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Abstract
This study presents a novel approach for achieving linear motion in thermal micro-actuators by integrating machine
learning-assisted optimized mechanical metastructures into the system design. Traditional solutions to actuator
nonlinearity rely on complex sensor-based feedback mechanisms, which are often impractical in miniaturized systems.
By embedding mechanical elements with tailored stiffness directly into the actuator structure, the proposed method
transforms the inherent nonlinear relationship between input voltage and displacement into a near-linear response. A
large design dataset was generated through finite element simulation and used to train a neural network model
capable of predicting mechanical behavior across a broad design space. This model was then employed to guide
inverse design and optimize geometrical parameters for specific performance goals. The optimized metastructures
integrated with thermal actuators were fabricated via a Piezo-Multi-User MEMS Process (PiezoMUMP). Experimental
characterization, conducted in a scanning electron microscope, confirmed that the fabricated device achieved an
approximately 85% improvement in linearity compared to the original actuator. This enhanced performance enables
more precise control of displacement in applications such as tensile testing of two-dimensional materials. The
approach eliminates the need for sensors or electronic conrollers, offering a scalable and computationally efficient
solution for improving actuator performance. The demonstrated methodology may be generalized to other actuation
systems, opening new pathways for intelligent mechanical design enabled by data-driven optimization.

Introduction
Mechanical actuation is widely employed across diverse

fields such as aviation, robotics, electronics, and medi-
cine1,2. It involves transforming electrical, hydraulic, or
thermal energy into mechanical motion3, resulting in
various actuation mechanisms, including but not limited
to electromagnetic actuators4, piezoelectric actuators5,

hydraulic and pneumatic actuators6, and thermal actua-
tors7. The practical application of these mechanisms
depends on precise control and accurate prediction of
their actuation movements. This is particularly critical in
small-scale systems such as microelectromechanical sys-
tems (MEMS), where small errors or uncertainties in
actuation can affect overall performance.
A key metric for actuation mechanisms is their input-

output relationship, which describes how the applied
input (e.g., voltage, current, magnetic field, or pressure)
translates into the resulting output (e.g., displacement
or force). Linearity is crucial for achieving high accuracy
in controlling the behavior of these mechanisms.
However, due to the complex design of these miniature
devices and the coupling of different physical fields (e.g.,
electromechanical, magneto-mechanical, and hydro-
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mechanical), sophisticated control systems and feed-
back loops are often required to achieve a linear or
pseudo-linear response. For instance, feedback loops
are typically used to adjust the input signal based on
real-time monitoring of discrepancies between the
desired and actual outputs8. Although effective, incor-
porating sensing elements and developing the necessary
circuits and control systems is costly and complex9,
particularly in MEMS devices, which also make these
systems more prone to fabrication challenges and
potential failures10.
Take MEMS ETAs as an example. They have been an

essential type of actuator under various contexts, such as
achieving precise alignment in micro-optical compo-
nents7,11, activating microvalves for microfluidic con-
trol12,13, characterizing nanomaterial properties14,15, and
executing tasks that require submicron-precision
motions16,17. Electrothermal actuators offer several
advantages, including compactness18,19, low operating
voltage20,21, compatibility with semiconductor fabrication
processes19,22, and a high force or displacement to voltage
ratio compared to electromagnetic, electrostatic, and
piezoelectric MEMS actuators23,24. However, their inher-
ent nonlinear relationship between the input voltage and
the output actuation displacement due to a complex
electro-thermo-mechanical coupling mechanism restricts
their use in applications requiring linear motion25. The
primary source of this nonlinearity is Joule heating.
Because the generated heat is proportional to the square
of the applied current or voltage, the relationship between
applied voltage and actuation displacement becomes
quadratic26. The temperature-dependent material prop-
erties of silicon, e.g., coefficient of thermal expansion,
electrical resistivity, and thermal conductivity, further
contribute to their nonlinear behaviors27,28. Variations in
geometry during actuation, including deflection, buckling
effects, and structural instabilities, can introduce addi-
tional nonlinearity29.
To linearize the behavior of MEMS ETAs, conventional

approaches used in macro-scale devices have been
investigated. These approaches often rely on feedback
control systems or transducers to achieve linear actua-
tion27,30. However, integrating sensors, such as capacitive
and piezoresistive types, and control units introduces
complexities, including susceptibility to crosstalk and
practical challenges in fabrication and implementa-
tion31,32. Additionally, to achieve high sensitivity, the
feature size and spacing of the sensing beams must be
reduced to a few microns or smaller, making them vul-
nerable in applications. An important application of
MEMS ETAs is to characterize the mechanical properties
of nanomaterials, a process requiring material transfer
onto the MEMS platform. Unfortunately, the sensing
elements are often too delicate to withstand the harsh

