the sensor. Panel (iv) shows overhead and side views of the two
lowest-order, radially symmetric modes of the sensor’s buckled mirror
as predicted by a finite-element simulation (COMSOL)
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attributed to Paget (see ref. 20 for a historical account) or
by Lamb’s capillary theory26, which describes surface-
tension-mediated ‘shape modes’19. In spite of the fact that
gas compression (rather than surface tension) provides its
restoring force, the Minnaert breathing mode has often
been characterized as the zero-order solution within the
set of capillary modes27–29.
Notwithstanding the shortcomings of Paget’s ‘rigid

sphere’ model, there is no doubt that a bubble can be
viewed as an elastic body bounded by a viscous, com-
pressible fluid, or approximately as a spherical resonant
cavity30–32. Accordingly, a bubble also supports a set of
volume acoustic modes, for which the pressure (and
related parameters) inside the bubble are functions of
both time and position. Taking this point of view, Devaud
et al.20 solved for a family of radial acoustic modes,
drawing an analogy to the Fabry–Perot modes of a
spherical-mirror optical cavity. By properly accounting for
the compressibility and inertia of both the liquid and gas
media, they demonstrated that the Minnaert resonance is
in fact the lowest-order mode within this set. Its low
resonant frequency (i.e., a wavelength much larger than
the bubble dimensions) was attributed to the dispersion
imparted by the curved bubble interface. Thus, Devaud’s
analysis shows that the Minnaert breathing mode is more
naturally aligned with Paget’s original theory than it is
with Lamb’s theory.
While the higher-order acoustic modes have been

considered in theoretical treatments of collapsing bubbles
and cavitation33–35, to date there is a scarcity of experi-
mental evidence for their existence as ‘natural reso-
nances’. It is worth noting that the volume acoustic modes
of liquid droplets have similarly only recently been
observed36–38.
To provide context for the results below, we consider

first the archetypal case of a spherical air bubble in a water
medium. As mentioned, Devaud et al.20 provided a quasi-
analytical derivation of the radially symmetric volume
modes for this system. Inside the air bubble, these modes
can be expressed as p(r) = (A/r)·sin(qa·r), where p is
pressure, r is the radial coordinate, A is a constant
amplitude, qa= (ω/c) is the wave number, and c is the
sound velocity in air. They furthermore showed that the
resonant frequencies for a bubble of radius R are given by:

xa ¼ qaR � 0:0623; 4:49; 7:73; ¼ � 2nþ 1ð Þπ
2

:

ð1Þ

The lowest-order resonance is the well-known Min-
naert breathing mode, characterized by a nearly homo-
geneous internal pressure. The others are higher-order,
radially symmetric, volume acoustic modes. Notably, the
first higher-order (radially symmetric) resonance is

predicted to lie at ~72× higher frequency than the fun-
damental Minnaert resonance. As an example, for a
typical millimeter-scale air bubble in water with Minnaert
frequency fM ~ 10 kHz, this places the next radial reso-
nance at ~720 kHz.
A simpler model would treat the bubble as a spherical

acoustic resonator with hard boundaries31,32, an approx-
imation which can be justified by the large acoustic
impedance mismatch between the air and the water. In
this simple system, the air cavity hosts eigen-modes with
pressure distribution given by:

pnlm r; θ;φð Þ � jl
ωnl � r

c

� �n o
� Lml ð cos θ
� � � sin

cos
mφð Þ

� �
;

ð2Þ
where φ and θ are the azimuthal and polar angles,
respectively, Lml is a Legendre function of the first kind
(degree l, order m)30, and jl is a spherical Bessel function.
The resonance frequencies are given by ωnl = znl·c/R,
where znl is the nth zero of the derivative of jl, and the
modes are degenerate for integer values of m � lj j:
Solutions include a subset of purely radial modes:

pn rð Þ � j0
ωn0 � r

c

� �
¼ sin

ωn0 � r
c

� �. ωn0 � r
c

� �
; ð3Þ

where ωn0= {0, 4.49, 7.73, 10.90, 14.07… }·c/R are the
radial-mode eigen-frequencies in good agreement with
Eq. (1). However, the two lowest-order (non-static) modes
are non-radial, including the lowest-order mode:

p111 r; θ;φð Þ � cosφ � sin θ � j1
ω11 � r

c

� �
; ð4Þ

with ω11= 2.08·c/R.

