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Abstract

Tactile sensors play a critical role in robotic intelligence and human-machine interaction. In this manuscript, we
propose a hybrid tactile sensor by integrating a triboelectric sensing unit and a capacitive sensing unit based on
porous PDMS. The triboelectric sensing unit is sensitive to the surface material and texture of the grasped objects,
while the capacitive sensing unit responds to the object’s hardness. By combining signals from the two sensing units,
tactile object recognition can be achieved among not only different objects but also the same object in different
states. In addition, both the triboelectric layer and the capacitor dielectric layer were fabricated through the same
manufacturing process. Furthermore, deep learning was employed to assist the tactile sensor in accurate object
recognition. As a demonstration, the identification of 12 samples was implemented using this hybrid tactile sensor,
and an recognition accuracy of 98.46% was achieved. Overall, the proposed hybrid tactile sensor has shown great

potential in robotic perception and tactile intelligence.

Introduction

The rocketing development of human-machine inter-
action necessitates a great number of sensors for com-
prehensive information acquisition. There are mainly
auditory, visual, and tactile sensors. As an important
application for human-machine interaction and robotic
intelligence, the development of object recognition tech-
nology can provide more intelligent interaction for intel-
ligent robots and systems"” Tactile sensors can convert
mechanical stimuli into electrical signals that can be used
to detect information in object interactions, such as
temperature3_5, humidity6’7, shapes’g, surface texture'®™"?
and softness'>'*. This characteristic makes tactile sensing
technology play an increasingly important role in the field
of object recognition.

Various tactile sensors can be categorized into piezo-
resistive'> ™", piezoelectricls_m, capacitive21’22, and tri-
boelectric sensors*> > based on their mechanisms. They
can accomplish preliminary tactile perception and object
recognition. Previous studies have investigated the
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utilization of tactile sensors for object recognition. Tactile
sensors usually distinguish between different objects by
some physical properties inherent in the objects®.
Recognizing the shape of an object by using its shape
features is a common method®*' =%, The surface texture
is also used as a feature to obtain information about the
contacted objects by sliding and pressing®**°. In addition,
the hardness of the object is also one of the important
features in object recognition®* %, These features are
interrelated and form an overall characterization of the
object.

However, single-function sensors may struggle in
complex environments with diverse objects, necessitating
the consideration of multiple parameters for accurate
recognition. Therefore, in the process of object recogni-
tion, the comprehensive consideration of multiple aspects
of the characteristics can improve the accuracy of object
recognition. In general, there are two ways to obtain
multidimensional information about the object being
contacted. The first involves constructing a multi-sensor
system, integrating multiple independent sensors to
comprehensively determine object characteristics®”*.
While providing comprehensive information, this
approach entails low integration and high complexity.
Alternatively, designing hybrid tactile sensors capable of
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simultaneously acquiring multiple signals offers a
streamlined solution. Hybrid tactile sensors offer ease of
integration and provide a high degree of multidimensional
information for object recognition. Lee’s group proposed
a biomimetic piezoelectric tactile sensor that can be used
to recognize features on the surface of an object. The
roughness of the object's surface texture is then recog-
nized by machine learning*'. In addition to being an
efficient energy harvesting technology*>*?, triboelec-
trification also shows great potential for haptic sensing
owing to its excellent dynamic response characteristics>.
Ding’s group proposed a hybrid triboelectric and piezo-
resistive sensor and built a real-time sensing system that
was implemented on a robot manipulator. It can complete
the task of texture and materials recognition using a
parallel residual convolutional neural network (PR-
CNN)*. In our previous work®, we developed a
triboelectric-inductive hybrid tactile sensor. This sensor
can achieve object recognition task among several kinds
of fruits with different packages with the assistance of
machine learning.

Admittedly, current efforts in the field enable the
simultaneous acquisition of multidimensional informa-
tion about an object. However, solutions for obtaining
various types of signals with a single sensor are relatively
scarce. To address this, we propose a hybrid tactile sensor

Page 2 of 9

capable of accurately capturing diverse information about
an object by integrating different sensing signals within a
unified framework. It combines a triboelectric sensing
unit with a capacitive sensing unit based on a porous
PDMS preparation procedure. Triboelectric sensing sig-
nals exhibit sensitivity to surface material and texture.
Meanwhile, the capacitive sensing unit measures the
object’s hardness when subjected to mechanical stimuli
from a robotic gripper. Subsequently, the deep learning
method was employed to enhance the sensor’s perfor-
mance and achieve accurate recognition of multiple
samples.