conditions of commonly used transfer processes, such as
exposure to chemical baths or mechanical pressure33.
While voltage modulation techniques, such as applying

a square root profile to the input voltage, can linearize the
response of electrothermal actuators through external
electronics, our approach provides a sensor-free, circuit-
free alternative by embedding the linearization mechan-
ism directly into the mechanical system. This work pre-
sents a new method for mitigating the nonlinear behavior
of MEMS thermal actuators. Instead of utilizing sensors
and feedback control systems, we demonstrated that near-
linear responses can be achieved by integrating mechan-
ical metastructures designed with the aid of machine
learning models. By eliminating the need for real-time
sensing, closed-loop feedback, or complex control elec-
tronics, our approach is particularly advantageous for
space-constrained, low-power, or fully passive applica-
tions, such as implantable biomedical devices and remote
MEMS sensors, where electronic solutions may be
impractical. Additionally, the metastructure-based design
allows for tunable actuation characteristics at the fabri-
cation stage, ensuring repeatable and pre-defined
responses without the need for runtime control. To
develop an effective metastructure that ensures desired
linear output within material limitations, we generated
approximately 16,000 simulated models for each design
configuration to serve as the training dataset. Using neural
network (NN) optimization combined with an inverse
design algorithm for geometrical parameter predic-
tion34,35, we achieved the targeted near-linear output
behavior for the overall system. The implemented
metastructures serve as an extension of the actuator,
offering several advantages: compatibility with mass pro-
duction processes, customizability for tailored needs, and
the absence of any requirement for additional power input
or field stimuli. This lean design concept, which mini-
mizes the integration of sensors and control systems in
MEMS devices through the implementation of mechan-
ical metastructures and the use of machine-learning
models, has the potential to be applied to the develop-
ment of other MEMS and even macro-scale actuation
systems.

Results
Metastructures for displacement modulation
In MEMS devices, electrothermal actuation works by

Joule heating. Applying voltage generates heat, which
causes thermal expansion and drives actuation. (Fig. 1a).
While a linear correlation between actuated displacement
(ua) and applied voltage (V) is ideal, the observed
displacement-voltage relationship is quadratic, i.e., ua ∝
V2 (Fig. 1b)26,30. To achieve the linear relationship
between applied voltage and displacement, we propose
integrating a mechanical metastructure with the actuator
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(Fig. 1c). This metastructure exhibits a square root rela-
tionship between the input displacement (ua), driven by
the electrothermal actuator, and the output displacement
(um). The combined effect of this square root relationship
and the quadratic actuation mechanism is predicted to
produce a linear relationship between the total displace-
ment (uT) and the input actuation voltage (Fig. 1d).
To design an effective metastructure, it is decomposed

into two functional components. By modeling the system
as two nonlinear springs connected in series with stiff-
nesses K1 and K2, we derive an equivalent formula to
determine the stiffness for each component (Fig. 1e;
detailed derivation is available in Note S1).

K1 ua � ffiffiffiffiffi
ua

p� �

K2
ffiffiffiffiffi
ua

p� �þ K1 ua � ffiffiffiffiffi
ua

p� �� � ¼ 1
2

ffiffiffiffiffi
ua

p ð1Þ

Although a theoretical solution is difficult to derive and
would not directly provide geometrical information, one
potential approach involves implementing springs with
deformation-dependent stiffness. This can be achieved by
having K1 exhibit softening behavior and K2 exhibit
hardening behavior. Finite element analysis (FEA) simu-
lations (Fig.S1) revealed that softening behavior is
observed in a pair of double-clamped inclined beams
when subjected to downward forces, as their in-plane
stiffness becomes less aligned with the direction of

deformation. In contrast, a pair of double-clamped
straight beams exhibits stiffening behavior under defor-
mation due to its in-plane stiffness aligning more effec-
tively with the applied force. This insight suggests that
integrating inclined and straight beams can form the basis
of the metastructure design (Fig. 1f)35,36.

Geometric parameters of the metastructure
Two metastructure configurations, incorporating flat

and inclined beams, were designed: single-sided inclined
beams (SS, Fig. 2a) and double-sided inclined beams (DS,
Fig. 2b). These designs leverage geometric nonlinearity to
address the nonlinear relationship between voltage and
displacement in ETAs. The maximum achievable dis-
placement of each metastructure is limited by the ETA
output, which is constrained by the applied voltage and
the maximum temperature that silicon-based MEMS can
withstand. Five geometric parameters (l1, l2, w1, w2, h1),
illustrated in Figs. 2a and 2b, define the stiffness char-
acteristics of each configuration: in-plane lengths (l1 and
l2), in-plane widths (w1 and w2), and the rise of the beam
(h1).
A parametric study assessed the influence of each geo-