To further assess the validity of the hard-boundary
approximation, we modeled the air bubble-in-water sys-
tem using the ‘Pressure Acoustics’ module in COMSOL
Multiphysics. For simplicity, the air and water were
assigned fixed sound velocities (340 and 1500 m/s,
respectively) and absorption was neglected. Further
details of the simulation, including boundary conditions,
are provided in the supplementary information file.
The predictions of the analytical and numerical models

are compared in Fig. 2. For the higher-order modes, there
is nearly perfect agreement between all three models,
including in the ordering and pressure profiles of the
modes. Slight discrepancies in the eigen-frequencies
predicted by the COMSOL model can be attributed in
part to numerical error arising from a finite mesh size and
simulation volume. Notably, the Minnaert resonance,
which cannot be captured by the hard boundary model, is
well-predicted by the other two models, supporting the
contention20 that it naturally fits within this larger set of
volume acoustic modes.
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Results
Bubble acoustic modes
We now turn our attention towards the experimental

verification of the bubble acoustic modes. This was achieved
by placing a tethered bubble over an optomechanical sensor,
effectively positioning a sensor inside a bubble, as illustrated
in Fig. 1. Sensor chips (~1 cm× 1 cm) were first entirely
covered with a “puddle” of DI water and then air bubbles
were injected using a syringe and needle29. Note that var-
iations in water volume can impact the observed resonance
frequencies20, but was not studied here. A technique was
developed for accurately positioning a bubble over an indi-
vidual sensor, by first tethering it to the substrate plane and
then dragging it with the dispensing needle. A video
demonstrating this process is included as supplementary
information. All experiments were performed at room
temperature and in ambient laboratory conditions.
Results for a relatively small bubble (R ~ 152 µm and

H ~ 266 μm) are shown in Fig. 3. The interrogation laser
was coupled to a particular sensor, and sensor noise
spectra were recorded at fixed laser power. The black
curve in Fig. 3 is the background spectrum measured in
“bulk” air (i.e., not covered in liquid), and it is dominated
by a typical15 series of resonant peaks (e.g., at ~2.5 and
6MHz) associated with the inherent vibrational modes of
the buckled mirror. The red curve is the spectrum mea-
sured with a small, tethered air bubble positioned over the
sensor as shown in the inset.
Clearly, the noise spectrum is modified relative to the

bulk case, most apparently by the appearance of several
new resonant peaks. These peaks are well correlated with
the four lowest-order acoustic-mode eigen-frequencies of
the tethered bubble as predicted by a COMSOL

numerical model and indicated by the dashed vertical
lines. The correspondingly predicted spatial pressure
distributions are also shown, evincing strong analogies
with the higher-order modes solved for the spherical
bubble case above. For the COMSOL model, the bubble
dimensions were estimated from top- and side-view
microscope images. Also, the chip surface (including the
flexible buckled mirror) was set as a hard acoustic
boundary. This is somewhat simplistic, and treats the
bubble’s acoustic/vibrational modes as completely inde-
pendent from those of the sensor (i.e., as depicted in panel
(i) of Fig. 1). A more rigorous approach would consider
the bubble and sensor as a pair of coupled harmonic
oscillators37 as depicted in panel (ii) of Fig. 1.
It is worth noting that the off-resonance displacement