Results and discussion
Design and fabrication of the hybrid tactile sensor
Figure 1a illustrates the schematic of the hybrid tactile
sensor. It consists of a triboelectric sensing unit and a
capacitive sensing unit. Such a combination does not
require the introduction of functional materials. The
friction layer of the triboelectric sensing unit and the
dielectric layer of the capacitive sensing unit can be
prepared using the same material and the same process,
which greatly simplifies the preparation process of the
hybrid sensor. Both the two sensing units are made of a
porous PDMS sensitive film and copper electrodes. The
triboelectric sensing unit is located on the upper layer,

Porous PDMS

C <> <ii>

<iii> <iv>

+ +

Capacitive sensing unit

Fig. 1 Design of the hybrid tactile sensor and the scheme of the process. a The structure of the tactile sensor. b Principle of capacitive sensing
unit. ¢ The fabrication process of hybrid tactile sensor. d Photographs of a fabricated hybrid tactile sensor

+ + + +
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while the capacitive sensing unit is on the lower layer.
The two sensing units are separated by a PI layer, which
helps to avoid signal interference between the two sen-
sing units. Figure 1b presents the operating principle of
the triboelectric sensing unit and capacitive sensing unit.
For the triboelectric unit, charges are transferred
between the contacted surfaces when the sensor con-
tacts with the object and separates. Differences in the
surfaces’ ability to gain or lose electrons, as well as dif-
ferences in the contact area caused by the object texture,
can both lead to differences in triboelectric signals.
Therefore, the triboelectric signal contains information
about both the surface material and texture. Regarding
the working mechanism of the capacitive unit, the por-
ous PDMS is compressed when gripping objects and
causes a reduction in the gap between the two electro-
des. Consequently, this induces a change in its capaci-
tance. When the same force is applied to objects with
different hardness, the porous PDMS is compressed to
different extents. Therefore, by observing changes in
capacitance, the hardness of an object can be inferred.
Such design guarantees that one mechanical stimulus
converts into two kinds of signals. The bi-channel sig-
nals form a dual judgment for object recognition. This
bi-channel signal fusion discrimination method provides
a more comprehensive assessment of object properties,
thereby enhancing the sensor’s applicability to a variety
of objects.

Figure 1c presents a schematic of the sensor’s fabrica-
tion process based on a salting-out molding method. The
fabrication started from a double-sided flexible copper
clad laminate (FCCL) (Fig. 1c<i>). It was embedded in the
upper and lower molds (Fig. 1lc<ii>). After the PDMS
mixture was poured into the molds and got cured, the
molds were removed (Fig. lc<iii>). After a salting-out
process, porous PDMS films were fabricated. And, the
FCCL on the other side was finally folded to obtain a
complete hybrid tactile sensor (Fig. lc<iv>). Figure 1d
show photographs of a fabricated hybrid tactile sensor.
The actual measured dimensions of the hybrid tactile
sensor are shown in Fig. S1.

Characterization of the tactile sensor

First, we investigated the optimized mass ratio of
PDMS-to-NaCl particles. Figure 2a illustrates the change
of capacitance when the sensor with various PDMS-to-
NaCl mass ratios under increasing applied pressures. It is
apparent that the performance of hybrid tactile sensor
varies with the mass ratios. The sensitivity increases with
the PDMS-to-NaCl particle ratios. However, the mea-
surement range shrinks as the ratios increase. The PDMS-
to-NaCl particle ratios of 1:2 keep relatively high sensi-
tivity in a larger measurement range. Thus, the same mass
ratio was applied to the triboelectric sensing unit and all
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subsequent experimental data were obtained under this
mass ratio.

An indenter with a contact area of 15 mm by 15 mm
was employed to exert pressure on the hybrid tactile
sensor. The compression force was systematically
increased from 5N to 45N. As shown in Fig. 2b, the
output signal of the capacitive sensing unit steadily
increases with the rising pressure, highlighting the con-
sistency and repeatability of the sensor.