metric parameter on the mechanical behavior of the
metastructures using beam model FEA (Fig. S2). This
analysis considered fabrication limitations, leading to the
definition of two design spaces: nanoscale and microscale.
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These classifications are based on the in-plane widths
(w1 and w2) and reflect the trade-off between linearization
potential and ease of fabrication. On the one hand,
nanoscale metastructures, characterized by in-plane
widths (w1 and w2) ranging from 0.1 to 1 µm, offer the
potential for enhanced linearity due to their finer struc-
tures but require specialized nanofabrication facilities. On
the other hand, microscale metastructures, with in-plane
widths (w1 and w2) between 1 and 20 µm, can be readily
produced using standard micro-fabrication facilities but
exhibit a reduced degree of linearization.
The nonlinear behavior of the metastructure is influ-

enced by the slenderness ratio of its component beams
(Fig. S3). Higher slenderness ratios lead to increased
nonlinearity under the same displacement37. Therefore,
metastructures were designed with varying lengths and
slenderness ratios within each size classification. Micro-
scale metastructures had l1 and l2 from 200 to 1000 µm
and slenderness ratios from 10 to 1000. Nanoscale
metastructures had l1 and l2 from 40 to 200 µm and
higher slenderness ratios from 40 to 2000.
Figure 2c–g illustrate the displacement response of the

SS and DS designs for varying geometric parameters. The
figure presents results for microscale SS (column 1),
nanoscale SS (column 2), microscale DS (column 3), and
nanoscale DS (column 4) configurations. To determine
the influence of each geometric parameter on achieving a
square root relationship between input and output dis-
placement (uT=A√ua, where A is a constant), each
parameter was systematically varied while others
remained constant. The coefficient of determination (R²)
for each fitted curve quantifies the agreement between
simulation results and this ideal square root function. For
the microscale configurations, beam widths (w1 and w2)
ranged from 2 to 10 µm, beam lengths (l1 and l2) from 100
to 900 µm, and inclined beam rise (h1) from 2 to 10 µm.
For the nanoscale configurations, the corresponding
ranges were 0.1 to 0.5 µm for widths (w1 and w2), 40 to
200 µm for length (l1 and l2), and 0.5 to 2.5 µm for rise
(h1).
The study of nanoscale metastructures revealed a cri-

tical instability in the SS configuration. All parametric

studies of this design showed snap-back instability, char-
acterized by abrupt reductions in both input and output
displacement with increasing internal stress. This
instability can be attributed to the fixed spacing between
the side connections in the SS design. This fixed spacing
facilitates greater in-plane deformation of the inclined
beams, leading to an increase in buckling stress and a
corresponding increase in incremental negative stiffness.
In contrast, the symmetrical configuration of inclined
beams in the DS design allows for lateral movement of the
side connections during deformation, mitigating buckling
and structural instability. Given the brittle nature of sili-
con, this snap-back induced energy release poses a risk of
fracture in fabricated devices36,38. Consequently, the
nanoscale SS configuration is unsuitable for practical
implementation and is excluded from further
investigation.
The nanoscale DS design configuration (Fig. 2c(iv)-

2g(iv)) exhibited the strongest square root relationship
between input and output of all tested configurations.
This is evidenced by the high average R² values calculated
from each of the R² listed in the plots: R²w1= 0.993,
R²w2= 0.942, R²l1= 0.979, R²l2= 0.976, R²h1= 0.995 for
each geometric parameter. These results suggest the
nanoscale DS configuration is optimal due to its strong
adherence to the square root relationship. The relation-
ship is particularly sensitive to variations in w2. A change
in w2 from 0.1 µm to 0.5 µm resulted in a drop in R² from
0.991 to 0.866. In contrast, increasing l1 by the same order
of magnitude produced only a marginal change of
approximately 0.001 in R². This observation indicates that
optimizing w2 towards a lower value is crucial for
achieving the desired square root relationship.
In the microscale category, the differences in square

root performance between the SS and DS configurations
were less pronounced. This is likely due to the larger
beam dimensions, which experience lower strain under
the same input displacement compared to nanoscale
designs. Although microscale structures exhibit greater
absolute deformation, their increased dimensions result in
reduced relative deformation (strain) for a given input
displacement. This reduced deformation diminishes the