sensitivity of our devices is ~10−17–10−16 m/Hz1/2 for
operation in air15. Furthermore, a straightforward appli-
cation of the equipartition theorem (see the SI file for
further details) predicts that the air displacement asso-
ciated with the bubble acoustic modes at room tem-
perature exceeds this limit by at least an order of
magnitude. In other words, the fact that these thermally
driven modes appear as strong features is consistent with
expectations.
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Fig. 2 Acoustic modes for a spherical (non-tethered) bubble. The
predicted eigen-frequencies for the acoustic modes of a 100-µm-
radius bubble are indicated by the vertical lines. Results from a
numerical solver (COMSOL), an analytical bubble model for radial
modes only20, and an analytical model for a spherical resonator with
hard walls31 are indicated by the legend. The numerically predicted
pressure distributions for the ten lowest-order modes are also shown,
with the gas/liquid boundary indicated by the inner concentric circle.
The mode labeled as ‘(i)’ is the Minnaert breathing mode, and the
others are higher-order acoustic modes
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Fig. 3 Experimental results for a small, tethered bubble. Power
spectral density noise plots for the same sensor in air (black curve,
gently smoothed) and encapsulated by a bubble (red curve, with no
smoothing). The vertical dashed lines indicate numerically predicted
eigen-frequencies for the four lowest-order volume acoustic modes of
the bubble. Corresponding acoustic pressure distributions (i–iv) are
also shown. The innermost concentric circles are the air-water
boundaries of the bubble, projected onto two orthogonal planes
including the substrate boundary. The inset shows a top-down-view
microscope image of the bubble tethered over the sensor of interest,
and with several adjacent sensors visible (scale bar—100 µm)
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Slight discrepancies between the experimental and the-
oretical eigen-frequencies can be attributed to uncertainties
in estimating bubble dimensions from the microscope
images, and to the neglect of hybridization between sensor
and bubble vibrational modes in the numerical model. The
first higher-order mode (i.e., mode (ii) in Fig. 3 and Fig. 4e,
below) tended to exhibit a larger discrepancy. We speculate
that this might be due to its mode-field profile, which is
weighted towards the bubble peripheries so that its pre-
dicted eigen-frequency is more sensitive to dimensional
uncertainties. Nevertheless, the global alignment is very
good, and this was consistently observed across multiple
bubble-sensor combinations (see Figs. 4 and 5 below and
the SI file for additional examples), allowing us to con-
fidently assert that these measurements are in fact revealing
the high-frequency volume modes of the bubbles. Notably,
the Minnaert resonance was also imprinted on the noise
spectrum of the sensor in all cases, and the resonant fre-
quency was consistently in excellent agreement with the
COMSOL model and with analytical predictions39 for a
tethered bubble (see the SI file for additional discussion).
Analogous results for a larger tethered bubble are

shown in Fig. 4, revealing, as expected, a denser spectrum

of higher-order acoustic modes. From microscope images
(Fig. 4a, b), we estimated R ~ 313 μm and H ~ 526 μm.
The fundamental breathing (i.e.,Minnaert) resonance lies
at ~10 kHz in this case, in good agreement with analy-
tical39 and numerical predictions, as shown in Fig. 4c. In
addition to the raw noise spectrum shown in Fig. 4d, the
normalized spectrum (i.e., the PSD with bubble overtop
divided by that for bulk air) is plotted in Fig. 4e to more
clearly delineate the spectral features attributable to the
bubble. As above, the vertical dashed lines indicate the six
lowest-order eigen-frequencies as predicted by the finite
element model and using the bubble dimensions esti-
mated from microscope images. The predicted mode-
field amplitude plots for these bubble modes are shown in
Fig. 4f.
Evidence of acoustic modes extending up to nearly

10MHz is apparent, but assignment of individual modes
becomes difficult due to the high density of modes pre-
dicted above ~1MHz. The quality factor of the lower-
order modes is as high as ~70 (see the SI file for further
discussion), in good agreement with theoretical predic-
tions considering radiation, thermal, and viscous damp-
ing20. We speculate that the lower quality of the modes
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Fig. 4 Analogous results to those presented in Fig. 3 but for a larger bubble. a, b Microscope images showing the top and side views of the
bubble (scale bars—200 µm and 500 µm, respectively). c Low-frequency-range PSD plots measured with the bubble overtop (red, not smoothed)
and for bulk air (black, gently smoothed) revealing the Minnaert resonance at ~10 kHz. Analytical and numerical predictions of the Minnaert
frequency are indicated by the solid and dashed vertical lines, respectively. The error bar represents a ± 10% deviation in the estimated bubble
diameter. d The raw noise spectrum measured with the bubble overtop (red, not smoothed) and for bulk air (black, gently smoothed). e The PSD
with bubble overtop the sensor normalized to that in bulk air. The next 5 numerically predicted eigen-frequencies are also plotted as vertical dashed
lines. The grey bands represent regions dominated by mechanical modes inherent to the sensor. f The predicted acoustic pressure distributions
(COMSOL) for the lowest-order modes having the eigen-frequencies shown in (c, e)
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above 1MHz might in part be attributable to the dramatic
rise of ultrasound attenuation in air40.
Our data provides support to the viewpoint that the