The triboelectric sensing unit generates distinctive sig-
nals when in contact with objects of varying surface
materials. Taking PI and PTFE as examples, the output
voltage of the hybrid tactile sensor, when operated at a
frequency of 0.5 Hz, is illustrated in Fig. 2c, d. When in
contact with PTFE, the triboelectric sensing unit gen-
erates negative voltage, while positive voltage is produced
upon separation. Conversely, the scenario is entirely
reversed when in contact with and separating from PI.
Significant differences are also observed in the peak-to-
peak voltage between the two cases. This variation in
output signal also appears on other surface materials. To
confirm this sensitivity across various situations, we
conducted experiments using different materials to touch
the sensor’s surface periodically at a frequency of 0.5 Hz,
as shown in Fig. S2. This validates that the sensor can
detect these differences effectively. Fatigue tests of the
sensor were carried out by involving 3000 cycles at a
frequency of 0.5 Hz. As shown in Fig. S3, the bi-channel
signals of the hybrid sensor demonstrate good resilience
and robustness in operational conditions.

We also conducted tests on the characteristics of the
hybrid sensor under various frequencies at fixed applied
forces. The hybrid tactile sensor was mounted on a
tensile testing platform, and PMMA was selected as the
contact material. Figure 2e, f illustrates the responses
obtained at frequencies of 1Hz, 5Hz, and 10Hz,
respectively. At these frequencies, both the two sensing
units can generate stable signals. The triboelectric
sensing unit demonstrates a more instantaneous and
focused response, capturing the moment of contact and
separation. Nevertheless, the capacitive sensing unit
demonstrates a slower response speed, reflecting the
feedback information of the object to applied forces.
Such continuous response can thus provide information
about the object’s hardness.

Deep learning-assisted object recognition applications

In order to comprehensively evaluate the performance
of the hybrid tactile sensors in object recognition, we built
a platform as it’s shown in Figure S4. The hybrid tactile
sensor was assembled on a robotic grip. Signal acquisition
is facilitated through an oscilloscope and an impedance
analyzer. This setup enables real-time capturing of tri-
boelectric and capacitive signals, which is essential for
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accurate tactile sensing and object recognition tasks. In
this platform, objects of varying hardness levels are tested,
allowing for accurate comparative analysis in both tactile
sensing and object recognition experiments.

To investigate the optimal gripping depths of the hybrid
tactile sensor, we selected three samples with varying
Shore hardness levels, including a PTFE ball, a hollow
rubber ball, and a balloon. At an initial gripping depth of
0 mm, the sensor delicately brushes against the object’s
surface. The triboelectric sensing unit generates a weak
voltage signal, with negligible capacitance changes being
observed (Fig. 3a). Upon increasing pressure to achieve a

1 mm gripping depth, the sensor enables nuanced detec-
tion of surface textures and material properties. Notably,
gripping the PTFE ball elicits noticeable capacitance
changes, while weaker signals are observed when gripping
the hollow rubber ball and balloon. At this depth, the bi-
channel signals of triboelectric and capacitance fail to
distinguish among objects of different hardness (Fig. 3b).
Further, augmenting pressure to attain a 2 mm gripping
depth vyields optimal sensitivity and discrimination of
object compliance and deformability. The hybrid tactile
sensor demonstrates stable grasping of objects with
varying hardness levels, showcasing significant differences
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Fig. 3 Optimization of the gripper's gripping depth. Bi-channel outputs of the sensor when gripping depth of the gripper is set as a 0 mm,
b 1mm, c 2mm, and d 3mm

.

in bi-channel signals, particularly in distinguishing among
objects of different Shore hardness (Fig. 3c). In contrast,
increased pressure resulting in a 3 mm gripping depth
compromises sensor performance, manifesting as reduced
sensitivity and accuracy in tactile perception. Particularly
for objects with higher Shore hardness, the hybrid tactile
sensor exhibits diminished trends in capacitance and tri-
boelectric signal changes compared to the 2 mm gripping
depth (Fig. 3d). In the subsequent experiments, we chose
2 mm as the gripping depth to ensure reliable output of
the triboelectric sensing unit and capacitive sensing unit.