(see figure on previous page)
Fig. 2 Parametric study of the metastructure designs. a Schematic of the SS metastructure with five geometric parameters defined. The SS
configuration consists of a set of softening (inclined) beams and a set of constrained (flat) beams. The side connections are linked by a rigid
crossbeam. b Schematic of the DS metastructure with five geometric parameters illustrated. The DS configuration consists of two sets of symmetrical
softening (inclined) beams and a set of constrained (flat) beams. The side connections are linked by pairs of symmetrical inclined beams. c Output
displacement profiles under tensile loading for i SS microscale, ii SS nanoscale, iii DS microscale, and iv DS nanoscale configurations, showing the
influence of w1. Initial w1 dimensions are indicated in red (6 µm for microscale, 0.2 µm for nanoscale). d Output displacement profiles under tensile
loading for geometric parameter w2 with the same order as c. Initial w2 dimensions are 6 µm for microscale and 0.2 µm for nanoscale. e Output
displacement profiles under tensile loading for geometric parameter softening spring beam length l1 with the same order as c. Initial l1 dimensions
are 500 µm for microscale and 120 µm for nanoscale. f Output displacement profiles under tensile loading for geometric parameter l2 with the same
order as c. Initial l2 dimensions are 500 µm for microscale and 120 µm for nanoscale. g Output displacement profiles under tensile loading for
geometric parameter h1 with the same order as c. Initial h1 dimensions are 10 µm for microscale and 2.5 µm for nanoscale
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square root relationship. While the difference in square
root performance was minimal, several other factors dis-
tinguish the two designs. First, the SS design exhibits
greater overall stiffness than the DS configuration, as it
includes one fewer set of beams in series and features
clamped side connections. This increased stiffness allows
the SS design to generate greater force (Fig. S4–S6),
making it more suitable for applications requiring high
force output. Second, parametric studies (Fig. 2c(i)–2g(i)
and Fig. 2c(iii)–2g(iii)) show that the SS configuration can
achieve slightly higher displacement than the DS design,
which could be advantageous for applications demanding
significant displacement output. Finally, the SS config-
uration is less prone to fracture than the DS design.
Because the SS design incorporates fewer inclined and
constrained beams, it results in a more mechanically
robust structure and a reduced risk of fracture. These
advantages make the SS design a more promising candi-
date for the microscale category, provided its linearization
behavior is comparable to the DS configuration. None-
theless, this conclusion does not preclude further inves-
tigation of the DS design, as it may still perform well in
achieving linearization.
Designing a metastructure to linearize the

displacement-voltage relationship in MEMS ETAs pre-
sented a significant challenge due to the vast design space.
The parametric study revealed that no single geometric
parameter had a dominant influence; all parameters
contributed to the linearization effect, except for the
inclined beam rise (h1) in the DS design, which had a
negligible impact. Therefore, traditional iterative design
and simulation methods, while suitable for simpler
structures, were insufficient for this complex task. The
inherent nonlinearities and broad range of design vari-
ables required the use of an advanced optimization
technique capable of systematically exploring and refining
design configurations to achieve the desired linearization.

Optimization using a neural network
Machine learning offers a powerful approach for opti-

mizing designs that are challenging to analyze with tra-
ditional methods39,40. By leveraging large datasets and
advanced neural network algorithms, machine learning
effectively captures nonlinear relationships and complex
patterns in material properties and mechanical systems. In
this study, a Multi-Layer Perceptron (MLP) neural net-
work was chosen to predict the nonlinear behavior of
metastructure designs. MLPs are well-suited for this task
due to their ability to model complex relationships
between geometric parameters and mechanical responses.
Their layered architecture and nonlinear activation
functions enable them to overcome limitations of tradi-
tional analytical approaches41. Furthermore, MLPs offer a
balance between computational efficiency and model

complexity, making them suitable for exploring high-
dimensional design spaces. The universal approximation
property of MLPs ensures they can model any continuous
function to a desired level of accuracy42, and they are
straightforward to implement and train, providing an
efficient solution for modeling intricate data patterns43,44.
The MLP surrogate model assists the optimization task

by performing forward matrix multiplications in ∼0.01 s
per design, in place of a full FEA solve (∼22 s per design).
This allows rapid evaluation of thousands of candidate
designs, whereas FEA is used only to generate the training
data and to verify final optimized geometries. After
training, the MLP model maintains good alignment with
FEA results. Integrating the MLP model into the design
workflow enabled rapid prediction of outcomes across the
expansive design space. Unlike FEA, which typically
requires solving systems of equations via inverse matrix
calculations45, the MLP performs forward matrix opera-
tions during inference. These operations, consisting of
simple matrix multiplications and nonlinear activations,
eliminate the computational overhead of solving inverse
problems. Consequently, the MLP reduces computational
time, facilitating efficient optimization and enabling the
inverse design of metastructures with desired nonlinear
behaviors. This approach highlights the potential of
machine learning to accelerate design processes and
improve the feasibility of exploring complex, multi-
dimensional design spaces.
To optimize designs across the categorized size ranges