Minnaert resonance belongs to a larger set of acoustic
modes mediated by compression20. Conversely, we saw no
evidence of the low-frequency capillary modes26–29 in our
experiments. This is consistent with the fact that those
surface-tension-mediated ‘shape’ modes are not efficiently
coupled to acoustic radiation fields19,29.
We also studied cases where two tethered bubbles were

located in the vicinity of a sensor of interest, as shown for
example in Fig. 5. Note that the larger bubble in this case
is centered overtop the sensor, as for the bubbles above,
while the smaller bubble is tethered to the chip surface at
an adjacent location. We observed clear signatures of
acoustic coupling between the bubbles, which are mani-
fested in the noise floor of the sensor. For example, a pair
of resonances in the kHz frequency range are visible in
this case, which we attribute to the hybridized Minnaert
breathing modes of the two bubbles. Note that the
simulated Minnaert frequency for the larger tethered
bubble, shown by the dashed vertical line, lies between the
two observed resonances, as would be expected due to
mode hybridization.
Some evidence for coupling and hybridization of the

higher-order acoustic modes can also be seen in the
region above 1MHz of Fig. 5. However, across multiple
trials, this was less consistently observed than was the
‘splitting’ of the Minnaert resonance. Nevertheless, it does
suggest that energy associated with the higher-order

bubble modes is radiated into the surrounding water
medium20. Further evidence for this was obtained from
experiments in which the sensor of interest was not
encapsulated by a bubble, while air bubbles were either
tethered to the chip surface nearby or suspended from the
needle in proximity to the sensor (see the SI file for these
results). In both cases, signatures of MHz-range bubble
acoustic modes were observed in the sensor noise spec-
trum. However, they were typically much lower in
amplitude than for the bubble-encapsulated-sensor, since
only a fraction of the energy circulating inside the bubble
is radiated into the water20.

Elastic Purcell effects
So far, we have treated the optomechanical sensor as a

passive detector of the resonant acoustic energy confined
in an adjacent bubble. This approach is simplistic, but
nevertheless provided clear evidence for the presence of
the anticipated volume acoustic modes of the bubble. In
this section, we explore the alternative point of view
depicted in panel (iii) of Fig. 1, where the sensor is treated
as a dipole (or similar) source and the bubble as an
acoustic cavity. From this perspective, the changes in the
vibrational spectrum of the sensor can be attributed to
changes in the acoustic DOS in its local environment.
Our system can be viewed as an elastic/acoustic analo-

gue of the well-known experiment of Heinzen and Feld, in
which they used a laser to probe atoms inside a confocal
resonator10,11. Specifically, our ‘emitter’ is also coupled to
three-dimensional cavity modes, and is also probed by a
readout laser. Moreover, the coupling of our emitter to
other loss channels, for example, intrinsic flexural and
clamping losses4, is analogous to the atomic radiation out
the ‘sides’ of their resonator. The representative results
shown in Fig. 6 strongly support this analogy, as follows:

i. Especially for small bubbles, as shown in Fig. 6a, d,
we observed suppression of the sensor’s vibrational
motion over the ~0–8MHz range, except at
higher-Q bubble resonances. Consistent with this,
we observed large reductions (up to nearly 2×, see
Fig. 6a) in the linewidth of the fundamental sensor
resonance. This corresponds to an increase in its
coherence (i.e., emitter lifetime), which can be
attributed to a reduction in the acoustic radiation
loss inside the small bubble environment.