Then we comprehensively selected and tested 12 sam-
ples with diverse shapes, material and Shore hardness
levels. Their photographs are illustrated in Fig. S5. Tactile

information was extracted from the bi-channel signals to
form the dataset for object recognition.

Figure 4a shows the corresponding bi-channel signals of
four kinds of balls, including a PTFE ball, a billiard ball, a
hollow rubber ball and a solid rubber ball. Both the PTFE
ball and the billiard ball exhibit relatively high Shore
hardness, they are difficult to be distinguished solely based
on relative capacitance changes. However, they can be
easily distinguished since their triboelectric signals have
completely opposite polarities. For the hollow and solid
rubber balls, significant differences are observed in both
the triboelectric and capacitive signals. We also evaluated
the different states of four objects, including a tennis ball,
a PE ball, a mango, and a kiwi. These objects are
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Fig. 4 Bi-channel signals of the 12 samples. a a PTFE ball, a billiard ball, a hollow rubber ball, and a solid rubber ball, b a normal tennis ball and a
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.

susceptible to undergoing changes in their states. They
were characterized as a normal state and a broken or
overripe state, respectively. The corresponding bi-channel
signals of these objects in both states are shown in Fig.
4b—e. In the broken state, both the tennis ball and the PE
ball exhibit a reduction in Shore hardness compared to
their normal state. Such change is effectively represented
by noticeable alterations in capacitance signals from the
hybrid tactile sensor. However, their triboelectric signals
show less variation. In contrast, significant differences in

both triboelectric and capacitance signals can be observed
in the overripe mango and kiwi, owing to undergo sub-
stantial changes in surface texture and Shore hardness
compared to their normal states. This experiment
demonstrates that the hybrid tactile sensor is capable not
only of discerning the type of objects but also their states.

The signals acquired from the tactile sensor have sig-
nificant potential for object recognition. They contribute
to the generation of a valuable training dataset for further
analysis and machine learning applications. As a novel
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Fig. 5 Machine learning-assisted object recognition application with the hybrid tactile sensor. a Schematic of the object recognition process.
b Schematic of the process and parameters for constructing a one-dimensional CNN. ¢ Learning curve during the training process. d Results of the
recognition among the 12 samples shown by prediction confusion matrix
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data processing and signal analysis methodology that has  recognition system we designed is shown in Fig. 5a. We
attracted great attention in recent years, deep learning use the bi-channel signals of 12 objects obtained from the
techniques can greatly enhance recognition capabilities, above experiments as the dataset. To ensure the accuracy
enabling the identification of a broader range of objects. It  and adequacy of the data, 100 acquisitions were made for
builds upon traditional artificial neural networks by each object. These data will be transferred to the com-
increasing model depth and improving data processing puter for deep learning model training.

and analysis through hierarchical data representations. To The structure of the deep learning network we designed
improve the recognition accuracy and efficiency, the is shown in Fig. 5b. We chose 1D-CNN as the feature
convolutional neural network (CNN) algorithm was extractor for our deep learning network. 1D-CNN is
employed to assist the object recognition. The object highly effective for processing time-series data of the
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hybrid tactile sensor’s bi-channel signals. These networks
capture intricate patterns through convolution operations
and enhance the sensor’s recognition capabilities. 1D-
CNN enables end-to-end training from raw sensor data to
recognition results. It eliminates complex feature engi-
neering and allows automatic learning of relevant pat-
terns. 1D-CNN uses convolutional kernels that slide over
the temporal dimension and reduce parameters compared
to fully connected networks. This enhances computa-
tional efficiency and speeds up the training process.
Moreover, 1D-CNN excels at capturing short-term
dependencies in time-series data. It is crucial for recog-
nizing subtle and transient changes detected by the tactile
sensor. This improves the recognition accuracy by lever-
aging the complementary nature of both modalities.

We employed a multi-layer 1D-CNN to construct the
entire network architecture, which enables the extraction
of more complex and abstract features, thereby enhancing
the model’s performance. In order to eliminate the effect
of scale difference caused by two different magnitude
signals during deep learning training, we normalize the
friction electric signal and capacitance signal output from
the sensor. We splice the normalized friction and capa-
citance signals into two channels of one-dimensional data
as the input to the network.