(i.e., nanoscale DS and microscale SS and DS) while
considering manufacturing constraints, we employed an
MLP-based approach. Approximately 48,000 data points
were generated and divided equally into three groups of
16,000 each. This division enabled a comprehensive
investigation into size-dependent behaviors. Each design
incorporated all geometric parameters into a beam model
(Fig. 3a), which was then used in an FEA model to gen-
erate simulation outputs. For instance, Fig. 3b shows the
output distribution of the beam model for the nanoscale
DS design. In these simulations, the five key geometrical
parameters (t₁, t₂, w₁, w₂, and h₁) were systematically
varied over their predefined ranges, while all other factors,
including material properties and boundary conditions,
were held constant. This ensures that any variation in the
output displacement is exclusively due to changes in the
design parameters. The resulting distribution in Fig. 3c
reflects the intrinsic response of the DS nanoscale
metastructure design across the explored design space,
with a particularly dense sampling in the 0.1-2 µm range.
This density is critical for capturing the softening beha-
vior necessary to correct the nonlinear voltage-
displacement relationship of the actuator. By exploring
an extensive geometric parameter space with evenly
spaced parametric sweeps, we generated data points
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covering the entire range up to this 5 μm maximum.
Output displacements for each group of 16,000 designs
were sampled at 20 intervals, ensuring sufficient repre-
sentation across the design space for detailed analysis and
optimization.
Subsequently, an MLP architecture (Fig. 3c) was

developed to use the geometric parameters as input

features and predict the tip displacement at 20 evenly
spaced intervals in the input displacement domain. To
standardize the neural network (NN) training process, all
simulations were conducted with a fixed input displace-
ment range of 0 to 5 µm, sampled at 0.25 µm increments
(resulting in 20 evenly spaced input intervals). This
approach ensures that the output displacement profiles of
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Fig. 3 Comprehensive analysis and optimization of metastructure designs using neural networks and particle swarm optimization (PSO).
a Procedure for generating training data for the ML model: key geometric parameters (w1, w2, l1, l2, h1) of the metastructure are the inputs of the
workflow. FEA simulations are performed across a range of these parameters, generating a comprehensive dataset of output displacements for each
design that forms the basis for training the neural network. b The distribution of output displacements presents the diverse range of responses
captured within the dataset. c The architecture of the MLP neural network model, designed to predict the deformation behavior of the metastructure
based on input variables. d The high accuracy of the MLP neural network in predicting deformation, as evidenced by near-perfect R2 values achieved
during the training and validation phases across various design configurations. e The algorithm is employed to optimize metastructure designs for
specified output characteristics by integrating the MLP model with a defined objective function. f The alternative algorithm employed to optimize
metastructure designs for output characteristics by integrating the PSO in conjunction with FEA simulations. g The alternative algorithm employed to
optimize metastructure designs for output characteristics by integrating the PSO in conjunction with NN
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all metastructure designs are directly comparable. The
NN was trained with geometrical parameters as input and
the corresponding output displacement profile as output,
eliminating the need for an explicit input displacement
value during inference. Separate MLP models were
trained for each size range. After training, these models
demonstrated high accuracy, with an R2= 0.996 achieved
for the nanoscale DS configuration as an example (Fig.
3d). For detailed information regarding the MLP archi-
tecture, please refer to Table S1 and Fig. S7–S9.

Optimization for ideal metastructure
To optimize the metastructure geometric parameters

for achieving a desired deformation behavior, the trained
MLP was coupled with an objective function repre-
senting the target actuator output displacement profile
y� ¼ ½y�1; y�2; y�20�.
The optimization process aims to minimize the mean

squared error (MSE) between the MLP predicted dis-
placements ŷi and the target displacements y�i :

MSE ¼ 1
20

X20

i¼1

ŷi � y�i
� �2 ð2Þ

where ŷi denotes the MLP predicted displacement at the
i-th point, and y�i is the target displacement. The
algorithm updates the geometric parameters by calculat-
ing the gradients of the MSE and applying a gradient
descent method46:

θnew ¼ θnew � α∇θMSE ð3Þ

where θ represents the vector of geometric parameters,
and α is the learning rate. The optimization process
iteratively adjusts the geometric parameters until the
predicted displacements match the desired specifications.
This results in an optimized set of parameters. Figure 3f
illustrates the framework for iteratively computing errors
and updating the geometric parameters. This optimiza-
tion strategy streamlines the design process by minimiz-
ing manual experimentation and directly guiding the
geometric parameters toward optimal solutions. This
approach also allows extensive exploration of the design
space, ensuring thorough coverage with numerous start-
ing points. Here, the optimization that runs for fabrication
is performed with fabrication-based bounds on θ, enfor-
cing a minimum beam width and maximum beam length
dictated by the Piezo Multi-User MEMS Process
(PiezoMUMP).
We additionally employed a Particle Swarm Optimiza-

tion (PSO) algorithm to optimize the 5-parameter error
function describing the discrepancy between the desired
and actual metastructure output (Fig. 3f and Fig. 3g). In