ii. We observed bubble-dependent line-shifts in the
sensor’s fundamental vibrational resonance, as
shown in Fig. 6a–c. Moreover, the direction of
this shift depended on whether the nearest cavity
(i.e., bubble) mode was red- or blue-detuned
relative to the sensor resonance. This is
attributable to mode-coupling effects, which
‘push’ the sensor resonance away from the
nearest cavity resonance11.
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Fig. 5 Experimental results for a sensor coupled to two bubbles.
Power spectral density plots for the same sensor in air (black, gently
smoothed) and encapsulated by the larger bubble with the smaller
tethered bubble nearby (red, not smoothed). The vertical dashed lines
indicate numerically predicted eigen-frequencies for the lowest-order
volume acoustic modes of the larger bubble but without accounting
for the neighboring small bubble. The inset shows a top-down-view
microscope image of the bubble pair and surrounding sensors (scale
bar—100 µm)
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iii. In cases where a cavity mode was aligned to the
sensor mode, we observed significant enhancement
(as high as ~2×) of the sensor’s resonant
vibrational energy, as shown for example in Fig. 6b.

iv. The resonance frequencies of higher-order
vibrational modes of the sensor were relatively
unmodified, especially in larger bubbles (see the
upper-left inset in Fig. 6c), which can be attributed
to the lack of isolated high-Q bubble modes in
their vicinity.

We observed similar behavior for multiple bubble/sen-
sor combinations (see the SI file). These observations are
consistent with a redistribution of the vibrational energy
of the sensor, caused by the modified acoustic environ-
ment. The degree of modification is quite remarkable
given that the mechanical oscillator is coupled to other
thermal baths, in particular the underlying substrate. It

also provides further evidence that the noise floor of these
sensors is substantially limited by viscous damping and
external radiation to their external medium14,17.
It would be fair to ask whether the observed modifica-

tion of the thermomechanical noise spectra might be due
to more conventional effects, such as changes in tem-
perature or mass-loading of the sensor. However, a change
in ambient temperature cannot explain the redistribution
of thermal vibrational energy, with enhancement at certain
frequencies and suppression at others. Furthermore, the
bubble environment would always be expected to increase
the mass-loading and viscous damping of the sensor14 (i.e.,
compared to the ‘bulk air’ case, due to the proximity of the
water). This is not consistent with the linewidth narrowing
clearly observed in Fig. 6a, c, or with the blue-shift of the
sensor’s resonant frequency observed in certain cases such
as shown in Fig. 6c.

a b c

d

6

5

4

3

2

1

0
2.3 2.4 2.5 2.6 2.3 2.4 2.5 2.6 2.3 2.4 2.5 2.6

Frequency (MHz) Frequency (MHz) Frequency (MHz)

P
S

D
 (

W
2 /H

z)

P
S

D
 (

W
2 /H

z)

P
S

D
 (

W
2 /H

z)

10–19

10–20

10–21

10–22

0 1 2 3 4 5 6 7 8 9 10

6

5

4

3

2

1

0

6

5

4

3

2

1

0

Frequency (MHz)

P
S

D
 (

W
2 /H

z)