To avoid the problems caused by sample imbalance, we
randomly divide the samples of each object into training
and validation sets in the ratio of 9:1. This ensures that
the model is able to learn and generalize sufficiently
during the training process. As the learning curve shown
in Fig. 5¢, the training results become stable after 400
training cycles. The accuracy gap between the training
and test sets is minimal. This indicates that the network
model possesses strong generalization ability and
robustness. The confusion matrix of the deep learning
network prediction results is shown in Fig. 5d, and the
accuracy of the validation set can reach 98.46%. The
results demonstrate that the hybrid tactile sensor can
accurately accomplish object recognition with the assis-
tance of deep learning. To demonstrate the ability of the
proposed hybrid tactile sensor to recognize multiple
states of the same object, we added three additional states
of tennis balls, which were deflated by 5ml, 10 ml, and
20 ml, respectively, to simulate the conditions of deflated
tennis balls. Along with the normal and broken tennis
balls, the 5 states of a tennis ball can be correctly
recognized with an accuracy of over 92% (Fig. S6 in
supplementary information). Furthermore, to enhance
the robustness and generalizability of the deep learning
model, 6 new samples were added to the initial dataset,
including a raw mango, a rotten mango, a balloon, and
three tennis balls in deflated states. The recognition
accuracy of the extended set of 18 samples reaches
95.56% (Fig. S7 in supplementary information).
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Conclusion

In this work, we developed a hybrid tactile sensor by
integrating a triboelectric sensing unit and a capacitive
sensing unit. Both the triboelectric layer and the dielectric
layer were prepared by a single porous PDMS process.
The hybrid tactile sensor can help the robotic gripper
acquire information about the object’s hardness and sur-
face and generate bi-channel signals during gripping. We
characterized the sensor’s stability, consistently delivering
bi-channel signals under varied stimulation frequencies.
Additionally, we explored the optimal mechanical grip-
ping depth of the hybrid tactile sensor on a robotic
gripper. We also demonstrated a deep learning-assisted
object recognition method that can accurately recognize
18 different samples. By analyzing the training and vali-
dation sets, we found that the network performed well on
both datasets, showing that the network has good
robustness. The deep learning network achieved an
accuracy of 98.46% on the validation set. In summary, the
hybrid tactile sensor shows good performance in the
recognition of objects and provides a reliable solution for
achieving accurate recognition.

Materials and methods
Preparation of the sensor

Two square acrylic molds with a side length of 15mm
and a height of 1 mm and 2 mm, respectively, were first
prepared. There are screw holes in the center of the molds
to facilitate the fixation of the substrate. Electrodes pat-
terned FCCL was embedded between the two acrylic
molds. The base of PDMS (Sylgard 184, Dow Corning)
was mixed with NaCl particles in a weight ratio of 1:2, and
the curing agent of PDMS was added into the mixture
with a weight ratio of 20:1. In order to prepare uniform
NaCl particles, NaCl particles of 355-400 pm in diameter
were extracted using 0.355 mm and 0.4 mm sieves (GB/
T6003.1-2012). Subsequently, the PDMS and NaCl mix-
ture was cast into the acrylic molds and cured in an air
oven (PCHB-C6000 Serials) at 80°C for 120 minutes. The
molds were then removed after the PDMS films were
cured. The PDMS films were then bathed in water at 50°C
in an ultrasonic cleaner (Fisherbrand, 11205) to obtain
porous PDMS. Finally, the FCCL substrate was folded and
pasted, and the hybrid tactile sensor was fabricated.

Characterization setup

The mechanical excitations were applied to the sensor
by a dynamic test instrument (Instron, E1000). In order to
maintain the same gripping depth on different objects, the
route and position of the gripper were pre-programmed
to match the size differences of these objects. The voltages
generated by the triboelectric sensing unit were measured
by a digital oscilloscope (ZLG, ZDS2024B) via a 100:1
oscilloscope probe. A low-noise current amplifier (SRS,
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SR570) is used to measure the currents of the triboelectric
sensing unit. The capacitance of the capacitive sensing
unit is measured by an impedance analyzer (Keysight,
E4990A). In addition, the surface topography of the por-
ous PDMS was observed using a scanning electron
microscope (Hitachi, SU8010).
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