our implementation, PSO was used in conjunction with
both FEA and a NN surrogate model. The PSO algorithm
utilized 20 particles and was run for 100 iterations, with
an inertia weight of 0.9 and cognitive and social coeffi-
cients of 2.0 each47. When integrated with FEA, each
simulation took approximately 22 s; conversely, using the
NN surrogate reduced the evaluation time to about 0.01 s
per iteration. Although individual FEA runs can be par-
allelized, our PSO+ FEA implementation launched each
particle FEA simulation sequentially. In contrast, when
generating data for the NN, we organized the simulations
into batches and ran each batch on a separate CPU core in
parallel. The optimized parameters obtained from PSO
were comparable to those from the NN-based gradient
descent approach. For details of implementation and
results, please see Note S2 and Table S2.

Computational and experimental results
The optimized geometric parameters for each case

(nanoscale/microscale DS and microscale SS), derived
from the MLP models, were used to construct metas-
tructures for ETA linearization. The effectiveness of the
proposed metastructure is inherently dependent on spe-
cific displacement and force ranges. In this study, the
metastructure was optimized for the electrothermal
actuator with a functional displacement range of 1 µm.
Since a single metastructure design cannot accommodate
all actuation scenarios, multiple metastructure designs are
required for different displacement and force conditions.
To explore broader applicability, we systematically
designed and analyzed multiple metastructure variations,
each tailored to achieve specific displacement outputs
based on a 4 µm displacement input from the electro-
thermal actuator (Table S3). These MLP-predicted results
provided an initial baseline for manual refinement of the
final geometric parameters, using 3D element modeling.
This refinement was crucial for achieving higher fidelity in
the final designs. As an application case study, an addi-
tional design requirement was imposed to adapt the ETA
for tensile testing of 2D materials. We assumed a sym-
metrical configuration with a pair of ETAs positioned
2 µm apart. Each ETA needed to achieve a minimum
displacement of 500 nm, with a focus on maximizing
displacement control resolution. A total displacement of
1 µm would correspond to a 100% strain applied to the
tested 2D material, sufficient to fracture all identified 2D
materials.
Figures 4a to 4f illustrate these designs and their cor-

responding displacement profiles. As shown in Fig. 4a, the
ETA without metastructure integration exhibits a stan-
dard nonlinear relationship between input voltage and
output displacement. To quantify this nonlinearity, the
second-order term (C2) of a fitted quadratic polynomial
regression curve uT=C2V

2+C1V+C0 was used to
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represent the relationship between displacement (uT) and
applied voltage (V). Smaller C2 values indicate a less
nonlinear profile, as the quadratic relationship approaches
linearity when C2 approaches zero. Additionally, a smaller
C2 implies slower displacement growth with increasing
voltage, enhancing movement resolution in response to
small voltage increments.

Figure 4b–d illustrate the performance of three metas-
tructures integrated with the ETA, optimized using the
proposed procedure. The results demonstrate a consistent
improvement in linearization across all configurations,
with slight variations: C2 values of 0.014, 0.018, and 0.016
for the nanoscale DS, microscale DS, and microscale SS
configurations, respectively. These values are significantly
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Fig. 4 Evaluation of FEA accuracy. a The configuration of the ETA in the 3D model without metastructures and its corresponding displacement
versus voltage profile, derived from FEA simulations. b–d Configurations of ETA integrated with different metastructures and their input-output
behaviors from 3D FEA simulation: b nanoscale DS, c microscale DS, and d microscale SS. The corresponding displacement versus voltage profile is
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beams to increase total output actuation force for future applications, together with the corresponding displacement versus voltage profile, derived
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smaller than the C2 value of 0.099 observed in the original
thermal actuator, indicating a notable but expected
reduction in nonlinearity. While the nanoscale DS design
would be ideal for demonstration purposes, the micro-
scale SS design has been selected for actual fabrication
due to several considerations: i) the delicate nature of
nanostructures would make transferring 2D materials
onto the device highly challenging; ii) the microscale SS
design exhibits a smaller C2 value compared to the DS
design, indicating better linearization performance; iii) the
microscale SS design poses the least manufacturing chal-
lenges, ensuring greater flexibility during fabrication.
To allow mass production and practical application of

the design, additional design considerations need to be
incorporated. Figure 4e represents a microscale SS design
optimized for MUMPs, specifically PiezoMUMPs, which
has a minimum feature size of 14 µm for the purpose of
this design. This results in a C2 value of 0.030, indicating a
reduction in linearity regulation due to increased
dimensions. Figure 4f presents the final design used for
fabrication. This design, an augmentation of Fig. 4e,
multiplies functional beams to enhance force output while
minimizing displacement reduction. While the device was
initially designed to test monolayer graphene, its design
allows for the investigation of multilayer 2D materials,
expanding the scope of applicability of the device. This
force-enhanced modification should increase the output
force without a significant trade-off in the output dis-
placement48. The FEA simulation results show a 406.4%
increase in force output and a 24.7% decrease in dis-
placement based on FEA simulation (Fig. S10). The C2