× 10–19 × 10–19 × 10–19

× 10–19

0
5.85 6 6.15

1

Fig. 6 Evidence of elastic Purcell-effect modification of sensor vibrational modes. a–c Power spectral density noise plots in the vicinity of its
fundamental resonance frequency for the same sensor in bulk air (black curves) and encapsulated by three different bubbles (red curves) shown in
the upper-right inset microscope images (scale bars—200 μm). The black vertical arrows indicate approximate locations of the nearby cavity (bubble)
eigen-frequencies in each case. The upper-left inset in (c) shows the noise spectrum near the second resonance line of the sensor, which is relatively
unmodified in this case due to the lack of isolated, nearby cavity modes. d A wider range noise plot for the small bubble from part a., showing
evidence of suppressed vibrational energy extending up to ~8 MHz, except for enhancement in the vicinity of a few low-order bubble acoustic
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It should be noted that modified emission by an acoustic
source in the vicinity of reflecting boundaries is well-known
from a classical perspective41. However, interpretation of
such phenomena in terms of Purcell effects has only recently
appeared in the literature12,13,42,43. A rigorous treatment
requires calculation of the spatial emission pattern of the
source12, and its spatial and spectral overlap with the envir-
onmental modes of interest13,42. This is a complicated
endeavor for our system, and is left for future work. Never-
theless, it is interesting to consider the ‘ideal’ elastic Purcell
factor for an emitter perfectly aligned to a single cavity mode,
FP ~ (3/4π2)·Q/(V/λ3)13,42, where Q is the effective quality
factor (taking into account both cavity and emitter line-
width), V is the effective cavity mode volume, and λ is the
acoustic wavelength. Using Q~ 50 and V~ 2·λ3 (i.e.,
λ~ 140 μm in air at ~ 2.5MHz) yields FP ~ 1.9, in reasonable
agreement with the enhancement observed in Fig. 6b.

Discussion and conclusions
In summary, we described an experimental study of

coupling interactions between optomechanical sensors
and air bubbles in water, for frequencies extending into
the MHz ultrasound range. The results provide unique
insights into the acoustic properties of bubbles, as well as
compelling evidence for the Purcell-effect modification of
a mechanical oscillator. To our knowledge, neither the
observation of high-order bubble acoustic modes nor the
observation of elastic Purcell effects at MHz frequencies
have previously been reported.
Regarding bubble acoustics, our results confirm that the

vibrational properties of a bubble go beyond the Minnaert
breathing mode and capillary ‘shape’ modes19,24–29 and
include a set of higher-order volume modes20 not pre-
viously observed. It is fair to ask whether these latter
modes are mainly of theoretical interest, or rather might
have practical implications. Undoubtedly, the situations
where they are expected to manifest are fewer than those
for the Minnaert resonance, simply because of the
increased attenuation of sound with frequency, particu-
larly in air. Moreover, the Minnaert resonance is unique in
the sense that it involves prominent motion of the rela-
tively massive water medium, which ties it more directly to
the dramatic effects associated with acoustic cavitation.
Nevertheless, the internal state and dynamics of a gas

bubble is an incredibly complex physical problem, especially
in scenarios involving the collapse of oscillating bubbles25. It
seems plausible that a complete description might need to
include consideration of the higher-order acoustic modes.
Notably, energy storage by acoustic modes of a bubble has
been posited as a potential contributor to the extreme
conditions leading to single bubble sonoluminescence33,
although the same authors subsequently discounted this
theory21 due to a lack of experimental corroboration.
Notwithstanding this point of view, the role of acoustic

modes remains a matter of ongoing debate34,44. Moreover,
bubble acoustics is a central theme in several emerging
fields, including phonon-photon interactions mediated by
bubbles23 and the use of bubbles in biosensing and related
applications45–47.
Regarding Purcell effects, our results demonstrate that

mesoscopic optomechanical oscillators are a uniquely
accessible platform for such studies. Notably, a mechan-
ical ‘emitter’ (i.e., mechanical oscillator) can be more
easily and directly probed12 than the atomic emitters used
in typical electromagnetics studies. For example, the
behavior of an atomic emitter is often inferred indirectly
from the spectral/spatial characteristics of the emitted
photons, which makes it challenging to separate changes
in the intrinsic behavior of the emitter, such as modified
linewidth and Lamb shifts11, from the classically predicted
spatial redistribution of the emitted light48.
In our experiments, on the other hand, the laser directly

interrogates the motion of the buckled mirror, so that
changes in the thermomechanical noise spectrum can be
mapped directly to changes in its vibrational behavior.
Accordingly, the results provide clear evidence for Purcell-
effect modifications of a mesoscopic mechanical oscillator
at MHz-range frequencies, including cavity-modified line
shifts and frequency-dependent suppression or enhance-
ment of vibrational motion. We hope that these results
might prompt further research at the intersection between
quantum electrodynamics and optomechanics.
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