value for this configuration is 0.023, representing a 76.77%
improvement compared to the original ETA.
Importantly, all metastructure designs shown in Fig. 4,

including those ultimately chosen for fabrication, were
obtained through our optimization algorithm in con-
junction with the MLP model. To ensure manufactur-
ability, realistic fabrication constraints were explicitly
incorporated into the optimization process by bounding
the design parameter ranges. This enabled the algorithm
to search for optimal solutions within the feasible design
space. Therefore, the final fabricated design is not a
compromise or manual fallback, but a direct result of
constrained optimization that balances performance and
practicality.

Displacement characterization in situ scanning electron
microscope
Figure 5a presents an SEM image of the fabricated MEMS

device with two symmetrically placed metastructure-
empowered ETAs using the PiezoMUMPs process (Note
S3). The center shuttles of two ETAs were designed to be
connected to avoid out-of-plane imbalance and post-cut
using focused ion beam (FIB) with a gap of 2 µm. The red

boxed region in Fig. 5a highlights a magnified view of the
gap (Fig. 5b) for potential suspension of 2D material sam-
ples. An isometric view is provided in the inset. This image
was captured with no external voltage applied to the
actuators. The design parameters of the fabricated device
are listed in Table S4.
Figure 5c shows the changes in gap distance at various

voltage levels, ranging from 0 V to 7 V in 1 V increments.
The displacement versus voltage profiles for the fabricated
device (half-gap measurement), the FEA results for the
ETA without a metastructure, and the FEA results for the
ETA with the finalized metastructure are shown in Fig.
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5d. Repeated calibrations were performed on three dif-
ferent fabricated devices (Fig. S11), all of which demon-
strated consistent behavior. The performance of the
fabricated device shows excellent agreement with the
simulations, achieving a C2= 0.015, which represents an
approximately 85% improvement in linearity compared to
the ETA without a metastructure (C2= 0.099). The
increased discrepancy between FEA predictions and
experimental displacement at higher voltages (Fig. 5d) is
largely due to the visual of plot scaling; the relative per-
centage error remains consistent across the range. Addi-
tional factors such as parasitic resistances (e.g., wire bond/
contact resistance), non-ideal thermal boundary condi-
tions (e.g., radiative heat loss), and fabrication-induced
variations (e.g., beam thickness, residual stress) further
contribute to deviations at high input levels. Importantly,
the linearity metric (C2= 0.015) is derived from experi-
mental data, confirming that the metastructure maintains
its linearization performance despite deviations in abso-
lute displacement.

Discussion
This study provides a sensor-free and easy-to-

implement approach to addressing the inherent non-
linearity in MEMS electrothermal actuators, advancing
their applicability in broader contexts. By integrating
mechanical metastructures optimized via machine learn-
ing, this work marks a significant departure from tradi-
tional sensor-based feedback systems. The proposed
metastructures, designed to modulate stiffness and geo-
metric nonlinearity, effectively linearized the voltage-
displacement response, streamlining the actuation process
and reducing system complexity. The results are closely
aligned with simulation predictions, and while complete
linearity was not achieved in the fabricated devices, they
demonstrate significant improvements in linearization
( ~ 85%), making it suitable for applications such as
characterizing the mechanical properties of 2D materials.
The study highlights the potential of leveraging machine
learning in inverse design problems, offering a scalable
and computationally efficient approach to optimizing
complex mechanical systems.
Alternative surrogate modeling techniques, such as

Gaussian Process Regression, Polynomial Chaos Expan-
sions, Radial Basis Function surrogates, and Support Vector
Regression, are available for creating differentiable approx-
imations of finite element models. In our study, however,
the MLP neural network provided a balance of accuracy
and computational efficiency for capturing the complex
nonlinear behavior of the metastructures49,50. The NN
surrogate achieved inference times of approximately 0.01 s
per evaluation (compared to roughly 22 s per full FEA
simulation), and it enabled efficient gradient-based opti-
mization across the entire design parameter space.

A reduction in displacement compared to the original
electrothermal actuator is expected due to the transforma-
tion of the “hockey-stick” voltage-displacement curve into a
linear profile. This is not a limitation of the design but
rather an inherent trade-off associated with linearization.
Importantly, the actuator is not restricted to small-
displacement applications. When larger displacements are
required, the designer can simply adapt the ETA config-
uration accordingly to meet the specific displacement
needs, ensuring the versatility of this approach. Broader
applicability can also be achieved by developing multiple
device variants tailored to different material classes.
Nevertheless, the addition of metastructures introduces

greater fabrication complexity and potential structural
weaknesses, which may impact the robustness of the sys-
tem. Addressing these aspects presents opportunities for
future works. Optimizing metastructure designs to balance
linearity, displacement output, and structural integrity
could further enhance performance. Exploring alternative
materials or advanced microfabrication techniques may
reduce these challenges and improve scalability.
The impact of this work extends beyond MEMS elec-

trothermal actuators. The proposed methodology could
be adapted to other nonlinear actuation systems or
applied to macro-scale devices where linearity is critical.
The integration of machine learning into mechanical
design processes paves the way for future intelligent,
adaptive systems capable of self-optimization in response
to dynamic requirements. These advancements align with
the increasing demand for efficient, high-performance
components in robotics, biomedical devices, and precision
engineering. By combining mechanical metastructures
with machine learning optimization, this study establishes
a foundation for future innovations in both micro- and
macro-scale actuation technologies.

Materials and methods
ETA design
The selected electrothermal actuation mechanism

employs a chevron-type (V-shape) configuration, chosen
to meet the focus of the study on characterizing in-plane
deformation of 2D materials. Figure 4a illustrates the
ETA. It consists of five pairs of inclined actuation beams
and four pairs of perpendicular heat-sink beams. Each
actuation beam measures 450 µm in length, 25 µm in
width, and 10 µm in depth, where the 10 µm depth cor-
responds to the thickness of the structural layer. The heat-
sink beams are 200 µm long, 8 µm wide, and 10 µm deep.
To prevent out-of-plane misalignment during fabrication,

the two actuation shuttles are initially connected across the
gap. A focused ion beam (FIB) is then used to cut the gap
for release. When a voltage is applied, the actuators move in
opposite directions, and their displacements are experi-
mentally calibrated. The SEM imaging (Hitachi S-3400N) is
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performed in-situ using a Deben vacuum electrical feed-
through port connected to a BK Precision 9110 DC power
supply. Before SEM loading, the device is bonded to a
printed circuit board (PCB) containing the electrical cir-
cuitry using a WestBond 747677E wire bonder. A detailed
description of the experimental setup is provided in Fig.
S12. Gap measurements are obtained using the Fiji image
processing tool.

Simulation conditions
Simulations of meta-structures and the generation of data

for the neural network are performed using the nonlinear
arc-length solver in ANSYS 2023R2 Workbench and
Mechanical with 2D beam elements. The results and the
boundary conditions in mesh sensitivity and slenderness
sensitivity of beam elements, and meta-structure analysis
are illustrated in Fig. S2 and Fig. S3. The material properties
used in FEA are listed in Table S5. 3D FEAs were con-
ducted with Ansys 2023R2 Workbench and Mechanical
(Fig. S13). For ETA, the mesh shows its convergence at
3 µm (Fig. S14), which is a balanced size for simulation
accuracy and computational cost. The actuation voltages
are applied across two electrodes, ranging from 0 to 7 V at
an increment of 0.5 V. Thermal boundary conditions are set
at room temperature (22 °C) at the anchors of both actua-
tion and heat-sink beams. Mechanical constraints are
applied as fixed support at all these anchors.

Thermal stabilization and displacement measurement
protocol
To ensure accurate and repeatable displacement char-

acterization, voltage was applied incrementally in 1 V steps
from 0V to 7 V using a precision DC power supply. At each
step, the device was held at the target voltage for approxi-
mately 60 s prior to imaging, allowing the system to reach
thermal equilibrium. Displacement measurements were
obtained via SEM imaging only after thermal drift became
negligible, as confirmed by monitoring consecutive image
frames. All measurements were conducted under identical
environmental conditions and followed the same timing
protocol, minimizing the influence of thermal lag or tran-
sient effects on the observed displacement. This controlled
procedure ensured the consistency and reliability of the
acquired data for linearity evaluation.

Displacement measurement and resolution
Displacement-voltage characterization was performed

using in-situ SEM (Hitachi S-3400N) combined with
image-based analysis in ImageJ. Displacement was
extracted by tracking the shuttle gap across applied vol-
tages. At the selected magnification, the imaging resolu-
tion was approximately 151 pixels per micron (6.6 nm/
pixel). Measurement uncertainty, primarily due to manual
point selection and image contrast, was estimated at ±3

pixels ( ± 19.8 nm). Given the 0–1 μm displacement range,
this corresponds to a relative uncertainty below 3%, suf-
ficient for assessing linearity. Although SEM lacks real-
time tracking capabilities, it offers high spatial resolution
and visual confirmation of quasi-static displacement,
making it well-suited for the present study.
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